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Abstract

Optimization is often cast as a deterministic problem, where
the solution is found through some iterative procedure such
as gradient descent. However, when training neural networks
the loss function changes over (iteration) time due to the ran-
domized selection of a subset of the samples. This random-
ization turns the optimization problem into a stochastic one.
We propose to consider the loss as a noisy observation with
respect to some reference optimum. This interpretation of the
loss allows us to adopt Kalman filtering as an optimizer, as
its recursive formulation is designed to estimate unknown
parameters from noisy measurements. Moreover, we show
that the Kalman Filter dynamical model for the evolution of
the unknown parameters can be used to capture the gradi-
ent dynamics of advanced methods such as Momentum and
Adam. We call this stochastic optimization method KOALA,
which is short for Kalman Optimization Algorithm with Loss
Adaptivity. KOALA is an easy to implement, scalable, and
efficient method to train neural networks. We provide con-
vergence analysis and show experimentally that it yields pa-
rameter estimates that are on par with or better than existing
state of the art optimization algorithms across several neu-
ral network architectures and machine learning tasks, such
as computer vision and language modeling. The project page
with the code and the supplementary materials is available at
https://araachie.github.io/koala/.

Introduction
Optimization of functions involving large datasets and high
dimensional models finds today large applicability in sev-
eral data-driven fields in science and the industry. Given the
growing role of deep learning, in this paper we look at opti-
mization problems arising in the training of neural networks.
The training of these models can be cast as the minimiza-
tion or maximization of a certain objective function with re-
spect to the model parameters. Because of the complexity
and computational requirements of the objective function,
the data and the models, the common practice is to resort
to iterative training procedures, such as gradient descent.
Among the iterative methods that emerged as the most ef-
fective and computationally efficient is stochastic gradient
descent (SGD) (Robbins and Monro 1951). SGD owes its
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performance gains to the adoption of an approximate ver-
sion of the objective function at each iteration step, which,
in turn, yields an approximate or noisy gradient.

While SGD seems to benefit greatly (e.g., in terms of
rate of convergence) from such an approximation, it has
also been shown that too much noise hurts the performance
(Wang et al. 2013; Bottou, Curtis, and Nocedal 2018). This
suggests that, to further improve over SGD, one could at-
tempt to model the noise of the objective function. We con-
sider the iteration-time varying loss function used in SGD as
a stochastic process obtained by adding the empirical risk to
zero mean Gaussian noise. A powerful approach designed
to handle estimation with such processes is Kalman filter-
ing (Kalman 1960). In fact, Kalman filtering has been used
to train neural networks before (Haykin 2004; Patel 2016; Is-
mail et al. 2018). However, it can be applied in very different
ways. Indeed, in our approach, which we call KOALA, we
introduce a number of novel ideas that result in a practical
and effective training algorithm. Firstly, we introduce dras-
tic approximations of the estimated covariance of Kalman’s
dynamical state so that the corresponding matrix depends
on only up to a 2 × 2 matrix of parameters. Secondly, we
approximate intermediate Kalman filtering calculations so
that more accuracy can be achieved. Thirdly, because of the
way we model the objective function, we can also define a
schedule for the optimization that behaves similarly to learn-
ing rate schedules used in SGD and other iterative methods
(Kingma and Ba 2015).
Our contributions can be summarized as follows: 1) We
design KOALA so that it can handle high-dimensional data
and models, and large datasets; 2) We present analysis and
conditions to ensure convergence; 3) We allow both the auto-
mated tuning of the algorithm and also the use of a learning
rate schedule similar to those in existing methods; 4) We in-
corporate the automatic adaptation to the noise in the loss,
which might vary depending on the settings of the training
(e.g., the minibatch size), and to the variation in the esti-
mated weights over iteration time; 5) We show how to in-
corporate iteration-time dynamics of the model parameters,
which are analogous to momentum (Sutskever et al. 2013);
6) We introduce KOALA as a framework so that it can be
further extended (we show two variations of KOALA); 7)
We show experimentally that KOALA is on par with state of
the art optimizers and can yield better minima at test time
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in a number of problems from image classification to gener-
ative adversarial networks (GAN) and natural language pro-
cessing (NLP).

Prior Work
First-Order Methods. First-order methods exploit only the
gradient of the objective function. The main advantage of
these methods lies in their speed and simplicity. (Robbins
and Monro 1951) introduce the very first stochastic opti-
mization method (SGD) in early 1951. Since then, the SGD
method has been thoroughly analyzed and extended (Shang
et al. 2018; Hu et al. 2020; Sung et al. 2020). However, a
limitation of SGD is that the learning rate must be manually
defined and it does not take any measures to improve the
gradient direction.
Second-Order Methods. To address the manual tuning of
the learning rates in first-order methods and to improve the
convergence rate, second-order methods rely on the Hes-
sian matrix. However, this matrix grows quadratically with
the number of model parameters. Thus, most work reduces
the computational complexity by approximating the Hes-
sian (Goldfarb, Ren, and Bahamou 2020; Botev, Ritter, and
Barber 2017). A number of methods looks at combining the
second-order information in different ways. For example,
(Roux and Fitzgibbon 2010) combine Newton’s method and
natural gradient. (Sohl-Dickstein, Poole, and Ganguli 2014)
combine SGD with the second-order curvature information
leveraged by quasi-Newton methods. (Yao et al. 2021) dy-
namically incorporate the curvature of the loss via adap-
tive estimates of the Hessian. (Henriques et al. 2019) pro-
pose a method that does not require to store the Hessian at
all. In contrast to these methods, KOALA does not compute
second-order derivatives, but focuses on modeling noise in
the objective function.
Adaptive. An alternative to using second-order derivatives
is to automatically adjust the step-size during the optimiza-
tion. The adaptive selection of the update step-size has been
based on several principles, including: the local sharpness
of the loss function (Yue, Nouiehed, and Kontar 2020), in-
corporating a line search approach (Vaswani et al. 2019;
Mutschler and Zell 2020; Mahsereci and Hennig 2015), the
gradient change speed (Dubey et al. 2020), a “belief” in
the current gradient direction (Zhuang et al. 2020), the lin-
earization of the loss (Rolinek and Martius 2018), the per-
component unweighted mean of all historical gradients (Da-
ley and Amato 2020), handling noise by preconditioning
based on a covariance matrix (Ida, Fujiwara, and Iwamura
2017), learning the update-step size (Wu, Ward, and Bottou
2020), looking ahead at the sequence of fast weights gener-
ated by another optimizer (Zhang et al. 2019a). A new fam-
ily of sub-gradient methods called AdaGrad is presented in
(Duchi, Hazan, and Singer 2011). AdaGrad dynamically in-
corporates knowledge of the geometry of the data observed
in earlier iterations. (Tieleman, Hinton et al. 2012) intro-
duce RmsProp, further extended in (Mukkamala and Hein
2017) with logarithmic regret bounds for strongly convex
functions. (Zeiler 2012) propose a per-dimension learning
rate method for gradient descent called AdaDelta. (Kingma
and Ba 2015) introduce Adam, based on adaptive estimates

of lower-order moments. A wide range of variations and ex-
tensions of the original Adam optimizer has also been pro-
posed (Liu, Wu, and Mozafari 2020; Reddi, Kale, and Ku-
mar 2018; Heo et al. 2021; Loshchilov and Hutter 2019;
Chen et al. 2019; Liu et al. 2020; Luo, Xiong, and Liu 2019;
Wang et al. 2020). Recent work proposes to decouple the
weight decay (Granziol et al. 2021; Ginsburg et al. 2020).
(Chen et al. 2020) introduces a partially adaptive momen-
tum estimation method. Some recent work also focuses on
the role of gradient clipping et al. (Zhang et al. 2020a,b). In
most prior work, adaptivity comes from the introduction of
extra hyper-parameters. In our case, this property is a direct
byproduct of the Kalman filtering framework.
Kalman filtering. The use of Kalman filtering theory and
methods for the training of neural networks is not new.
For example, (Ismail et al. 2018) relates to our KOALA-V
as the authors also work with scalar measurements. How-
ever, our approach differs in several ways as we introduce
a way to incorporate Momentum, learning rate scheduling,
noise adaptivity and provide a convergence analysis. More
recently, (Shashua and Mannor 2019) incorporated Kalman
filtering for Value Approximation in Reinforcement Learn-
ing. (Ollivier 2019) recovered the exact extended Kalman
filter equations from first principles in statistical learning:
the Extended Kalman filter is equal to Amari’s online natu-
ral gradient, applied in the space of trajectories of the sys-
tem. (de Vilmarest and Wintenberger 2020) applied the Ex-
tended Kalman filter to linear and logistic regressions. (Tak-
enga et al. 2004) compared GD to methods based on either
Kalman filtering or the decoupled Kalman filter. To sum-
marize, all of these prior Kalman filtering approaches either
focus on a specific non-general formulation or face difficul-
ties when scaling to high-dimensional parameter spaces of
large-scale neural models.

Risk Minimization through Kalman Filtering
In machine learning, we are interested in minimizing the ex-
pected risk

min
x∈Rn

L(x), where L(x)
.
= Eξ∼p(ξ)[`(ξ;x)], (1)

with respect to some loss ` that is a function of both the data
ξ ∈ Rd with d the data dimensionality, p(ξ) is the probabil-
ity density function of ξ, and the model parameters x ∈ Rn
(e.g., the weights of a neural network), where n is the num-
ber of parameters in the model. We consider the big data
case, which is of common interest today, where both d� 1
and n� 1 (e.g., in the order of 106). For notational simplic-
ity, we do not distinguish the supervised and unsupervised
learning cases by concatenating all data into a single vector
ξ (e.g., in the case of image classification we stack in ξ both
the input image and the output label). In practice, we have
access to only a finite set of samples and thus settle for the
empirical risk optimization

min
x∈Rn

L̂(x),where L̂(x)
.
=

1

m

m∑
i=1

`(ξi;x), (2)

and ξi ∼ p(ξ), for i = 1, . . . ,m, are our training dataset
samples. The above risk is often optimized iteratively via
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a gradient descent method, because a closed form solution
(e.g., as with least squares) is typically not available.

Moreover, since in current datasets m, the number of
training samples, can be very large, the computation of the
gradient of the empirical risk at each iteration is too demand-
ing. To address this issue, the stochastic gradient descent
(SGD) method (Robbins and Monro 1951) minimizes the
following minibatch risk at each iteration time k

L̂k(x)
.
=

1

|Ck|
∑
i∈Ck

`(ξi;x), (3)

where Ck ⊂ [1, . . . ,m] is a random subset of the dataset
indices. Given a random initialization for x0, SGD builds
a sequence {xk}k=0,...,T by recursively updating the pa-
rameters xk so that they decrease the k-th loss L̂k, i.e., for
k = 0, . . . , T − 1

xk+1 = xk − η∇L̂k(xk), (4)

where ∇L̂k(xk) denotes the gradient of L̂k with respect to
x and computed at xk, and η > 0 is the learning rate, which
regulates the speed of convergence.

Modeling Noise in Risk Minimization
In KOALA, we directly model the statistical properties of
the minibatch risk L̂k as a function of the empirical risk L̂.
To relate L̂k to L̂ we start by looking at the relation between
L̂ and the expected risk L. First, we point out that L̂ is the
sample mean of L. Then, we recall that, because of the cen-
tral limit theorem, L̂ converges to a Gaussian distribution
with mean L as m → ∞. The same analysis can be applied
to the minibatch risk L̂k. L̂k is a sample mean of L̂ and as
|Ck| → m, L̂k converges to L̂. Thus, the distribution of each
L̂k will tend towards a Gaussian random variable with mean
L̂. Finally, we can write ∀x

L̂k(x) ' L̂(x)− vk, (5)

where the scalar noise variable vk ∼ N (0, Rk), is a zero-
mean Gaussian with variance Rk. Later, we will show how
to obtain an online estimate of Rk.

Risk Minimization as Loss Adaptivity
Consider a model with parameters x̂. For example, x̂ could
be chosen as one of the solutions of the optimization (2), i.e.,
such that L̂(x̂) = minx L̂(x). However, more in general,
one can define L̂(x̂)

.
= L̂target, for some feasible L̂target. Let

us now define the problem of finding xk such that

L̂k(xk) = L̂target − vk, (6)

for all k and where vk depends on x̂. The above formulation
allows us to also solve the optimization in (2). Rather than
explicitly finding the minimum of a function, in KOALA we
look for the model parameters that adapt the minibatch risk
to a given value on average. However, to solve (2) we need
minx L̂(x), which is unknown. As an alternative, we itera-
tively approximate minx L̂(x) with a sequence of L̂target

k that

converges to it. For example, by applying Theorem 1 (see
next sections), the approximation minx L̂(x) ' L̂target

k
.
=

L̂k(xk)− k−1 will ensure the convergence of KOALA as k
grows.

Kalman Filtering for Stochastic Optimization
Eq. (6) can be interpreted as a noisy observation of some
unknown model parameters x, which we want to identify.
Kalman filtering is a natural solution to this task. As dis-
cussed in the Prior Work section, there is an extensive lit-
erature on the application of Kalman filtering as a stochas-
tic gradient descent algorithm. However, these methods dif-
fer from our approach in several ways. For instance, Vuck-
ovic (Vuckovic 2018) uses the gradients as measurements.
Thus, this method requires large matrix inversions, which
are not scalable to the settings we consider in this paper and
that are commonly used in deep learning (see section 3.3 in
(Vuckovic 2018)). KOALA works instead directly with the
scalar risks L̂k and introduces a number of computational
approximations that make the training with large datasets
and high dimensional data feasible.

Let us model the uncertainty of the identified parameters
xk as a Gaussian random variable with the desired target x̂k
as mean. Then, a dynamical system for a sequence xk is

xk = xk−1 + wk−1 (7)

L̂target
k = L̂k(xk) + vk. (8)

Here, wk ∼ N (0, Qk) is modeled as a zero-mean Gaussian
variable with covariance Qk. The dynamical model implies
that the mean of the state xk does not change when it has
adapted the mean minibatch risk to the target observation
L̂target
k . The equations (7) and (8) describe a dynamical sys-

tem suitable for Kalman filtering (Kalman 1960). For com-
pleteness, we briefly recall here the general equations for an
Extended Kalman filter

xk = fk(xk−1) + wk−1 (9)
zk = hk(xk) + vk, (10)

where xk are also called the hidden state, zk ∈ Rs are the
observations, fk and hk are functions that describe the state
transition and the measurement dynamics respectively. The
zero-mean Gaussian noises added to each equation must also
be independent of the hidden state. The Extended Kalman
filter infers optimal estimates of the state variables from the
previous estimates of xk and the last observation zk. More-
over, it also estimates the a posteriori covariance matrix Pk
of the state. This is done in two steps: Predict and Update,
which we recall in Table 1.

If we directly apply the equations in Table 1 to our equa-
tions (7) and (8), we would immediately find that the pos-
terior covariance Pk is an n × n matrix, which would be
too large to store and update for n values used in practice.
Hence, we approximate Pk as a scaled identity matrix. Since
the update equation for the posterior covariance requires the
computation of KkHk = PkH

>
k HkS

−1
k , we need to ap-

proximate H>k Hk also with a scaled identity matrix. We do
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Predict: x̂k = fk(xk−1)

P̂k = FkPk−1F
>
k +Qk

Update:

Sk = HkP̂kH
>
k +Rk

Kk = P̂kH
>
k S
−1
k

xk = x̂k +Kk(zk − hk(x̂k))

Pk = (I −KkHk)P̂k

with: Hk
.
= ∇hk(x̂k)

Fk
.
= ∇fk(xk−1)

Table 1: Extended Kalman filter recursive equations for a
posteriori state and covariance estimation.

Algorithm 1: KOALA-V (Vanilla)

Initialize x0, P0, Q and R
for k in range(1, T ) do

Predict:
x̂k = xk−1; P̂k = Pk−1 +Q

Update:

xk = x̂k −
P̂k(L̂k(x̂k)−L̂target

k )

P̂k|∇L̂k(x̂k)|2+R
∇L̂k(x̂k) (12)

Pk = R
P̂k|∇L̂k(x̂k)|2+R

P̂k (13)

end for
return xK

this by using its largest eigenvalue, i.e.,

H>k Hk ≈ |Hk|2 In×n =
∣∣∣∇xL̂k(x̂k)

∣∣∣2 In×n, (11)

where In×n denotes the n × n identity matrix. Because we
work with a scalar loss L̂k, the innovation covariance Sk is a
scalar and thus it can be easily inverted. The general frame-
work introduced so far is very flexible and allows several
extensions. The parameter estimation method obtained from
equations (7) and (8) is a special case of KOALA that we
call KOALA-V (Vanilla), and summarize in Algorithm 1.

Notice that the update in eq. (12) is quite similar to the
SGD update (4), where the learning rate η depends on P̂k,
L̂k(x̂k)− L̂target

k ,∇L̂k(x̂k) and R. Thus, the learning rate in
KOALA-V automatically adapts over time to the current loss
value, its gradient and estimation of the parameters, while in
SGD it must be manually tuned.

Incorporating Momentum Dynamics
A first important change we introduce is the incorporation
of Momentum (Sutskever et al. 2013). Within our notation,
this method could be written as

pk = κpk−1 − η∇L̂(xk−1) (14)
xk = xk−1 + pk, (15)

where pk are so called momentums or velocities, that ac-
cumulate the gradients from the past. The parameter κ ∈
(0, 1), commonly referred to as momentum rate, controls the

trade-off between current and past gradients. Such updates
claim to stabilize the training and prevent the parameters
from getting stuck at local minima.

To incorporate the idea of Momentum within the KOALA
framework, one can simply introduce the state velocities and
define the following dynamics

xk = xk−1 + pk−1 + wk−1 (16)
pk = κpk−1 + uk−1 (17)

L̂target
k = L̂k(xk) + vk, (18)

where pk ∈ Rn and uk−1 is a zero-centered Gaussian ran-
dom variable.

One can rewrite these equations again as Kalman filter
equations by combining the parameters xk and the veloci-
ties pk into one state vector x̄k = [xk, pk] and similarly for
the state noise ζk−1 = [wk−1, uk−1]. This results in the fol-
lowing dynamical system

x̄k = Fx̄k−1 + ζk−1 (19)

L̂target
k = L̂k(Πx̄k) + vk, (20)

where F =

[
1 1

0 κ

]
⊗ In×n, Π = [1 0] ⊗ In×n, and ⊗

denotes the Kronecker product. Similarly to the KOALA-
V algorithm, we also aim to drastically reduce the di-
mensionality of the posterior covariance, which now is a
2n×2nmatrix. We approximate Pk with the following form[
σ2
x,k σ2

c,k

σ2
c,k σ2

p,k

]
⊗ In×n, where σ2

x,k, σ2
c,k, σ2

p,k are scalars. In

this formulation we have that Hk = [∇L̂>
k 0>] and thus

our approximation for the Kalman update of the posterior
covariance will use

H>k Hk ≈
[
|∇L̂k|2In×n 0

0 0

]
. (21)

The remaining equations follow directly from the applica-
tion of Table 1. We call this method the KOALA-M (Mo-
mentum) algorithm.

Estimation of the Measurement and State Noise
In the KOALA framework we model the noise in the ob-
servations and the state transitions with zero-mean Gaussian
variables with covariances Rk and Qk respectively. So far,
we assumed that these covariances were given and constant.
However, they can also be estimated online, and lead to more
accurate state and posterior covariance estimates. ForRk we
use the following running average

Rk = βRRk−1 + (1− βR)
1

|Ck|
∑
i∈Ck

(
`(ξi;xk)− L̂target

k

)2
,

(22)
where we set βR = 0.9. Similarly, for the covariance Qk

.
=

diag{q2x,kIn×n, q2pIn×n}, the online update for q2x,k is

xavg = βxxavg + (1− βx)xk−1 (23)

q2x,k =
1

n
|xk−1 − xavg|2, (24)

where we set βx = 0.9. This adaptivity of the noise helps
both to reduce the number of hyper-parameters and to obtain
better convergence.
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Learning Rate Scheduling
In both the KOALA-V and the KOALA-M algorithms, the
update equation for the state estimate needs L̂target

k (see e.g.,
eq. (12)). Thanks to Theorem 1 (see next section), we have
the option to change L̂target

k progressively with the iteration
time k. For instance, we could set L̂target

k = (1− εk)L̂k(xk),
for some choice of the sequence εk. Using this term is equiv-
alent to setting L̂target

k = 0 and scaling the learning rate by εk
in eq. (12), as in many SGD implementations (Goffin 1977;
Loshchilov and Hutter 2017). Notice the very different in-
terpretation of the schedule in the case of KOALA, where
we gradually decrease the target risk.

Layer-wise Approximations
Let us consider the optimization problem specifically for
large neural networks. We denote with B the number of lay-
ers in a network. Next, we substitute the scalar observation
eq. (20) with a B-dimensional vector of identical observa-
tions. The i-th entry in this B-dimensional observation vec-
tor depends only on the variables of the i-th block of the
network, while the other variables are frozen. Thus, while in
the original definition the measurement equation had Hk as
an n-dimensional vector, under the proposed approximation
Hk is a B × n block-diagonal matrix. Under these assump-
tions, the update equation (12) for both the KOALA-V and
the KOALA-M algorithm will split into B layer-wise equa-
tions, where each separate equation incorporates only the
gradients with respect to the parameters of a specific layer.
Additionally to this, now the matrix H>k HkS

−1
k also yields

B separate blocks (one per observation), each of which
gets approximated by the corresponding largest block eigen-
value. Finally, the maximum of these approximations gives
us the approximation of the whole matrix

H>k HkS
−1
k ≈ max

1≤i≤B

|∇biL̂k|2

S
(i)
k

, (25)

where bi is the subset of parameters corresponding to the i-th
layer and S(i)

k is the innovation covariance corresponding to
only the i-th measurement. We observe that this procedure
induces better convergence in training. For more details, see
the supplementary material.

Convergence Analysis
Our convergence analysis for KOALA builds on the frame-
work introduced in (Bertsekas and Tsitsiklis 2000). The
analysis is based on a general descent algorithm

xk+1 = xk + γk(sk + uk), (26)

where γk is the step size, sk is a descent direction and uk is a
noise term. Here, sk is related to the gradient of the empirical
risk L̂ and uk satisfies some regularity conditions. In our
algorithm, we also skip all update steps when the norm of the
gradient of a minibatch loss is lower than a threshold. This
is because such observations provide almost no information
to the state. Because of this rule we can thus guarantee that
|∇L̂k(x)| ≥ g for some g > 0. Given these settings, we

analyze the evolution of P̂k, showing that it stays within two
positive bounds. Further, we show that the gradient of the
loss goes to 0 as k → ∞. This result is formalized for the
KOALA-V and summarized in the following theorem with
two choices for the target risks.

Theorem 1. Let L̂(x) be a continuously differentiable func-
tion and ∇L̂(x) be Lipschitz-continuous. Assume that g ≤
|∇L̂k(x)| ≤ G for all x and k, where g,G > 0 and L̂k(x) is
the minibatch loss. Additionally, let all xk lie in a compact
space. Let us choose the target risk

(a) L̂target
k = L̂k(xk)− εk, (27)

(b) L̂target
k = (1− εk)L̂k(xk), (28)

where εk is any sequence satisfying
∑∞
k=0 εk = ∞ and∑∞

k=0 ε
2
k < ∞. Then L̂(xk) converges to a finite value and

limk→∞∇L̂(xk) = 0.

Proof. See supplementary material.

Ablations
In this section we ablate the following features and param-
eters of both KOALA-V and KOALA-M algorithms: the dy-
namics of the weights and velocities, the initialization of the
posterior covariance matrix and the adaptivity of the state
noise estimators. In some ablations we also separately test
the KOALA-M algorithm with adaptive Qk. Also, we show
that our algorithm is relatively insensitive to different batch
sizes and weight initializations.

We evaluate our optimization methods by computing the
test performance achieved by the model obtained with the
estimated parameters. Although such performance may not
uniquely correlate to the performance of our method, as it
might be affected also by the data, model and regularization,
it is a useful indicator. In all the ablations, we choose the
classification task on CIFAR-100 (Krizhevsky and Hinton
2009) with ResNet18 (He et al. 2016). We train all the mod-
els for 100 epochs and decrease the learning rate by a factor
of 0.2 every 30 epochs.

For the last two ablations and in the Experiments section,
we use the KOALA-M algorithm with κ = 0.9, adaptive
Rk and Qk, initial posterior covariance parameters σ2

x,0 =

σ2
p,0 = 0.1 and σ2

c,0 = 0.
Impact of the state dynamics and noise adaptivity. We
compare the KOALA-V algorithm (i.e., constant dynamics)
to the KOALA-M (i.e., with velocities). Additionally, we ab-
late the κ, i.e., the decay rate of the velocities. The results
are shown in Table 2. We observe that the use of velocities
with a calibrated moment has a positive impact on the esti-
mated parameters. Further, with adaptive noise estimations
there is no need to set their initial values, which reduces the
number of hyper-parameters to tune.
Posterior covariance initialization. The KOALA frame-
work requires to initialize the matrix P0. In the case of the
KOALA-V algorithm, we approximate the posterior covari-
ance with a scaled identity matrix, i.e., Pk = σ2

kIn×n, where
σk ∈ R. In the case of KOALA-M, we approximate Pk with a
2×2 block diagonal matrix with σ2

x,0In×n and σ2
p,0In×n on
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KOALA κ Top-1 Err. Top-5 Err.
V - 24.17 7.06

M 0.50 27.20 8.29
M 0.90 23.38 6.77

M (adapt. Qk) 0.50 28.25 8.91
M (adapt. Qk) 0.90 23.39 6.50

Table 2: Ablation of the state dynamics and noise adaptivity.

Parm. Value KOALA Top-1 Err. Top-5 Err.

σ2
0

0.01 V 24.42 7.23
0.10 V 24.17 7.06
1.00 V 24.69 7.36

σ2
x,0

0.01 M (adapt. Qk) 23.67 6.81
0.10 M (adapt. Qk) 23.39 6.50
1.00 M (adapt. Qk) 23.82 6.53

σ2
p,0

0.01 M (adapt. Qk) 23.37 7.13
0.10 M (adapt. Qk) 23.39 6.50
1.00 M (adapt. Qk) 24.24 7.40

Table 3: Ablation of the posterior covariance initialization.

the diagonal, where σx,0, σp,0 ∈ R. In this section we ablate
σx,0, σp,0 and σ0 to show that the method quickly adapts to
the observations and the initialization of Pk does not have
a significant impact on the final accuracy achieved with the
estimated parameters. The results are given in Table 3.
Batch size. Usually one needs to adapt the learning rate to
the chosen minibatch size. In this experiment, we change
the batch size in the range [32, 64, 128, 256] and show that
KOALA-M adapts to it naturally. Table 4 shows that the ac-
curacy of the model does not vary significantly with a vary-
ing batch size, which is a sign of stability.
Weight initialization. Like with the batch size, we use dif-
ferent initialization techniques to show that the algorithm is
robust to them. We apply the same initializations to SGD
for comparison. We test Kaiming Uniform (He et al. 2015),
Orthogonal (Saxe, McClelland, and Ganguli 2014), Xavier
Normal (Glorot and Bengio 2010), Xavier Uniform (Glorot
and Bengio 2010). The results are shown in Table 5.

Experiments
We evaluate KOALA-M on different tasks, including im-
age classification (on CIFAR-10, CIFAR-100 and Ima-
geNet (Russakovsky et al. 2015)), generative learning and
language modeling. For all these tasks, we report the quality
metrics on the validation sets to compare KOALA-M to the
commonly used optimizers. We find that KOALA-M outper-
forms or is on par with the existing methods, while requir-
ing fewer hyper-parameters to tune. We will make our code
available.
CIFAR-10/100 Classification. We first evaluate KOALA-
M on CIFAR-10 and CIFAR-100 using the popular
ResNets (He et al. 2016) and WideResNets (Zagoruyko and
Komodakis 2016) for training. We compare our results with

Batch Size Top-1 Error Top-5 Error
32 24.59 7.13
64 23.11 6.93

128 23.39 6.50
256 24.34 7.59

Table 4: Ablation of the batch size used for training. Classi-
fication error on CIFAR-100 with ResNet18.

Initialization Optimizer Top-1 Error Top-5 Error

Xavier-Normal SGD 26.71 7.59
KOALA-M 23.34 6.78

Xavier-Uniform SGD 26.90 7.97
KOALA-M 23.40 6.85

Kaiming-Uniform SGD 27.82 7.95
KOALA-M 23.35 6.76

Orthogonal SGD 26.83 7.59
KOALA-M 23.27 6.63

Table 5: Ablation of different weight initializations. Classi-
fication error on CIFAR-100 with ResNet18.

the ones obtained with commonly used existing optimiza-
tion algorithms, such as SGD with Momentum and Adam.
For SGD we set the momentum rate to 0.9, which is the
default for many popular networks, and for Adam we use
the default parameters β1 = 0.9, β2 = 0.999, ε = 10−8.
In all experiments on CIFAR-10/100, we use a batch size
of 128 and basic data augmentation (random horizontal flip-
ping and random cropping with padding by 4 pixels). For
each configuration we have two runs for 100 and 200 epochs
respectively. For SGD we start with a learning rate equal to
0.1, for Adam to 0.0003 and 1.0 for KOALA-M. For the
100-epochs run on CIFAR-10 (CIFAR-100) we decrease the
learning rate by a factor of 0.1 (0.2) every 30 epochs. For
200-epochs on CIFAR-10 we decrease the learning rate only
once at epoch 150 by the factor of 0.1. For the 200-epoch
training on CIFAR-100 the learning rate is decreased by a
factor of 0.2 at epochs 60, 120 and 160. For all the algo-
rithms, we additionally use a weight decay of 0.0005. To
show the benefit of using KOALA-M for training on classi-
fication tasks, we report the Top-1 and Top-5 errors on the
validation set. For both the 100-epochs and 200-epochs con-
figurations, we report the mean error among 3 runs with 3
different random seeds. Note that the 100/200-epochs con-
figurations are not directly comparable due to the different
learning rate schedules. The results are reported in Table 6.
For more comparisons and training plots see the Supplemen-
tary material.
ImageNet Classification. Following (Loshchilov and Hut-
ter 2019), we train a ResNet50 (He et al. 2016) on 32 × 32
downscaled images with the most common settings: 100
epochs of training with learning rate decrease of 0.1 after
every 30 epochs and a weight decay of 0.0001. We use ran-
dom cropping and random horizontal flipping during train-
ing and we report the validation accuracy on single center
crop images. As shown in Table 6, our model achieves a
comparable accuracy to SGD, but without any task-specific

6476



100-epochs 200-epochs

Error
Dataset Architecture Method Top-1 Top-5 Top-1 Top-5

CIFAR-10

ResNet-18
SGD 5.60 0.16 7.53 0.29
Adam 6.58 0.28 6.46 0.28

KOALA-M 5.69 0.21 5.46 0.25

ResNet-50
SGD 6.37 0.19 8.10 0.27
Adam 6.28 0.24 5.97 0.28

KOALA-M 7.29 0.24 6.31 0.13

W-ResNet-50-2
SGD 6.08 0.15 7.60 0.24
Adam 6.02 0.19 5.90 0.26

KOALA-M 6.83 0.19 5.36 0.12

CIFAR-100

ResNet-18
SGD 23.50 6.48 22.44 5.99
Adam 26.30 7.85 25.61 7.74

KOALA-M 23.38 6.70 22.22 6.13

ResNet-50
SGD 25.05 6.74 22.06 5.71
Adam 24.95 6.96 24.44 6.81

KOALA-M 22.34 5.96 21.03 5.33

W-ResNet-50-2
SGD 23.83 6.35 22.47 5.96
Adam 23.73 6.64 24.04 7.06

KOALA-M 21.25 5.35 20.73 5.08

ImageNet-32 ResNet-50 SGD 34.07 13.38 - -
KOALA-M 34.99 14.06 - -

Table 6: Results on CIFAR-10, CIFAR-100 and ImageNet-
32 datasets for 100 and 200 epochs runs.

hyper-parameter tuning.
Comparison to more recent algorithms. We compare
KOALA-M with a wider range of optimizers on the CIFAR-
100 classification with ResNet50 in the 100-epochs con-
figuration. We used the same learning rate schedule as
in the previous section and set the hyperparameters for
the other algorithms to the ones reported by the authors.
For Yogi (Reddi et al. 2018) we set the learning rate to
10−2, β1 = 0.9, β2 = 0.999 and ε = 10−3, as sug-
gested in the paper. For Adamax (Kingma and Ba 2015),
AdamW (Loshchilov and Hutter 2019), AdamP (Heo et al.
2021) and Amsgrad (Reddi, Kale, and Kumar 2018) we use
the same hyperparameters as for Adam. For Fromage (Bern-
stein et al. 2020) we set the learning rate to 10−2, as sug-
gested on the project’s github page1. For Adabelief (Zhuang
et al. 2020) we follow the hyperparameters reported in the
official implementation2 . The results are shown in Table 7.

In Table 8, we show that KOALA-M is compatible with
such auxiliary methods as Lookahead (LA) (Zhang et al.
2019b) and SWA (Izmailov et al. 2018). For LA we used
SGD and Adam with initial learning rates equal to 0.1 and
0.0003 respectively as the inner optimizers and set the hy-
perparameters α and k to 0.8 and 5 respectively, as sug-
gested by the authors. We used SWA with both SGD and
Adam inner optimizers averaging every 5 epochs starting
from epoch 75. Additionally, we apply LA and SWA to
KOALA-M. All experiments are for CIFAR-100 classifica-

1https://github.com/jxbz/fromage#voulez-vous-du-fromage
2https://github.com/juntang-zhuang/Adabelief-Optimizer#

hyper-parameters-in-pytorch

Optimizer Top-1 Err. Top-5 Err.
Yogi (Reddi et al. 2018) 33.99 10.90
Adamax (Kingma and Ba 2015) 32.42 10.74
AdamW (Loshchilov and Hutter 2019) 27.23 7.98
AdamP (Heo et al. 2021) 26.62 7.61
Amsgrad (Reddi, Kale, and Kumar 2018) 25.27 6.78
Fromage (Bernstein et al. 2020) 24.65 6.71
Adabelief (Zhuang et al. 2020) 23.07 6.05
KOALA-M 22.34 5.96

Table 7: Comparison of different optimizers on CIFAR-100
classification task with 100-epochs configuration. Mean er-
rors across 3 runs with different random seeds are reported.
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Top-1 23.36 24.90 24.24 24.49 22.34 22.29 21.70

Table 8: Classification error on CIFAR-100 with ResNet50.
Average of 3 runs with different random seeds is reported.

tion with ResNet50. Training is done in 100-epochs config-
uration.
Memory and time complexity. KOALA-M needs at most
2× the size of the network in additional memory for storing
xavg and state velocities pk. Also, since we do not store the
full state covariance matrices and use at most 2× 2 matrices
in update equations, the computational complexity of our al-
gorithm is linear with respect to the network parameters.
For numerical results see the Supplementary material.
GANs and language modeling. KOALA-M also works
well for training GANs (Goodfellow et al. 2014) and on NLP
tasks. For numerical results, see the supplementary material.

Conclusions

We have introduced KOALA, a novel Kalman filtering-
based approach to stochastic optimization. KOALA is suit-
able to train modern neural network models on current large
scale datasets with high-dimensional data. The method can
self-tune and is quite robust to wide range of training set-
tings. Moreover, we design KOALA so that it can incor-
porate optimization dynamics such as those in Momentum
and Adam, and learning rate schedules. The efficacy of this
method is demonstrated on several experiments in image
classification, image generation and language processing.
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