
Learning Logic Programs Through Divide, Constrain, and Conquer

Andrew Cropper
University of Oxford

andrew.cropper@cs.ox.ac.uk

Abstract

We introduce an inductive logic programming approach that
combines classical divide-and-conquer search with modern
constraint-driven search. Our anytime approach can learn op-
timal, recursive, and large programs and supports predicate
invention. Our experiments on three domains (classification,
inductive general game playing, and program synthesis) show
that our approach can increase predictive accuracies and re-
duce learning times.

1 Introduction
Inductive logic programming (ILP) (Muggleton 1991) is a
form of machine learning. Given positive and negative exam-
ples and background knowledge (BK), the ILP problem is to
find a set of rules (a hypothesis) which with the BK entails
all the positive and none of the negative examples.

The fundamental challenge in ILP is to efficiently search
a large hypothesis space (the set of all hypotheses) for a so-
lution (a hypothesis that correctly generalises the examples).
Divide-and-conquer (D&C) approaches, such as TILDE
(Blockeel and Raedt 1998), divide the examples into disjoint
sets and then search for a hypothesis for each set, similar to
decision tree learners (Quinlan 1986). Separate-and-conquer
(S&C) approaches, such as PROGOL (Muggleton 1995) and
ALEPH (Srinivasan 2001), search for a hypothesis that gen-
eralises a subset of the examples, separate these examples,
and then search for more rules to add to the hypothesis to
generalise the remaining examples.

Although powerful, D&C and S&C approaches struggle to
perform predicate invention (Stahl 1995) and learn recursive
and optimal programs (Cropper et al. 2022), partly because
they only consider subsets of the examples. For instance,
PROGOL and ALEPH need examples of both the base and
inductive cases (in that order) to learn a recursive program.
To overcome these limitations, many modern systems learn
from all examples simultaneously. Modern systems also use
powerful constraint solvers, such as answer set programming
(ASP) solvers (Gebser et al. 2014), to search for a hypothesis.
For instance, ASPAL (Corapi, Russo, and Lupu 2011) pre-
computes the set of all possible rules that may appear in
a hypothesis and uses an ASP solver to find a subset that

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

generalises the examples. Many modern systems can learn
optimal and recursive programs but struggle to learn large
programs. For instance, METAGOL (Muggleton, Lin, and
Tamaddoni-Nezhad 2015) struggles to learn programs with
more than six rules and ILASP3 (Law 2018) struggles to
learn rules with more than a few body literals.

To address these limitations, we introduce an approach
that combines classical D&C search with modern constraint-
driven search. As with D&C approaches, we divide the ex-
amples into disjoint subsets and induce separate hypotheses
for them. Specifically, we first learn a hypothesis for each
positive example. Each hypothesis will likely be too specific.
We therefore search again for a hypothesis that generalises
pairs of examples. These new hypotheses will again likely be
too specific but should generalise better than previous ones.
We repeat this process each time increasing the partition size
until it matches or exceeds the number of positive examples.

The aforementioned approach on its own is pointless as
it simply involves repeated search. The key idea of our
approach is to reuse knowledge discovered when solving
smaller tasks to help solve larger tasks. For instance, when
searching for a hypothesis for a single positive example, if
we discover a hypothesis that incorrectly entails a negative
example then any more general hypothesis will also entail it.
We can therefore ignore all generalisations of the hypothesis
in subsequent iterations.

To realise our idea, we build on the constraint-driven learn-
ing from failures (LFF) (Cropper and Morel 2021a,b) ILP
approach. The goal of LFF is to accumulate constraints to
restrict the hypothesis space. In our approach, we accumulate
constraints during both the divide and conquer steps. In other
words, we reuse constraints learned during one iteration in
subsequent iterations. We call our approach divide, constrain,
and conquer (DCC).

To illustrate our approach, suppose we want to learn the
following program h1 to find odd elements in a list:

f(A,B)← head(A,B), odd(B)
f(A,B)← head(A,B), even(B), tail(A,C), f(C,B)

Suppose we have two positive examples e1 = f([4,3,4,6],3)
and e2 = f([2,2,9,4,8,10],9) which correspond to odd ele-
ments in the second and third positions of a list respectively.
Also assume we have suitable negative examples and that we
restrict hypotheses to definite programs (Lloyd 2012). Given

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6446

these examples, our approach first learns a hypothesis (in this
case a single rule) for each example:

r1 = f(A,B)← tail(A,C), head(C,B), odd(B)
r2 = f(A,B)← tail(A,C), tail(C,D), head(D,B), odd(B)

These rules are too specific, i.e. they do not generalise. Rather
than stopping at this point, our approach searches again for a
hypothesis h2 that entails the larger chunk {e1, e2}. Rather
than blindly searching again, our approach reuses knowledge
from the first iteration to restrict the hypothesis space. For in-
stance, let |h| denote the number of literals in the hypothesis
h and assume that r1 and r2 are the smallest (optimal) solu-
tions for e1 and e2 respectively. Since r1 and r2 are optimal,
the minimum size of h2 is max(|{r1}|, |{r2}|). Likewise,
since {r1, r2} |= {e1, e2}, we can bound the maximum size
of h2 as |{r1, r2}|. In this scenario of finding odd elements
in a list, we can bound the size of h2 as 5 ≤ |h2| < 9,
greatly reducing the hypothesis space. We can also restrict
the hypothesis space using other knowledge. For instance,
before searching for h2, we can try r1 and r2 on {e1, e2}.
As neither r1 nor r2 alone generalises both examples, h2
cannot be a specialisation of r1 nor r2, so we can prune all
specialisations of both rules. As we experimentally show, this
reuse of knowledge, i.e. the constrain step, is important for
good learning performance. Given this constrained space, our
approach searches again and finds the optimal solution h1.

Our motivation for using a D&C approach is to reduce
search complexity by decomposing a learning task into
smaller tasks that can be solved separately. For instance,
suppose we have 10 positive examples and that 6 require a
hypothesis with 7 literals; 2 require 8 literals; and 2 require 9
literals, i.e. the solution for all the examples has 24 literals.
For simplicity, consider a generate-and-test approach that
enumerates all hypotheses of increasing size. With such an
approach, the search complexity sc(h) of finding the hypoth-
esis h is sc(h) = c|h| where c denotes the number of possible
literals allowed in a hypothesis. In this scenario, the complex-
ity of finding the whole solution is c24. By contrast, with a
D&C approach, we can find the individual hypotheses with
the much lower cost of c7 + c8 + c9. Thus, our main claim
is that DCC can reduce search complexity and thus improve
learning performance.

Overall, our contributions are:

• We introduce a divide, constrain, and conquer (DCC) ILP
approach. This anytime approach can learn optimal, recur-
sive, and large programs and perform predicate invention.

• We experimentally show on three domains (classification,
inductive general game playing, and program synthesis)
that (i) our approach can substantially improve predictive
accuracies and reduce learning times, (ii) reusing learned
knowledge is vital for good learning performance, and
(iii) DCC can outperform other ILP systems.

2 Related Work
TILDE is a D&C approach. TILDE behaves similarly to the
decision tree learning algorithm C4.5 (Quinlan 1993). To find
a hypothesis TILDE employs a D&C strategy by recursively
dividing the examples into disjoint subsets. TILDE differs

from C4.5 by how it generates candidate splits to partition the
examples. C4.5 generates candidates as attribute-value pairs.
By contrast, TILDE uses conjunctions of literals (i.e. claus-
es/rules). TILDE can learn large programs and can scale to
large datasets. However, it has several limitations, notably an
inability to learn recursive programs, no predicate invention,
and difficulty learning from small numbers of examples.

Progol is a S&C approach that has inspired many other
approaches (Ray 2009; Ahlgren and Yuen 2013), notably
ALEPH. Starting with an empty hypothesis, Progol picks an
uncovered positive example to generalise. To generalise an
example, Progol uses mode declarations to build the bottom
clause (Muggleton 1995), the logically most-specific clause
that explains the example. The bottom clause bounds the
search from below (the bottom clause) and above (the empty
set). Progol then uses an A* algorithm to generalise the bot-
tom clause in a top-down (general-to-specific) manner and
uses the other examples to guide the search. Progol struggles
to learn recursive and optimal programs and does not sup-
port predicate invention. Note that Progol variants, such as
ALEPH and ATOM (Ahlgren and Yuen 2013), have the same
limitations.

Many recent ILP systems are meta-level systems (Crop-
per et al. 2022). These approaches encode the ILP problem
as a meta-level logic program, i.e. a program that reasons
about programs. Meta-level approaches often delegate the
search for a solution to an off-the-shelf solver (Corapi, Russo,
and Lupu 2011; Cropper and Muggleton 2016; Law 2018;
Kaminski, Eiter, and Inoue 2018; Evans and Grefenstette
2018; Evans et al. 2021) after which the meta-level solution
is translated back to a standard solution for the ILP task. For
instance, ASPAL translates an ILP task into a meta-level ASP
program that describes every example and every possible rule
in the hypothesis space. ASPAL then delegates the search to
an ASP system to find a subset of the rules that covers all
the positive but none of the negative examples. Meta-level
approaches can more easily learn recursive programs and
optimal programs.

A major issue with meta-level approaches is scalability.
For instance, ASPAL, HEXMIL (Kaminski, Eiter, and Inoue
2018), and ILASP3 (Law 2018) all first pre-compute every
possible rule in the hypothesis space which they pass to an
ASP solver. This approach scales well when solutions require
many rules with few body literals. However, this approach
does not scale well when solutions require rules with many
body literals (Cropper and Morel 2021a), since there are
exponentially more rules given more body literals.

To improve the scalability of meta-level systems, POPPER
(Cropper and Morel 2021a,b) does not precompute every
possible rule in the hypothesis space. Instead, POPPER lazily
generates rules. The key idea of POPPER is to discover con-
straints from smaller rules (and hypotheses) to rule out larger
rules. POPPER can learn optimal and recursive programs and
perform predicate invention. However, POPPER searches for
a single solution for all the examples and struggles to learn so-
lutions with many literals. As we experimentally demonstrate,
our DCC approach can substantially outperform POPPER and
other systems.

We have said that some ILP approaches struggle to learn

6447

large programs. However, what constitutes a large program
is unclear. Most authors measure the size of a logic program
as either the number of literals (Law 2018) or rules (Muggle-
ton, Lin, and Tamaddoni-Nezhad 2015) in it. However, these
two metrics are too simple. For instance, many approaches
can easily learn programs with lots of clauses by simply
memorising the examples. Likewise, approaches based on in-
verse entailment (Muggleton 1995) can easily learn programs
with lots of literals by simply returning the bottom clause.
In this paper, we do not formally define what constitutes a
large program. By large, we informally mean programs with
reasonably large numbers of rules, variables, and literals.

3 Problem Setting
Our problem setting is the learning from failures (LFF) (Crop-
per and Morel 2021a) setting. LFF uses hypothesis con-
straints to restrict the hypothesis space. Let L be a language
that defines hypotheses, i.e. a meta-language. For instance,
consider a meta-language formed of two literals h lit/4 and
b lit/4 which represent head and body literals respectively.
With this language, we can denote the clause last(A,B) ←
tail(A,C), head(C,B) as the set of literals {h lit(0,last,2,(0,1)),
b lit(0,tail,2,(0,2)), b lit(0,head,2,(2,1))}. The first argument
of each literal is the clause index, the second is the predicate
symbol, the third is the arity, and the fourth is the literal vari-
ables, where 0 represents A, 1 represents B, etc. A hypothesis
constraint is a constraint (a headless rule) expressed in L. Let
C be a set of hypothesis constraints written in a languageL. A
set of definite clauses H is consistent with C if, when written
in L,H does not violate any constraint inC. For instance, the
constraint← h lit(0,last,2,(0,1)), b lit(0,last,2,(1,0)) would
be violated by the definite clause last(A,B)← last(B,A). We
denote as HC the subset of the hypothesis space H which
does not violate any constraint in C.

We define the LFF problem:

Definition 1 (LFF input). The LFF input is a tuple
(E+, E−, B,H, C) where E+ and E− are sets of ground
atoms denoting positive and negative examples respectively;
B is a definite program denoting background knowledge;H
is a hypothesis space, and C is a set of hypothesis constraints.

We define a LFF solution:

Definition 2 (LFF solution). Given an input tuple
(E+, E−, B,H, C), a hypothesis H ∈ HC is a solution
when H is complete (∀e ∈ E+, B ∪H |= e) and consistent
(∀e ∈ E−, B ∪H 6|= e).

If a hypothesis is not a solution then it is a failure. A hypothe-
sis is incomplete when ∃e ∈ E+, H ∪B 6|= e. A hypothesis
is inconsistent when ∃e ∈ E−, H ∪B |= e. A hypothesis is
totally incomplete when ∀e ∈ E+, H ∪B 6|= e.

Let cost : H 7→ R be an arbitrary cost function that
measures the cost of a hypothesis. We define an optimal
solution:

Definition 3 (Optimal solution). Given an input tuple
(E+, E−, B,H, C), a hypothesis H ∈ HC is optimal when
(i)H is a solution, and (ii) ∀H ′ ∈ HC , whereH ′ is a solution,
cost(H) ≤ cost(H ′).

In this paper, our cost function is the number of literals in the
hypothesis H .

Constraints. The goal of an LFF learner is to learn hy-
pothesis constraints from failed hypotheses. Cropper and
Morel (2021a,b) introduce hypothesis constraints based on
subsumption (Plotkin 1971). A clause C1 subsumes a clause
C2 (C1 � C2) if and only if there exists a substitution θ
such that C1θ ⊆ C2. A clausal theory T1 subsumes a clausal
theory T2 (T1 � T2) if and only if ∀C2 ∈ T2, ∃C1 ∈ T1 such
that C1 subsumes C2. A clausal theory T1 is a specialisation
of a clausal theory T2 if and only if T2 � T1. A clausal theory
T1 is a generalisation of a clausal theory T2 if and only if
T1 � T2. If a hypothesis H is incomplete, a specialisation
constraint prunes specialisations of H , as they are guaran-
teed to also be incomplete. If a hypothesis H is inconsistent,
a generalisation constraint prunes generalisations of H , as
they are guaranteed to be inconsistent as well. If a hypothe-
sis H is totally incomplete, a redundancy constraint prunes
hypotheses that contain a specialisation of H as a subset.

4 DCC Algorithm
We now describe our DCC algorithm. We first briefly de-
scribe POPPER, which we use as our underlying search algo-
rithm.

4.1 POPPER

Algorithm 1 shows the POPPER algorithm, which solves the
LFF problem (Definition 1). POPPER takes as input back-
ground knowledge (bk), positive (pos) and negative (neg)
examples, a set of hypothesis constraints (in cons), and
lower (min m) and upper (max m) bounds on hypothesis sizes.
POPPER uses a generate, test, and constrain loop to find a
solution.

POPPER starts with a ASP program P (hidden in the gen-
erate function) whose models correspond to hypotheses (defi-
nite programs). POPPER augments P with ASP constraints to
eliminate models and thus prune hypotheses. In the generate
stage (line 5), POPPER uses Clingo (Gebser et al. 2014), an
ASP system, to search for a model (a hypothesis) of P . A
constraint ensures that the hypothesis has exactly m literals.
If a model is found, POPPER converts it to a hypothesis (h).
Otherwise; POPPER increments the hypothesis size (line 7)
and loops again.

If there is a hypothesis then in the test stage (line 9), POP-
PER tests it on the given training examples. If a hypothesis
fails, i.e. is incomplete or inconsistent, then in the constrain
stage (line 12), POPPER deduces hypothesis constraints (rep-
resented as ASP constraints) from the failure which it adds to
the set of constraints, which are in turn added to P to prune
models and thus restrict the hypothesis space. For instance, if
a hypothesis is incomplete, i.e. does not entail all the positive
examples, then POPPER builds a specialisation constraint to
prune hypotheses that are logically more specific.

To find an optimal solution (i.e. one with the minimum
number of literals), POPPER progressively increases the num-
ber of literals allowed in a hypothesis when the hypothesis
space is empty at a certain size (e.g. when P has no more

6448

Algorithm 1: POPPER

1 def popper(bk, pos, neg, in_cons, min_m, max_m):
2 cons = in_cons
3 m = min_m
4 while m ≤ max_m:
5 h = generate(cons, m)
6 if h == UNSAT:
7 m += 1
8 else:
9 outcome = test(pos, neg, bk, h)

10 if outcome == (COMPLETE, CONSISTENT)
11 return h, cons
12 cons += constrain(h, outcome)
13 return {}, cons

models). This loop repeats until either (i) POPPER finds an
optimal solution, or (ii) there are no more hypotheses to test.

4.2 DCC
Algorithm 2 shows the DCC algorithm. Before describing
it in detail, we describe it at a high-level. The idea is to di-
vide the positive examples into chunks of size k. In the first
iteration k = 1, each example is in its own chunk. DCC
enumerates the chunks and calls POPPER to find a hypoth-
esis for the chunk examples and all the negative examples.
After enumerating all the chunks, DCC forms an iteration
hypothesis as the union of all the chunk hypotheses. DCC
then doubles the chunk size and repeats the process until the
chunk size exceeds the number of examples. Without optimi-
sations, DCC performs lnn iterations where n is the number
of positive examples.

We now describe DCC in detail. DCC takes as input back-
ground knowledge (bk), and positive (pos) and negative (neg)
examples. It maintains a set of constraints (cons) that is ini-
tially empty (line 2). DCC divides the positive examples into
chunks. In the first iteration, each positive example is in its
own chunk (line 5). The while loop in Algorithm 2 builds a
hypothesis for a given chunk size. Line 8 creates an empty
hypothesis (iteration hs) for the current chunk size. DCC
divides the chunks into smaller chunks (chunk) of size k and
enumerates them.

In line 10 DCC calls the function lazy check. We delay
discussion of this function until we have described the main
DCC loop but at a high-level this function tries to find an
already discovered hypothesis that covers the current chunk.
The purpose is to reduce the number of calls to POPPER.

Ignoring the lazy check, DCC tries to find a hypothesis for
this chunk. The first step (line 12) selects only the relevant
constraints for the examples in the chunk (chunk cons). All
generalisation constraints are selected. Specialisation con-
straints are only selected if they hold for at least one example
in the chunk. Redundancy constraints are selected only if they
hold for all examples in the chunk. The second step (line 13)
deduces hypothesis size bounds for the subsequent POPPER
search. The minimum size is the largest best solution for each
chunk example. The maximum size is the size of the union.

DCC calls POPPER with the filtered constraints and hy-
pothesis size bounds. POPPER returns a hypothesis (h) that

Algorithm 2: DCC
1 def dcc(bk, pos, neg):
2 cons = {}
3 k = 1
4 best_h, score = None, 0
5 all_chunks = {{x} | x in pos}
6 exs_h = {}
7 while k ≤ |all_chunks|:
8 iteration_hs = {}
9 for chunk in divide(all_chunks, k):

10 h = lazy_check(bk, chunk, iteration_hs)
11 if h == None:
12 chunk_cons = filter_c(cons, chunk)
13 min_m, max_m = calc_bounds(exs_h, chunk)
14 h, new_cons = popper(bk, chunk, neg,

chunk_cons, min_m, max_m)
15 cons += new_cons
16 if h != None:
17 iteration_hs += h
18 exs_hs = update(exs_hs, h, chunk)
19 iteration_h = union(iteration_hs)
20 h_score = test(pos, neg, bk, iteration_h)
21 if h_score > best_score:
22 best_h, best_score = iteration_h, h_score
23 all_chunks = compress(iteration_hs,

all_chunks)
24 k += k
25 return best_h

entails the chunk examples (if one exists) and a set of new
constraints (new cons). DCC updates its constraints (line 15)
with the new ones. If a hypothesis is found, DCC adds it to
the iteration hypothesis (line 17) and updates a hash table
that maintains the last hypothesis for each example (line 18).

After passing through all the chunks, DCC forms a single
iteration hypothesis as the union of all the hypotheses (line
19). DCC calculates the score of this iteration hypothesis on
all the examples. We calculate the score as the number of cor-
rectly generalised examples (true positives + true negatives).
In future work, we will explore alternative scoring functions,
such as those that minimise description length (Rissanen
1978). If the score improves on the best score, DCC updates
the best hypothesis (line 22). Line 22 compresses the chunks.
We delay discussion of this function until we have described
the main DCC loop but at a high-level this function tries to
merge examples to reduce the number of iterations. After
enumerating all the chunks, DCC doubles the chunk size
(line 24) and repeats the process. Once the loop has finished,
DCC returns the best hypothesis.

Laziness. The goal of laziness is to reduce the number of
calls to POPPER. Suppose we have n chunks of examples
e1, e2, . . . , en and that during the for loop in Algorithm 2 we
find the solution h1 for e1. We now want to find a solution h2
for e2. Suppose that h1 is a solution for e2. Then do we need
to search for h2? On the one hand, h1 may be sub-optimal
in that there may be a smaller hypothesis that entails e2. On
the other hand, since we need h1 (or a generalisation of it) to
entail e1, we may as well reuse h1 as it requires adding no
more literals to our iteration hypothesis. Laziness generalises

6449

to all previously found hypotheses. Without laziness, for a
chunk with n examples, DCC requires in the best- and worst-
cases n calls to POPPER. Laziness reduces the best-case to 1.
Moreover, we can deduce additional constraints from these
lazy checks. Suppose that h1 does not entail e2. We can
therefore rule out all specialisations of h1 when searching for
h2 to further restrict the hypothesis space. In Section 5, we
experimentally evaluate the impact of laziness on learning
performance.

Compression. Given n positive examples e1, e2, . . . , en,
Algorithm 2 searches for solutions h1, h2, . . . , hn
respectively. It then increases the chunk size
and searches for solutions h′1, h

′
2, . . . , hn/2

′ for
{e1, e2}, {e3, e4}, . . . , {en−1, en} and so on. This ap-
proach requires in the best- and -worst-cases log n iterations
and, without laziness, n log n calls to POPPER. Suppose that
after the first iteration we know that h1 entails {e1}, {e6},
and {e9}; h2 entails {e3} and {e4}; and h3 entails {e2},
{e5}, and {e13}. Then in the second iteration Algorithm
2 will search for solutions h′1, h

′
2, . . . , hn/2′ etc. The two

searches for h′1 to cover {e1, e2} and h′3 to cover {e5, e6} are
basically the same. To reduce the number of iterations, we
can compress the chunks by the hypotheses that entail them.
In other words, we can merge two chunks if they are covered
by the same hypothesis. In the above case, we create a h1
bucket with {e1, e6, e9}, a h2 bucket with {e3, e4}, and a h3
bucket with {e2, e5, e13}. With this compression approach
in the second iteration, we now search for h′1 for the chunk
{e1, e6, e9, e3, e4} (buckets 1 and 2) and h′2 for the chunk
{e2, e5, e13}. Compression reduces the best-case number of
iterations from log n to 1 and the best-case number of calls
(without laziness) to POPPER from n log n to n. In Section 5,
we experimentally evaluate the impact of compression on
learning performance.

Anytime. DCC is an anytime algorithm. If at any point a
user stops the search or the search duration exceeds a timeout,
DCC returns the best hypothesis thus far.

5 Experiments
We claim that DCC can reduce search complexity and thus
improve learning performance. To evaluate this claim, our
experiments aim to answer the question:

Q1 Can DCC improve predictive accuracies and reduce
learning times?

To answer Q1, we compare DCC against POPPER. This com-
parison allows us to answer Q1 as DCC uses POPPER as its
underlying search algorithm and both systems use identical
biases. Comparing against other systems will not allow us to
answer Q1.

DCC has various optimisations that we claim improve
learning performance, notably reusing learned constraints;
laziness, and compression. To evaluate these features, our
experiments aim to answer three questions:

Q2 Can reusing constraints reduce learning times?
Q3 Can laziness reduce learning times?
Q4 Can compression reduce learning times?

Task Num. rules Num. literals Max rule size

trains1 1 6 6
trains2 2 11 7
trains3 3 17 7
trains4 4 26 7

Table 1: Trains tasks. The values are based on the optimal
solution size. The BK contains 27k facts and 20 relations.

To answer Q2-Q4, we compare the performance of DCC
with and without these optimisations.

Comparing DCC against other systems besides POPPER
cannot help us answer questions Q1-Q4. However, many
researchers desire comparisons against ‘state-of-the-art’. To
appease such a researcher, our experiments try to answer the
question:
Q5 How does DCC compare against other approaches?
To answer Q5 we compare DCC against POPPER, METAGOL,
ALEPH, and ILASP3. We describe these systems in Sec-
tion 5.2. Note that we do not claim that DCC is better than
other systems. All systems have strengths and weaknesses.
Moreover, as most systems use different biases, a fair com-
parison is difficult. Indeed, there will always exist a set of
settings whereby system x outperforms system y. Therefore,
the reader should not use our experimental results to conclude
that system x is better than system y.

5.1 Experimental Domains
We consider three domains.

Michalski Trains. Michalski trains (Larson and Michalski
1977) is a classical problem. The task is to find a hypothesis
that distinguishes eastbound trains from westbound trains.
Figure 1 shows an example hypothesis that says a train is
eastbound if it has a long carriage with two wheels and
another long carriage with three wheels. We use this domain
because we can easily generate progressively more difficult
tasks to test the scalability of the approaches as the solution
size grows. Table 1 shows information about the four tasks
we consider. There are 1000 examples but the distribution
of positive and negative examples is different for each task.
We randomly sample the examples and split them into 80/20
train/test partitions

eastbound(A)← has car(A,B), long(B), two wheels(B),
has car(A,C), three wheels(C)

Figure 1: Target solution for the trains1 task.

IGGP. In inductive general game playing (IGGP) (Cropper,
Evans, and Law 2020) agents are given game traces from the
general game playing competition (Genesereth and Björnsson
2013). The task is to induce a set of rules that could have
produced these traces. We use four IGGP games: minimal
decay (md), rock, paper, scissors (rps), buttons, and coins.
We learn the next relation in each game, which is the most
difficult to learn (Cropper, Evans, and Law 2020).

6450

Program synthesis. Inducing complex recursive programs
has long been considered a difficult problem (Muggleton et al.
2012) and most ILP systems cannot learn recursive programs.
We use the program synthesis dataset introduced by Cropper
and Morel (2021a).

5.2 Systems
To answer Q5, we compare DCC against POPPER,
METAGOL, ALEPH, and ILASP3.

METAGOL METAGOL is one of the few systems that can
learn recursive Prolog programs. METAGOL uses user-
provided metarules (program templates) to guide the
search for a solution. We use the approximate universal
set of metarules described by Cropper and Tourret (2020).

ALEPH ALEPH excels at learning many large non-recursive
rules and should excel at the trains and IGGP tasks. Al-
though ALEPH can learn recursive programs, it struggles
to do so. DCC and ALEPH use similar biases so the com-
parison can be considered reasonably fair.

ILASP3 We tried to use ILASP3. However, ILASP3 first
pre-computes every possible rule in a hypothesis space.
This approach is infeasible for our datasets. For instance,
on the trains tasks, ILASP3 took 2 seconds to pre-
compute rules with three body literals; 20 seconds for
rules with four body literals; and 12 minutes for rules
with five body literals. Since the simplest train task re-
quires rules with six body literals, ILASP3 is unusable.
In addition, ILASP3 cannot learn Prolog programs so is
unusable in the synthesis tasks.

5.3 Experimental Results
We measure predictive accuracy and learning time. We en-
force a timeout of five minutes per task. We repeat all the
experiments1 20 times and measure the mean and standard
deviation. We use a 3.8 GHz 8-Core Intel Core i7 with 32GB
of ram. All the systems use a single CPU.

Q1. Can DCC improve predictive accuracies and reduce
learning times? Table 2 shows the predictive accuracies of
DCC and POPPER. The results show that DCC outperforms
POPPER, especially on the trains and IGGP tasks. A McNe-
mar’s test confirms the significance of the difference between
DCC and POPPER at the p < 0.01 level. Where POPPER has
low predictive accuracy, it is because it struggled to find a
solution in the given time limit and thus returns an empty
hypothesis2.

Table 3 shows that learning times of DCC and POPPER.
A paired t-test confirms that the learning times of DCC and

1The experimental code and data are available at
https://github.com/logic-and-learning-lab/aaai22-dcc.

2DCC and POPPER (and METAGOL) are all guaranteed to find
an optimal solution, if one exists. They key difference is how long
they take to find it. In this experiment, we use a 5 minute timeout.
However, increasing the timeout does not change the results. For
instance, we repeated one trial of the buttons experiment with 4
hour timeout. Even with this large timeout, POPPER and METAGOL
could still not learn any solution. By contrast, DCC learns an almost
perfect solution in under 5 minutes.

Task DCC POPPER ALEPH METAGOL

trains1 100 ± 0 100 ± 0 100 ± 0 27 ± 0
trains2 98 ± 0 98 ± 0 100 ± 0 19 ± 0
trains3 98 ± 0 81 ± 1 100 ± 0 79 ± 0
trains4 100 ± 0 42 ± 5 39 ± 4 32 ± 0

md 99 ± 0 100 ± 0 94 ± 0 11 ± 0
buttons 98 ± 0 19 ± 0 87 ± 0 19 ± 0
rps 97 ± 0 18 ± 0 100 ± 0 18 ± 0
coins 86 ± 0 17 ± 0 17 ± 0 17 ± 0

dropk 99 ± 0 100 ± 0 52 ± 2 50 ± 0
droplast 100 ± 0 100 ± 0 50 ± 0 50 ± 0
evens 100 ± 0 100 ± 0 51 ± 0 50 ± 0
finddup 98 ± 0 98 ± 0 50 ± 0 50 ± 0
last 100 ± 0 100 ± 0 49 ± 0 55 ± 3
len 100 ± 0 100 ± 0 50 ± 0 50 ± 0
sorted 94 ± 2 96 ± 1 70 ± 1 50 ± 0
sumlist 100 ± 0 100 ± 0 50 ± 0 62 ± 4

Table 2: Predictive accuracies. We round accuracies to integer
values. The error is standard deviation.

Task DCC POPPER ALEPH METAGOL

trains1 8 ± 2 2 ± 0 4 ± 0.2 300 ± 0
trains2 41 ± 12 7 ± 0.9 1 ± 0.1 300 ± 0
trains3 106 ± 17 295 ± 3 35 ± 0.9 300 ± 0
trains4 268 ± 9 295 ± 2 297 ± 1 300 ± 0

md 172 ± 27 52 ± 1 3 ± 0 300 ± 0
buttons 300 ± 0 299 ± 0 86 ± 1 300 ± 0
rps 282 ± 12 285 ± 14 4 ± 0.1 0.3 ± 0
coins 291 ± 4 299 ± 0 300 ± 0 0.4 ± 0

dropk 3 ± 0.2 2 ± 0.2 3 ± 0.3 0.3 ± 0
droplast 2 ± 0.2 3 ± 0.1 300 ± 0 300 ± 0
evens 5 ± 0.4 4 ± 0.1 1 ± 0 217 ± 26
finddup 47 ± 6 13 ± 0.3 1 ± 0.1 300 ± 0
last 2 ± 0.4 2 ± 0.1 1 ± 0 270 ± 20
len 16 ± 2 5 ± 0.1 1 ± 0 300 ± 0
sorted 29 ± 3 19 ± 1 1 ± 0 288 ± 11
sumlist 18 ± 0.3 19 ± 0.6 0.6 ± 0 225 ± 29

Table 3: Learning times. We round times over one second to
the nearest second. The error is standard deviation.

POPPER are not significantly different. This result may sur-
prise a reader. How can DCC achieve higher predictive ac-
curacy than POPPER yet have the same learning time given
that it calls POPPER? The reason is that DCC is an anytime
algorithm. On some tasks, DCC finds the optimal solution
early in its search but is unable to prove that it is optimal so
continues to search until it reaches the maximum learning
time.

Q2. Can reusing constraints reduce learning times? Ta-
bles 4 and 5 show that reusing constraints is important for
high predictive accuracy and low learning times. A McNe-
mar’s test and a paired t-test confirmed the significance of the
accuracy and time results respectively at the p < 0.01 level.
For instance, without constraint reuse, DCC takes 107s to
learn a last solution with 82% predictive accuracy. By con-

6451

Without Without Without
Task DCC constraints laziness compression

trains1 100 ± 0 95 ± 3 100 ± 0 100 ± 0
trains2 98 ± 0 90 ± 1 96 ± 1 98 ± 0
trains3 98 ± 0 70 ± 4 97 ± 0 98 ± 0
trains4 100 ± 0 77 ± 2 97 ± 0 100 ± 0

md 99 ± 0 92 ± 0 95 ± 1 98 ± 0
buttons 98 ± 0 84 ± 0 96 ± 0 98 ± 0
rps 97 ± 0 86 ± 0 95 ± 0 97 ± 0
coins 86 ± 0 77 ± 4 71 ± 6 81 ± 3

dropk 99 ± 0 90 ± 4 99 ± 0 99 ± 0
droplast 100 ± 0 100 ± 0 100 ± 0 100 ± 0
evens 100 ± 0 83 ± 5 100 ± 0 100 ± 0
finddup 98 ± 0 56 ± 3 99 ± 0 97 ± 2
last 100 ± 0 82 ± 5 100 ± 0 100 ± 0
len 100 ± 0 85 ± 5 98 ± 1 100 ± 0
sorted 94 ± 2 60 ± 2 96 ± 1 96 ± 1
sumlist 100 ± 0 95 ± 3 100 ± 0 100 ± 0

Table 4: Predictive accuracies. We round accuracies to integer
values. The error is standard deviation.

Without Without Without
Task DCC constraints laziness compression

trains1 8 ± 2 38 ± 20 300 ± 0 12 ± 3
trains2 41 ± 12 285 ± 14 219 ± 20 151 ± 25
trains3 106 ± 17 300 ± 0 300 ± 0 300 ± 0
trains4 268 ± 9 300 ± 0 300 ± 0 300 ± 0

md 172 ± 27 300 ± 0 251 ± 20 256 ± 22
buttons 300 ± 0 300 ± 0 300 ± 0 300 ± 0
rps 282 ± 12 300 ± 0 300 ± 0 300 ± 0
coins 291 ± 4 300 ± 0 300 ± 0 300 ± 0

dropk 3 ± 0.2 62 ± 27 20 ± 2 4 ± 0.5
droplast 2 ± 0.2 4 ± 0.2 101 ± 2 4 ± 0.2
evens 5 ± 0.4 109 ± 32 75 ± 3 11 ± 3
finddup 47 ± 6 272 ± 19 178 ± 15 102 ± 19
last 2 ± 0.4 107 ± 32 46 ± 3 4 ± 1
len 16 ± 2 95 ± 30 143 ± 14 36 ± 14
sorted 29 ± 3 286 ± 14 74 ± 7 109 ± 21
sumlist 18 ± 0.3 50 ± 19 300 ± 0 22 ± 0.5

Table 5: Learning times. We round times over one second to
the nearest second. The error is standard deviation.

trast, with constraint reuse DCC takes 2s to learn a solution
with 100% accuracy.

Q3. Can laziness reduce learning times? The results
show that laziness can drastically reduce learning times. A
paired t-test confirms the significance at the p < 0.01 level.
For instance, for the trains1 task, laziness reduces the learn-
ing time from 300s (timeout) to 8s.

Q4. Can compression reduce learning times? The re-
sults show that compression can drastically reduce learn-
ing times. A paired t-test confirms the significance at the
p < 0.01 level. For instance, for the sorted task, compression
reduces the learning time from 109s to 29s.

Q5. How does DCC compare against other ILP systems?
The results show that DCC generally outperforms the other
systems in terms of predictive accuracy. ALEPH performs
well on the trains and IGGP tasks but struggles on the pro-
gram synthesis tasks. POPPER performs well on the trains
and program synthesis tasks but struggles on the IGGP tasks.
METAGOL struggles on most tasks because it uses metarules
with at most two body literals. To learn rules with more than
two body literals, METAGOL must invent new predicates,
thus increasing the hypothesis size and hypothesis space. The
most notable difference in accuracies is in the coins task.
DCC achieves 86% accuracy. By contrast, the other systems
could only achieve the default accuracy of 17%

6 Conclusions and Limitations
The fundamental challenge in ILP is to efficiently search a
large hypothesis space. To address this challenge, we have
introduced an approach called divide, constrain, and conquer
(DCC). Our approach combines classical divide-and-conquer
search with modern constraint-driven search. Our anytime
approach can learn optimal, recursive, and large programs
and perform predicate invention. Our experiments on three
domains (classification, inductive general game playing, and
program synthesis) show that (i) our approach can drastically
improve predictive accuracies and reduce learning times, (ii)
reusing learned knowledge is vital for good learning per-
formance, and (iii) our approach can outperform other ILP
systems.

6.1 Limitations and Future Work
Noise. In contrast to many other systems, such as TILDE
and ALEPH, DCC cannot (explicitly) handle misclassified ex-
amples. However, due to the D&C approach, DCC naturally
provides a method to handle misclassified positive examples.
In future work we want to extend the approach to handle
misclassified negative examples.

Expressivity. As DCC uses POPPER as its underlying
search algorithm, it inherits some of the limitations of POP-
PER, such as no explicit support for non-observational predi-
cate learning (Muggleton and Bryant 2000), where a hypoth-
esis must define rules for predicates not seen in the training
examples3, and a restriction to definite programs. Future work
should address these limitations.

Parallelisation. Although multi-core machines are ubiqui-
tous, most ILP approaches are single-core learners, including
all the systems mentioned in this paper. However, our DCC
algorithm is trivially parallelisable as we can independently
search for a solution for each chunk. In future work, we want
to explore parallel DCC approaches.

Acknowledgments
This work was supported by the EPSRC fellowship The Au-
tomatic Computer Scientist (EP/V040340/1).

3Because POPPER supports predicate invention, the distinction
between OPL and non-OPL is unclear as by definition an invented
predicate symbol is not given in the examples.

6452

References
Ahlgren, J.; and Yuen, S. Y. 2013. Efficient program synthesis
using constraint satisfaction in inductive logic programming.
J. Machine Learning Res., 14(1): 3649–3682.
Blockeel, H.; and Raedt, L. D. 1998. Top-Down Induction of
First-Order Logical Decision Trees. Artif. Intell.
Corapi, D.; Russo, A.; and Lupu, E. 2011. Inductive Logic
Programming in Answer Set Programming. In Muggleton,
S.; Tamaddoni-Nezhad, A.; and Lisi, F. A., eds., Inductive
Logic Programming - 21st International Conference, ILP
2011, Windsor Great Park, UK, July 31 - August 3, 2011,
Revised Selected Papers, volume 7207 of Lecture Notes in
Computer Science, 91–97. Springer.
Cropper, A.; Dumancic, S.; Evans, R.; and Muggleton, S. H.
2022. Inductive logic programming at 30. Mach. Learn.,
111(1): 147–172.
Cropper, A.; Evans, R.; and Law, M. 2020. Inductive general
game playing. Mach. Learn., 109(7): 1393–1434.
Cropper, A.; and Morel, R. 2021a. Learning programs by
learning from failures. Mach. Learn., 110(4): 801–856.
Cropper, A.; and Morel, R. 2021b. Predicate Invention by
Learning From Failures. CoRR.
Cropper, A.; and Muggleton, S. H. 2016. Metagol System.
https://github.com/metagol/metagol. Accessed: 2022-03-07.
Cropper, A.; and Tourret, S. 2020. Logical reduction of
metarules. Mach. Learn., 109(7): 1323–1369.
Evans, R.; and Grefenstette, E. 2018. Learning Explanatory
Rules from Noisy Data. J. Artif. Intell. Res., 61: 1–64.
Evans, R.; Hernández-Orallo, J.; Welbl, J.; Kohli, P.; and
Sergot, M. J. 2021. Making sense of sensory input. Artif.
Intell., 293: 103438.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2014. Clingo = ASP + Control: Preliminary Report. CoRR,
abs/1405.3694.
Genesereth, M. R.; and Björnsson, Y. 2013. The International
General Game Playing Competition. AI Magazine, 34(2):
107–111.
Kaminski, T.; Eiter, T.; and Inoue, K. 2018. Exploiting
Answer Set Programming with External Sources for Meta-
Interpretive Learning. Theory Pract. Log. Program., 18(3-4):
571–588.
Larson, J.; and Michalski, R. S. 1977. Inductive inference of
VL decision rules. SIGART Newsletter, 63: 38–44.
Law, M. 2018. Inductive learning of answer set programs.
Ph.D. thesis, Imperial College London, UK.
Lloyd, J. W. 2012. Foundations of logic programming.
Springer Science & Business Media.
Muggleton, S. 1991. Inductive Logic Programming. New
Generation Computing, 8(4): 295–318.
Muggleton, S. 1995. Inverse Entailment and Progol. New
Generation Comput., 13(3&4): 245–286.
Muggleton, S.; and Bryant, C. H. 2000. Theory Comple-
tion Using Inverse Entailment. In Cussens, J.; and Frisch,
A. M., eds., Inductive Logic Programming, 10th Interna-
tional Conference, ILP 2000, London, UK, July 24-27, 2000,

Proceedings, volume 1866 of Lecture Notes in Computer
Science, 130–146. Springer.
Muggleton, S.; De Raedt, L.; Poole, D.; Bratko, I.; Flach,
P. A.; Inoue, K.; and Srinivasan, A. 2012. ILP turns 20 -
Biography and future challenges. Machine Learning, 86(1):
3–23.
Muggleton, S. H.; Lin, D.; and Tamaddoni-Nezhad, A. 2015.
Meta-interpretive learning of higher-order dyadic Datalog:
predicate invention revisited. Machine Learning, 100(1):
49–73.
Plotkin, G. 1971. Automatic Methods of Inductive Inference.
Ph.D. thesis, Edinburgh University.
Quinlan, J. R. 1986. Induction of Decision Trees. Machine
Learning, 1(1): 81–106.
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.
Ray, O. 2009. Nonmonotonic abductive inductive learning.
J. Applied Logic, 7(3): 329–340.
Rissanen, J. 1978. Modeling by shortest data description.
Autom., 14(5): 465–471.
Srinivasan, A. 2001. The ALEPH manual. Machine Learning
at the Computing Laboratory, Oxford University.
Stahl, I. 1995. The Appropriateness of Predicate Invention
as Bias Shift Operation in ILP. Machine Learning, 20(1-2):
95–117.

6453

