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Abstract

A major obstacle to achieving global convergence in dis-
tributed and federated learning is the misalignment of gra-
dients across clients, or mini-batches due to heterogeneity and
stochasticity of the distributed data. In this work, we show that
data heterogeneity can in fact be exploited to improve general-
ization performance through implicit regularization. One way
to alleviate the effects of heterogeneity is to encourage the
alignment of gradients across different clients throughout train-
ing. Our analysis reveals that this goal can be accomplished
by utilizing the right optimization method that replicates the
implicit regularization effect of SGD, leading to gradient align-
ment as well as improvements in test accuracies. Since the
existence of this regularization in SGD completely relies on
the sequential use of different mini-batches during training,
it is inherently absent when training with large mini-batches.
To obtain the generalization benefits of this regularization
while increasing parallelism, we propose a novel GradAlign
algorithm that induces the same implicit regularization while
allowing the use of arbitrarily large batches in each update.
We experimentally validate the benefits of our algorithm in
different distributed and federated learning settings.

Introduction
In this paper we focus on sum structured optimization of the
form f(x) := 1

n

∑n
i=1 fi(x), where each fi is a different

function representing the loss function of either distinct data
points, mini-batches or clients. To prove convergence, many
assumptions over the fi’s have been studied. For example,
one may assume fixed bounds on the variance or dissimi-
larity of gradients across different fi. However, in practice,
for non-convex optimization problems such as deep neural
networks, the dissimilarity across gradients is likely to vary
across different values of x. We instead argue that to obtain
optimal generalization performance, it is desirable to not only
converge to a solution that minimizes the mean loss f(x), but
also encourage convergence to regions with reduced gradient
dissimilarity.

We propose to achieve convergence to such solutions by
aligning the gradients across different fi. To this end, we in-
troduce a regularizer r(x) = 1

2n

∑n
i=1‖∇fi(x)−∇f(x)‖2

measuring the variance of gradients across the mini-batches,
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whose minimization leads to the alignment of different gra-
dients. As demonstrated recently by Smith et al. (2021),
stochastic gradient descent (SGD) (Robbins and Monro 1951)
already contains an implicit regularization effect over gradi-
ent descent (GD) corresponding to the minimization of r(x),
when comparing updates over an entire epoch. Our analysis
applicable to arbitrary sequences of SGD steps further re-
veals that the optimization trajectory followed by SGD can
be approximated through gradient descent on the surrogate
function f̂(x) := f(x) + λr(x) with the strength of the reg-
ularization being controlled by the step size. This motivates
us to devise new algorithms tailored to implicitly minimize
this surrogate function f̂(x).

While control variates-based variance reduction techniques
can effectively reduce the variance across different updates
(Johnson and Zhang 2013), they do not directly promote
variance reduction through the alignment of different fi’s
gradients for the current iterate, i.e., such methods do not
encourage the decrease of r(x) throughout training. A small
variance of gradients across mini-batches, i.e., small r(x),
corresponds to the alignment of gradients for different data
points. Such alignment can benefit generalization through-
out training, since large gradient alignment across datapoints
implies that gradient updates on fi corresponding to empir-
ical risk on a subset of the data may reduce the loss for a
much larger number of data points, even outside the training
set. A similar observation was recently utilized to improve
transfer in error reduction across datapoints in meta-learning
(Nichol, Achiam, and Schulman 2018). The gradient align-
ment in SGD arises due to its sequential nature and the use
of small mini-batches, which together induce dependencies
between successive updates contributing to the implicit min-
imization of r(x). These effects, however, decrease as the
mini-batch size is increased, since the variance across mini-
batches diminishes. This imposes a trade-off between using
large mini-batches per update and obtaining gradient align-
ment and hence better generalization. A similar trade-off has
been observed empirically (Keskar et al. 2017; Ma, Bass-
ily, and Belkin 2018; Yin et al. 2018), where using larger
mini-batches has been shown to worsen the generalization
performance.

We argue that the utilization of gradient alignment to
improve generalization can be especially beneficial in dis-
tributed and federated learning. In datacenter distributed
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learning (Goyal et al. 2018; Dean et al. 2012), where the
primary bottleneck is the computation of gradients instead
of communication, (Kairouz and McMahan 2021), it is de-
sirable to exploit the available parallelism to the maximum
extent, without losing the benefits of sequential updates on
small mini-batches provided by SGD. Our proposed algo-
rithm, GradAlign, achieves this by aligning the gradients
across clients through implicit regularization.

In a federated setting (Konečný et al. 2016), where multiple
updates for each client are required to reduce the communica-
tion cost, data dissimilarity among clients plays an especially
important role. One common approach to obtain the regular-
ization benefits of SGD in federated learning is to run SGD
on small mini-batches in parallel on separate clients, each
with a different subset of the data, while periodically averag-
ing the iterates to obtain global updates (FedAvg (McMahan
et al. 2017a)). However, the local nature of optimization in
each client, prevents gradient alignment across mini-batches
corresponding to different clients. Such gradient alignment
across clients is particularly desirable in the presence of data
heterogeneity across clients where the convergence of Feder-
ated Averaging is hindered due to the phenomenon of “client
drift.” (Karimireddy et al. 2020), corresponding to the devi-
ation of local updates for each client from the gradient of
the global objective. Thus gradient alignment across clients
in federated learning, analogous to the gradient alignment
across mini-batches in SGD, would not only improve the test
accuracy upon convergence, but also minimize the client drift
in the presence of heterogeneity. To achieve this, we design
a novel algorithm Federated Gradient Alignment (FedGA),
that replicates the implicit regularization effect of SGD by
promoting inter-client gradient alignment. We further derive
the existence of a similar regularization effect in a recently
proposed algorithm, SCAFFOLD (Karimireddy et al. 2020),
albeit without the ability to fine-tune the regularization coef-
ficient. Our main contributions are thus as follows:

1. We design a novel algorithm GradAlign that replicates
the regularization effect of a sequence of SGD steps while
allowing the use of the entire set of mini-batches for each
update.

2. We extend GradAlign to the federated learning setting
as FedGA, and derive the existence of the implicit inter-
client gradient alignment regularizer r(x) for FedGA as
well as for SCAFFOLD.

3. We derive sufficient conditions under which GradAlign
causes a decrease in the regularized objective f̂(x).

4. We empirically demonstrate that FedGA achieves better
generalization than both FedAvg (McMahan et al. 2017a)
and SCAFFOLD (Karimireddy et al. 2020).

Related Work
The relationship between the similarity of gradients and gen-
eralization has been explored in several recent works (Chat-
terjee 2020; Chatterjee and Zielinski 2020; Fort et al. 2020).
Our work strengthens the empirical findings in these papers
and provides a mechanism to extend the benefits of gradient
alignment to distributed and federated learning settings.

The generalization benefits of gradient alignment can
also be interpreted through the lens of Neural Tangent
Kernel (Jacot, Gabriel, and Hongler 2018): the loss l(x)
at a test point x and the prediction y decreases as
∇l(y)> 1

n

∑n
i=1K(x, xi)∇li(yi), where xi, yi correspond

to training points, K(x, xi) represents the inner product be-
tween the output’s gradient at test point x and training point
xi and∇l(y),∇li(yi) denote the gradient of the loss w.r.t the
outputs at the corresponding points. Thus, test points with
high gradient similarity lead to a larger decrease in their loss.
Our work corroborates the recent empirical findings in (Lin
et al. 2020a), where the use of extrapolation for large batch
SGD leads to significant gains in generalization performance.
While Lin et al. (2020a) attributed the improved generaliza-
tion to smoothening of the landscape due to extrapolation,
our analysis and results provide a novel perspective to the
benefits of displacement through implicit regularization.

The generalization benefits of SGD have been analyzed
through several related perspectives such as Stochastic Dif-
ferential Equations (SDEs) (Chaudhari and Soatto 2018; Jas-
trzębski et al. 2018), Bayesian analysis (Smith and Le 2018;
M et al. 2017) and flatness of minima (Yao et al. 2018; Keskar
et al. 2017), which has been challenged by Dinh et al. (2017).
Unlike these works, the implicit regularization perspectives
in Barrett and Dherin (2021) and our work directly describe
a modified objective upon which gradient flow and gradi-
ent descent respectively approximate the updates of SGD.
Moreover, our analysis incorporates the effects of finite step
sizes, whereas the SDE-based analysis relies on infinitesimal
learning rates.

The existence of shared optima in sum structured opti-
mization has previously been analyzed in the context of a
strongly convex objective, where the strong growth condition
(Schmidt and Roux 2013) implies the existence of a shared
optimum and linear convergence for both deterministic and
stochastic gradient descent. However, for general non-convex
objectives having multiple local minima, it is desirable to
encourage convergence to the set of minima to the ones being
nearly optimal for all the components fi without sacrificing
the ability to use large amounts of data for each update.

A large number of works have attempted to modify the Fe-
dAvg algorithm to improve convergence rates and minimize
client drift. Our implicit regularization can easily be incorpo-
rated into the various modifications of FedAvg such as Fed-
Prox (Li et al. 2020), FedDyn (Acar et al. 2021), FedAvgM
(Hsu, Qi, and Brown 2019), FedAdam (Reddi et al. 2021),
etc. by introducing the displacements used in our algorithms
into the local gradient updates used in these algorithms. Com-
parisons against FedProx in the Experiments section further
verify the utility of our approach as a standalone modification
in heterogeneous as well as i.i.d federated learning settings.

Setup
We consider the standard setting of empirical risk minimiza-
tion with parameters x, represented as a sum

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)
}
,
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where the function fi denotes the empirical risks on the ith
subset of the training data. Here the subsets correspond to
different mini-batches, clients, or clients depending on the
application. We further define the regularizer

r(x) =
1

2n

n∑
i=1

‖∇fi(x)−∇f(x)‖2.

Here r(x) represents 1
2 times the trace of the covariance

matrix for the mini-batch gradients. The gradient of r(x) is
then given by:

∇r(x) = 1

n

n∑
i=1

(
∇2fi(x)−∇2f(x)

)
(∇fi(x)−∇f(x)).

Analysis and Proposed Algorithms
A key component in all our subsequent analysis is the expres-
sion for the gradient of fi at a point obtained after applying
a displacement vx to a given point x, i.e.,∇fi(x+ vx). By
applying Taylor’s theorem to each component of ∇fi, we
obtain the following expression (see Appendix ):
Lemma 1. If fi has Lipschitz Hessian, i.e., ‖∇2fi(x) −
∇2fi(y)‖2 ≤ ρ‖x− y‖ for some ρ > 0, then

∇fi(x+ vx) = ∇fi(x) +∇2fi(x)vx +O(‖vx‖2). (1)

For instance, when vx = −α∇fi(x), we have:

∇fi(x−α∇fj(x)) = ∇fi(x)−α∇2fi(x)∇fj(x)+O(α2)
(2)

Implicit Gradient Alignment
Suppose that, given two minibatches corresponding to ob-
jectives fi, fj , we optimize the parameters x by first up-
dating in the direction of the negative gradient of say fi
and then compute the gradient with respect to the new
mini-batch, say fj , i.e., we utilize ∇fj(x − α∇fi(x))
for the second update. From Equation 2, we observe that,
when the order of gradient steps on fi and fj , is random,
second-order term due to displacement (Lemma 1) in expec-
tation equals −α2

(
∇2fi(x)∇fj(x) +∇2fj(x)∇fi(x)

)
=

−α2∇
(
∇fi(x)>∇fj(x)

)
. Thus for two given mini-

batches, i and j, sequential SGD steps in random order
lead to implicit maximization of the inner product of the
corresponding gradients. We refer to this phenomenon of
alignment of gradients across mini-batches as “Implicit
Gradient Alignment”. In the next section, we generalize
this argument to arbitrary sequences of minibatches.
SGD over K Sequential Steps
Recall that SGD computes gradients with respect to randomly
sampled mini-batches in each round. As explained above,
such sequential updates on different mini-batches implicitly
align the gradients corresponding to different minibatches.
We make this precise by deriving the implicit regularization
in SGD for a sequence of K steps under SGD. A similar
regularization term was derived by Smith et al. (2021) in the
context of backward error analysis for the case of a sequence
corresponding to non-overlapping batches covering the entire
dataset. They derived a surrogate loss function upon which

gradient flow approximates the path followed by SGD when
optimizing the original loss function f . Since continuous-
time gradient flow is unusable in practice, we instead aim to
derive a surrogate loss function f̂ where a large batch gradient
descent algorithm on this surrogate loss would approximate
the path followed by SGD when optimizing f .

Moreover, our analysis applies to arbitrary K and any sam-
pling procedure symmetric w.r.t time, i.e, we only assume that
for any sequence of K mini-batches A = {ai}Ki=1, the cor-
responding reverse sequence A−1 = {aK+1−i}Ki=1 has the
same probability. This allows us to conveniently evaluate the
average effect of SGD for a particular sequence over all pos-
sible re-orderings of the sequence. Note that this assumption
is valid both when sampling with and without replacement
from any arbitrary distribution over mini-batches.

While each gradient update in SGD is an unbiased estimate
of the full gradient, the cumulative effect of multiple updates
on randomly sampled mini-batches can differ from the min-
imization of the original objective, as illustrated through
Equation (2). To isolate the effect of sequential updates on
particular sequences of sampled mini-batches, we compare
the steps taken by SGD against the same number of steps us-
ing GD on the sample mean of the sequence’s objective. We
denote the gradient and Hessian for mini-batch ai by∇fai(x)
and∇2fai(x) respectively while∇fA(x),∇2fA(x) denote
the mean gradient and Hessian for the entire sequence A.
By applying Lemma 1 to each gradient step, we obtain the
following result (proof in the Appendix ):

Theorem 1. Conditioned on the (multi)set of mini-batches
in a randomly sampled sequence A of length K, the ex-
pected difference between the parameters reached after K
steps of SGD using the corresponding mini-batches in A
and K steps of GD with step size α on the mean objective
fA(x) =

1
K

∑K
i=1 fai(x), both starting from the same initial

parameters x is given by:

E [xSGD,A − xGD,A]

=− α2

2

( K∑
i=1

(∇2fai(x) (∇fai(x)−∇fA(x))
)
+O(α3)

(3)

=− Kα2

2
∇rA(x) +O(α3) (4)

where, analogous to beforeSection , we define rA(x) =
1

2K

(∑K
i=1 ‖∇fai(x)−∇fA(x)‖2

)
. For the particular case

of a sequence covering an entire epoch, i.e. K = n and
sampling without replacement, we recover the implicit regu-
larization over gradient descent derived by Smith et al. (2021).
The above results imply that K steps of SGD not only op-
timize the original objective function analogous to GD, but
additionally move the parameters opposite to the gradient of
rA(x) Thus, SGD implicitly minimizes rA(x) along with the
original objective, which leads us to call the latter term an
implicit regularizer. As we show in the Appendix , the net
displacement of SGD in Equation (4) can be approximated by
K gradient descent steps on the mean objective regularized
by α

2 rA(x). Thus optimizing the regularized objective can
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allow us to utilize K times more data for each update, while
still approximating the trajectory followed by SGD. This
is in contrast to the linear scaling rule discussed in Goyal
et al. (2018), which aims to approximate the sequence of
K SGD steps with a single GD step with a step size scaled
by K. However, such linear scaling only approximates the
first-order gradient terms in the sequence, ignoring the im-
plicit gradient alignment. We discuss this further in Appendix
, and analyze a linearly scaled approximation of SGD that
incorporates implicit gradient alignment. An advantage of
approximating SGD using the same number of gradient steps
is that it allows the use of larger total batch sizes, whereas
linear scaling is only effective for batch sizes much smaller
than the total training set size (Shallue et al. 2019).

We observe that the term corresponding to the Hessian
for the mini-batch ai in Equation (3) can be obtained us-
ing as the product of the Hessian and the vector vx =
−α2 (∇fA(x)−∇fai(x)). Thus utilizing the right vector for
each mini-batch allows us to approximate the regularization
effect of SGD. We further observe that Lemma 1 provides
an efficient method for obtaining the Hessian-vector product
by computing the gradient of fai on the point x displayed
by vx, eliminating the time and memory overhead of explicit
Hessian-gradient vector computation. Moreover, as we illus-
trate in section , the displacement-based formulation allows
the utilization of gradient alignment in federated settings
with multiple (K>1) local steps, without additional commu-
nication, computation time, or memory overhead for each of
the local steps. In the subsequent sections, we utilize these
observations to design algorithms for distributed and feder-
ated learning that replicate the regularization effect of SGD
while allowing parallelism for the use of arbitrarily large
batches, overcoming the generalization failure of traditional
large-batch training (Shallue et al. 2019).

Gradient Alignment under Parallel Computations
The analysis in the previous section revealed that sequential
updates on a randomly sampled set of mini-batches not only
minimize the mean sampled objective but also the variance
of gradients across the sampled mini-batches. We aim to
replicate this effect while allowing the use of parallelism
across mini-batches. Through Equation (3) and Lemma 1,
we observed that the source of gradient alignment in the
sequential updates for SGD is the evaluation of the gradi-
ent of a mini-batch i after an additional displacement in
the direction of − (∇f(x)−∇fi(x)). Thus we can repli-
cate the gradient alignment of SGD by utilizing gradients
for each mini-batch i computed after an initial displacement
vi(x) = −β (∇f(x)−∇fi(x)). This ensures that the vec-
tor multiplying ∇2fi(x) due to displacement (Lemma 1)
matches the corresponding vector in the negative gradient of
βr(x) = β 1

2n

∑n
i=1‖∇fi(x)−∇f(x)‖2. Moreover, unlike

SGD, the step size for the displacement β can differ from α
2 ,

enabling the fine-tuning of the regularization coefficient. We
refer to the resulting Algorithm 1 as GradAlign (GA).

Theorem 2. The difference between the parameters reached
by one step of GradAlign with step size α and displacement β
and gradient descent objective starting from the initial pa-

Algorithm 1: GradAlign (GA)

1: Learning rate α, initial model parameters :x
2: while not done do
3: ∇f(x)← 1

n

∑n
i=1∇fi(x) . Obtain the

full gradient by computing the mini-batch gradients in
parallel

4: for mini-batches i in [1, · · · , n] in parallel do
5: Obtain the displacement for the ith minibatch as

vi ← (∇f(x)−∇fi(x))
6: gi ← α∇fi(x− βvi) . Obtain gradient after

displacement
7: end for
8: x← x− 1

n

∑n
i=1 gi

9: end while

rameters x is given by

xGA − xGD = −αβ
2n
∇x

( n∑
i=1

‖∇fi(x)−∇f(x)‖2
)

+O(αβ2).

Descent Condition. Since the displacement step size β
controls the strength of regularization as well as the error in
approximating the gradient of the regularized objective, it is
imperative to know if there exists a suitable range of β under
which GradAlign causes a decrease in the surrogate objective
f̂(x) = f(x) + βr(x). We prove that unless the algorithm
is at a point that is simultaneously critical for f(x) as well
as r(x), for sufficiently small step and displacement sizes,
each step of FedGA causes a decrease in f̂(x). This lends
credence to the use of GradAlign to ensure convergence to
shared optima in distributed settings for general smooth non-
convex objectives. The proof of the theorem, the justifications
for the assumptions, and the consequences for convergence,
are provided in the Appendix .

Theorem 3. Assuming L1-smoothness of f(x), L2-
smoothness of r(x), and Lipschitzness of Hessians, for x(t)

satisfying at least one of ∇f(x(t)) 6= 0 or ∇r(x(t)) 6= 0,
∃β > 0 such that updating x(t) using GradAlign with step
size α < 1

2L1
and displacement β results in updated parame-

ters x(t+1) satisfying f̂(x(t+1))− f̂(x(t)) < 0.

While the above theorem suggests the possibility of re-
quiring adaptation of the displacement step size with time,
in practice, we found that a constant step size is sufficient
to achieve significant gains in test accuracy. We hypothesize
that this is due to the decrease in variance across mini-batch
gradients over time, which balances the effect of the decrease
in the gradient norm.

Federated Learning
In the presence of large communication costs across clients,
it is desirable to allow multiple local updates for each client
before each round of communication. Such an approach is
known in the literature as Federated Averaging (FedAvg)
(McMahan et al. 2017b) or local SGD, where each round
involves K > 1 updates on local objectives corresponding to
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Figure 1: Left: Depiction of one round of GD against one round of GradAlign (equivalent to one round of FedGA with K = 1,
see Appendix ) along with the computation of the displacements vi = −β(∇f(x) −∇fi(x)). Middle: Schematic depiction
of one round of FedGA consisting of K = 2 steps. After the initial displacement of x, the algorithm follows K local updates.
Right: Schematic depiction of one round of SCAFFOLD where the displacement is applied after each local update.

the loss of randomly sampled clients. In the case of identical
data distributions across clients, parts of the generalization
benefits of SGD readily appear in FedAvg due to the sequen-
tial local update steps within each client (Zinkevich et al.
2010), leading to significant gains in test accuracies over
gradient descent on large batches (Lin et al. 2020b; Wood-
worth et al. 2020). However, as we prove in the appendix
, local SGD steps lead to gradient alignment only across
mini-batches within the same client. We argue that extending
FedAvg to allow implicit gradient alignment across clients
is desirable for two major reasons. First, similar to SGD and
GradAlign, implicit regularization through the minimization
of inter-client variance of the gradients is expected to improve
generalization performance by encouraging convergence to
shared optima across the different clients’ objectives. More-
over, gradient alignment across clients crucially minimizes
the effects of “client drift”, where the presence of the hetero-
geneity in the data distributions across clients can cause each
client’s iterates to deviate from the optimization trajectory of
the global objective significantly (Karimireddy et al. 2020).

We consider a federated learning setup corresponding to
the minimization of the average loss over n clients w.r.t. pa-
rameters x. For simplicity, we assume that all the n clients
are sampled in each round. We extend the GradAlign algo-
rithm to the federated setting by computing the local updates
for each client i using the gradients obtained after an ini-
tial additive displacement vi(x) = −β (∇f(x)−∇fi(x))
obtained at the beginning of each round. Since the displace-
ment for each client remains constant throughout a round,
the displacement step vi needs to be applied only once for
each client before obtaining the K local updates. Further-
more, since the displacements average to 0 i.e

∑n
i=1 vi =∑n

i=1−β (∇f(x)−∇fi(x)) = 0, they don’t require being
reverted in the end. This is illustrated through Figure 1 and
further described in the Appendix . We refer to the resulting
Algorithm 2as FedGA (Federated Gradient Alignment).

We assume that, for the kth local update, client i obtains
an unbiased stochastic gradient of fi denoted by∇fi(.; ζi,k)
where ζi,k for k ∈ [1, · · · ,K] are sampled i.i.d such that
fi(x) := Eζi [fi(x; ζi)]. The stochasticity in the local updates

Algorithm 2: Federated Gradient Alignment

1: Input: Learning rate α, initial model parameters x
2: while not done do
3: ∇f(x)← 1

n

∑n
i=1∇fi(x) . Update the mean

gradient computing∇fi(x) in parallel
4: for Client i in [1, · · · , n] do
5: Obtain the displacement of the mean gradient as

vi ← (∇f(x)−∇fi(x))
6: x

(0)
i ← x− βvi . Apply displacement

7: for k in [1, · · · ,K] do
8: x

(k)
i ← x

(k−1)
i − α∇fi(x(k−1)

i ; ζi,k)
9: end for

10: end for
11: x← 1

n

∑n
i=1 x

(K)
i

12: end while

allows our algorithm to retain the generalization benefits of
local SGD, while additionally aligning the gradients across
clients through the use of suitable displacements. Through a
derivation similar to Theorem 2 (Appendix ), we obtain the
following result:
Theorem 4. The expected difference between the parameters
reached by FedGA step size α and displacement β and Fe-
dAvg after one round with K local updates per client starting
from the initial parameters x is given by

E [xFedGA − xFedAvg] =

− αβK

2n
∇x

( n∑
i=1

‖∇fi(x)−∇f(x)‖2
)
+O(αβ2).

Scaffold. As noted above, unlike distributed gradient de-
scent with communication at each round, multiple local up-
dates for each client in federated learning can cause the global
updates to deviate from the objective’s gradient significantly.
This motivated Karimireddy et al. (2020) to use control vari-
ate based corrections for each client’s local updates. Sur-
prisingly, our analysis reveals that the resulting algorithm,
SCAFFOLD, not only minimizes the variance of the updates,
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EMNIST
IID

10 out of 47

EMNIST
heterogeneous
10 out of 47

CIFAR10
IID

10 out of 10
FedGA 88.66± 0.13 85.95± 0.56 74.34± 0.48

SCAFFOLD 88.56± 0.12 84.67± 0.78 73.89± 0.65

FedAvg 88.32± 0.06 82.9± 0.58 73.1± 0.17

FedProx 88.176± 0.12 83.197± 0.19 73.93± 0.38

Table 1: Test Accuracy achieved by FedGA, SCAFFOLD,
and FedAvg on EMNIST and CIFAR10. For EMNIST we
sample roughly 20% of the clients in each round, while for
CIFAR10 100% of the clients are used. For EMNIST we dis-
tinguish between the IID and the heterogeneous distributions
described in Section .

but also leads to the alignment of the gradients across clients
through implicit regularization. This is because, as illustrated
in the Appendix , Scaffold and FedGA differ only in that Scaf-
fold directly adds the control variates into the local update
while FedGA utilizes them for displacement. This corrobo-
rates the empirical improvements in convergence rates and
explains the improvements in test accuracies due to SCAF-
FOLD. The implicit gradient alignment in SCAFFOLD is
described through the following result, proved in Appendix :

Theorem 5. The expected difference between the parameters
reached by SCAFFOLD and FedAvg with step size α after
one round with K local updates per client starting from the
initial parameters x is given by:

xSCAFFOLD − xFedAV G =

− α2K(K − 1)

4n
∇x

( n∑
i=1

‖∇fi(x)−∇f(x)‖2
)
+O(α3).

(5)

A crucial difference between FedGA and Scaffold is that
FedGA allows the ability to utilize a displacement step size β,
different from α, enabling finer control over the effect of the
regularization term. Moreover, unlike SCAFFOLD, FedGA
does not require applying the displacement at each local step,
which improves the consistency between consecutive updates
as well as the overall efficiency. We describe this in more
detail in Appendix .

Experiments
Motivated by the analysis presented in previous sections, we
aim to confirm the effectiveness of implicit regularization
through a series of experiments on image classification tasks.
To this end, we evaluate the effectiveness of GradAlign in
achieving improved generalization in the following settings:
(1) Federated Learning: Data is distributed on a large number
of clients (with different distributions), and only a subset of
the clients is sampled to be used in each round. (2) Datacenter
distributed learning: Data is distributed (i.i.d.) among the
clients, and all clients are used on each round.

Since our primary focus is the quantitative evaluation of
generalization performance through test accuracy and test

losses, we do not constrain the algorithms to use the same
number of local epochs (a local epoch is completed when the
entire data of a client has been used, typically in Federated
Learning a client can pass more than once trough its data
before communicating). Indeed, while increasing the number
of local epochs may decrease the number of rounds needed
to train, it has no noticeable effect on the maximum test ac-
curacy reached by the algorithm (see Appendix ). To further
verify the regularization effects of our approach, we provide
comparisons of training accuracies in Appendix , showing
that the improvements due to gradient alignment are largely
in the test rather than training loss. We use a constant learn-
ing rate throughout all our experiments to illustrate, as has
been done in several federated learning papers (McMahan
et al. 2017b; Hsu, Qi, and Brown 2019; Khaled, Mishchenko,
and Richtárik 2020; Liu et al. 2020). We also do not use
batch normalization or momentum (neither server nor local
momentum) in our experiments. Throughout, we report the
best results with the hyperparameters obtained through grid
search for each of the studied algorithms. For more details,
see Appendix . Moreover, each of the reported curves and
results is averaged over at least 3 different runs with differ-
ent random seeds. All experiments were performed using
PyTorch on Tesla V100-SXM2 with 32GB of memory.

Recall that both FedGA and SCAFFOLD require one ex-
tra round of communication to compute the displacement.
This extra round is included in all our plots and results,
i.e., even with this 2× overhead, FedGA still outperforms
the competition. To ensure a fair comparison, for both the
settings, we use the following definition of rounds:

Definition of Rounds : In our experimental plots (Figures
2, 9, 10), the "rounds" label in the x-axis denotes the total
communication rounds, including the extra communication
round for computing the displacements. improve generaliza-
tion.

Federated Learning
For Federated learning, we use the (balanced) EMNIST
dataset (Cohen et al. 2017) consisting of 47 classes distributed
among 47 clients, each receiving 2400 training examples. We
split the data using two distinct distributions: In the IID set-
ting, data is shuffled using a random permutation and then
distributed (without overlap) among the 47 clients. In the
heterogeneous setting, each of the 47 clients is assigned all
the data corresponding to a unique label from the 47 classes.
This setting has been extensively studied following the work
of Hsu, Qi, and Brown (2019). We further include additional
results on Natural Language Processing tasks in Appendix
and CIFAR-100 in Appendix along with plots of the variance
of gradients and test accuracy for EMNIST in Appendix . For
EMNIST, we use a (simple) CNN neural network architecture
for our experiments with 2 convolutional layers followed by
a fully connected layer. The exact description of the network
can be found in the Appendix . In each round, we sample
10 out of 47 clients uniformly at random. We compare the
performance of four algorithms: FedAvg, Scaffold, FedProx
(Li et al. 2020), and FedGA. With approximately 20% of the
clients sampled on each round, FedGA achieves the highest
Test accuracy and the lowest Test Loss in both settings (see
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Figure 10).

IID data Since the data in each client is i.i.d. sampled,
using smaller mini-batches for local steps achieves an im-
plicit regularization that promotes gradient alignment within
the clients’ data (see Section ). Scaffold, FedGA, and Fe-
dAvg all benefit from this regularization when using smaller
mini-batches. On top of that, FedGA and Scaffold promote
inter-client gradient alignment as seen in Theorems 4 and 5.
Therefore, these algorithms with smaller mini-batches benefit
from both inter and intra client gradient alignment. We be-
lieve this is the reason why they clearly outperform FedAvg;
see Figure 10. Furthermore, FedGA has an additional param-
eter β that can be used to tune the constant in front of the
regularizer (see Theorem 4). Thus, while the implicit regular-
ization term might be present in both Scaffold and FedGA,
the fine-tuning of this parameter is crucial for its improve-
ments over Scaffold. Indeed, as seen in Appendix , modifying
the constant β has a significant impact on the performance
of FedGA. This is a double-edged sword, where on the one
hand, β improves generalization, but on the other hand, it can
be quite difficult to tune. In fact, β used for the IID and the
heterogeneous settings are different, as they depend on the
magnitude of the displacement.

Heterogeneous data Federated learning is more challeng-
ing if each client has their own data distribution (Hsu, Qi,
and Brown 2019), as the gradients become less transferable
between clients. Achieving gradient alignment thus has a
strong promise to mitigate this problem and to better align
the updates on clients with the common objective. Indeed,
FedGA achieves a significantly better generalization than
FedAvg and SCAFFOLD, the latter ranking in the middle but
closer to FedAvg. We also found that increasing the batch
size had only a minor impact on training with FedAvg, while
it significantly impacts FedGA and SCAFFOLD.

Datacenter distributed learning
We use the CIFAR10 dataset (Krizhevsky, Hinton et al. 2009)
consisting of 50000 training examples split among 10 classes,
which are then distributed among 10 clients, each receiving
5000 training examples. We split the data using the same
IID setting used in Federated Learning. We use a (simple)
CNN neural network architecture consisting of 2 convolu-
tional layers followed by 2 fully connected layers. The exact
description of the network can be found in the supplementary
materials. We study two different settings: In the first, we
are interested in maximizing parallelism, i.e., we assume that
communication is not the bottleneck, and hence we aim to
minimize the total number of updates to reach top accuracy,
while communicating once per local gradient computation.
In this setting we compare GradAlign (FedGA with K = 1)
against large-batch SGD and SCAFFOLD (large-batch). The
second setting is equivalent to the IID federated learning
setting, but with every client sampled in each round.

Sampling all clients Similar to the IID federated learning
setting, FedGA obtains the highest accuracy followed by
SCAFFOLD and then by FedAvg; see Figure 2. In this setting,
even with the overhead of 2× in the number of rounds used
by both FedGA and Scaffold, they outperform FedAvg. As in
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Figure 2: Test accuracy on CIFAR10 for the distributed set-
ting with 100% client sampling per round. Top: In Federated
Learning FedGA is not only faster in terms of the number
of rounds, it also achieves higher test accuracy. Bottom: The
x-axis depicts the number of updates. GradAlign profits from
the available parallelism better than Large-Batch SGD and
SCAFFOLD.

the federated IID setting, a smaller mini-batch size benefits
all algorithms. This is explained by the gradient alignment
coming from the use of different mini-batches sequentially
during the local updates. Thus both FedGA and SCAFFOLD
benefit from inter- and intra-client gradient alignment.

Minimizing number of updates. In this setting, the al-
gorithm to beat is Large-Batch SGD. If communication is
fast enough, the main bottleneck is the sequential depen-
dencies between consecutive gradient updates. To increase
parallelism, the standard solution is to increase the batch size,
but it is known to have an impact on generalization (Keskar
et al. 2017; Ma, Bassily, and Belkin 2018; Yin et al. 2018).
Our algorithm GradAlign (see Section ) allows us to use
large mini-batches while retaining the generalization proper-
ties of using smaller mini-batches. Indeed, our experiments
show that GradAlign noticeably achieves higher Test Accu-
racy than Large-Batch SGD. Moreover, it converges faster in
terms of the number of updates (see Figure 2).
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