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Abstract

We propose a versatile framework based on random search,
Sparse-RS, for score-based sparse targeted and untargeted
attacks in the black-box setting. Sparse-RS does not rely
on substitute models and achieves state-of-the-art success rate
and query efficiency for multiple sparse attack models: l0-
bounded perturbations, adversarial patches, and adversarial
frames. The l0-version of untargeted Sparse-RS outper-
forms all black-box and even all white-box attacks for dif-
ferent models on MNIST, CIFAR-10, and ImageNet. More-
over, our untargeted Sparse-RS achieves very high success
rates even for the challenging settings of 20× 20 adversarial
patches and 2-pixel wide adversarial frames for 224 × 224
images. Finally, we show that Sparse-RS can be applied to
generate targeted universal adversarial patches where it sig-
nificantly outperforms the existing approaches. Our code is
available at https://github.com/fra31/sparse-rs.

Introduction
The discovery of the vulnerability of neural networks to ad-
versarial examples (Biggio et al. 2013; Szegedy et al. 2014)
revealed that the decision of a classifier or a detector can
be changed by small, carefully chosen perturbations of the
input. Many efforts have been put into developing increas-
ingly more sophisticated attacks to craft small, semantics-
preserving modifications which are able to fool classifiers
and bypass many defense mechanisms (Carlini and Wag-
ner 2017; Athalye, Carlini, and Wagner 2018). This is typ-
ically achieved by constraining or minimizing the lp-norm
of the perturbations, usually either l∞ (Szegedy et al. 2014;
Kurakin, Goodfellow, and Bengio 2017; Carlini and Wag-
ner 2017; Madry et al. 2018; Croce and Hein 2020), l2
(Moosavi-Dezfooli, Fawzi, and Frossard 2016; Carlini and
Wagner 2017; Rony et al. 2019; Croce and Hein 2020) or l1
(Chen et al. 2018; Modas, Moosavi-Dezfooli, and Frossard
2019; Croce and Hein 2020). Metrics other than lp-norms
which are more aligned to human perception have been also
recently used, e.g. Wasserstein distance (Wong, Schmidt,
and Kolter 2019; Hu et al. 2020) or neural-network based
ones such as LPIPS (Zhang et al. 2018; Laidlaw, Singla, and
Feizi 2021). All these attacks have in common the tendency
to modify all the elements of the input.
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Figure 1: Adversarial examples for sparse threat models
(l0-bounded, patches, frames) generated with our black-box
Sparse-RS framework which does not require surrogate
models and is more query efficient.

Conversely, sparse attacks pursue an opposite strategy:
they perturb only a small portion of the original input but
possibly with large modifications. Thus, the perturbations
are indeed visible but do not alter the semantic content, and
can even be applied in the physical world (Lee and Kolter
2019; Thys, Van Ranst, and Goedemé 2019; Li, Schmidt,
and Kolter 2019). Sparse attacks include l0-attacks (Nar-
odytska and Kasiviswanathan 2017; Carlini and Wagner
2017; Papernot et al. 2016; Schott et al. 2019; Croce and
Hein 2019), adversarial patches (Brown et al. 2017; Kar-
mon, Zoran, and Goldberg 2018; Lee and Kolter 2019)
and frames (Zajac et al. 2019), where the perturbations
have some predetermined structure. Moreover, sparse at-
tacks generalize to tasks outside computer vision, such as
malware detection or natural language processing, where the
nature of the domain imposes to modify only a limited num-
ber of input features (Grosse et al. 2016; Jin et al. 2019).

We focus on the black-box score-based scenario, where
the attacker can only access the predicted scores of a clas-
sifier f , but does not know the network weights and in par-
ticularly cannot use gradients of f wrt the input (as in the
white-box setup). We do not consider more restrictive (e.g.,
decision-based attacks (Brendel, Rauber, and Bethge 2018;
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Brunner et al. 2019) where the adversary only knows the
label assigned to each input) or more permissive (e.g., a sur-
rogate model similar to the victim one is available (Cheng
et al. 2019; Huang and Zhang 2020)) cases. For the l0-threat
model only a few black-box attacks exist (Narodytska and
Kasiviswanathan 2017; Schott et al. 2019; Croce and Hein
2019; Zhao et al. 2019), which however do not focus on
query efficiency or scale to datasets like ImageNet with-
out suffering from prohibitive computational cost. For ad-
versarial patches and frames, black-box methods are mostly
limited to transfer attacks, that is a white-box attack is per-
formed on a surrogate model, with the exception of (Yang
et al. 2020) who use a predefined dictionary of patches.

Contributions. Random search is particularly suitable for
zeroth-order optimization in presence of complicated com-
binatorial constraints, as those of sparse threat models. Then,
we design specific sampling distributions for the random
search algorithm to efficiently generate sparse black-box at-
tacks. The resulting Sparse-RS is a simple and flexible
framework which handles
• l0-perturbations: Sparse-RS significantly outper-

forms the existing black-box attacks in terms of the query
efficiency and success rate, and leads to a better success
rate even when compared to the state-of-the-art white-
box attacks on standard and robust models.

• Adversarial patches: Sparse-RS achieves better re-
sults than both TPA (Yang et al. 2020) and a black-box
adaptations of projected gradient descent (PGD) attacks
via gradient estimation.

• Adversarial frames: Sparse-RS outperforms the ex-
isting adversarial framing method (Zajac et al. 2019)
with gradient estimation and achieves a very high suc-
cess rate even with 2-pixel wide frames.

Due to space reasons the results for adversarial frames had to
be moved to the appendix, available in the extended version
at https://arxiv.org/abs/2006.12834.

Black-box Adversarial Attacks
Let f : S ⊆ Rd → RK be a classifier which assigns input
x ∈ S to class y = arg maxr=1,...,Kfr(x). The goal of an
untargeted attack is to craft a perturbation δ ∈ Rd s.t.

arg max
r=1,...,K

fr(x+ δ) 6= y, x+ δ ∈ S and δ ∈ T ,

where S is the input domain and T are the constraints the
adversarial perturbation has to fulfill (e.g. bounded lp-norm),
while a targeted attack aims at finding δ such that

arg max
r=1,...,K

fr(x+ δ) = t, x+ δ ∈ S and δ ∈ T ,

with t as target class. Generating such δ can be translated
into an optimization problem as

min
δ∈Rd

L(f(x+ δ), t) s.t. x+ δ ∈ S and δ ∈ T (1)

by choosing a label t and loss function L whose minimiza-
tion leads to the desired classification. By threat model we
mean the overall attack setting determined by the goal of the

attacker (targeted vs untargeted attack), the level of knowl-
edge (white- vs black-box), and the perturbation set T .

Many algorithms have been proposed to solve Prob-
lem (1) in the black-box setting where one cannot use
gradient-based methods. One of the first approaches is by
(Fawzi and Frossard 2016) who propose to sample candidate
adversarial occlusions via the Metropolis MCMC method,
which can be seen as a way to generate adversarial patches
whose content is not optimized. (Ilyas et al. 2018; Uesato
et al. 2018) propose to approximate the gradient through fi-
nite difference methods, later improved to reduce their high
computational cost in terms of queries of the victim models
(Bhagoji et al. 2018; Tu et al. 2019; Ilyas, Engstrom, and
Madry 2019). Alternatively, (Alzantot et al. 2019; Liu et al.
2019) use genetic algorithms in the context of image clas-
sification and malware detection respectively. A line of re-
search has focused on rephrasing l∞-attacks as discrete op-
timization problems (Moon, An, and Song 2019; Al-Dujaili
and O’Reilly 2020; Meunier, Atif, and Teytaud 2019), where
specific techniques lead to significantly better query effi-
ciency. (Guo et al. 2019) adopt a variant of random search to
produce perturbations with a small l2-norm.

Closest in spirit is the Square Attack of (Andriushchenko
et al. 2020), which is state-of-the-art for l∞- and l2-bounded
black-box attacks. It uses random search to iteratively gen-
erate samples on the surface of the l∞- or l2-ball. Together
with a particular sampling distribution based on square-
shaped updates and a specific initialization, this leads to a
simple algorithm which outperforms more sophisticated at-
tacks in success rate and query efficiency. In this paper we
show that the random search idea is ideally suited for sparse
attacks, where the non-convex, combinatorial constraints are
not easily handled even by gradient-based white-box attacks.

Sparse-RS Framework
Random search (RS) is a well known scheme for derivative
free optimization (Rastrigin 1963). Given an objective func-
tion L to minimize, a starting point x(0) and a sampling dis-
tribution D, an iteration of RS at step i is given by

δ ∼ D(x(i)), x(i+1) = arg min
y∈{x(i), x(i)+δ}

L(y). (2)

At every step an update of the current iterate x(i) is sam-
pled according toD and accepted only if it decreases the ob-
jective value, otherwise the procedure is repeated. Although
not explicitly mentioned in Eq. (2), constraints on the iter-
ates x(i) can be integrated by ensuring that δ is sampled so
that x(i) + δ is a feasible solution. Thus even complex, e.g.
combinatorial, constraints can easily be integrated as RS just
needs to be able to produce feasible points in contrast to
gradient-based methods which depend on a continuous set to
optimize over. While simple and flexible, RS is an effective
tool in many tasks (Zabinsky 2010; Andriushchenko et al.
2020), with the key ingredient for its success being a task-
specific sampling distribution D to guide the exploration of
the space of possible solutions.

We summarize our general framework based on random
search to generate sparse adversarial attacks, Sparse-RS,
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Algorithm 1: Sparse-RS
input : loss L, input xorig, max query N , sparsity k,

input space constraints S
output: approximate minimizer of L

1 M ← k indices of elements to be perturbed
2 ∆← values of the perturbation to be applied
3 z ← xorig, zM ← ∆ // set elements in

M to values in ∆
4 L∗ ← L(z), i← 0 // initialize loss
5 while i < N and success not achieved do
6 M ′ ← sampled modification of M

// new set of indices
7 ∆′ ← sampled modification of ∆

// new perturbation
8 z ← xorig, zM ′ ← ∆′

// create new candidate in S
9 if L(z) < L∗ then

10 L∗ ← L(z), M ←M ′, ∆← ∆′ // if
loss improves, update sets

11 i← i+ 1
12 z ← xorig, zM ← ∆ // return best ∆
13 return z

in Alg. 1, where the sparsity k indicates the maximum num-
ber of features that can be perturbed. A sparse attack is char-
acterized by two variables: the set of components to be per-
turbed M and the values ∆ to be inserted at M to form the
adversarial input. To optimize over both of them we first
sample a random update of the locations M of the current
perturbation (step 6) and then a random update of its values
∆ (step 7). In some threat models (e.g. adversarial frames)
the set M cannot be changed, so M ′ ≡ M at every step.
How ∆′ is generated depends on the specific threat model,
so we present the individual procedures in the next sections.
We note that for all threat models, the runtime is dominated
by the cost of a forward pass through the network, and all
other operations are computationally inexpensive.

Common to all variants of Sparse-RS is that the whole
budget for the perturbations is fully exploited both in terms
of number of modified components and magnitude of the
elementwise changes (constrained only by the limits of the
input domain S). This follows the intuition that larger pertur-
bations should lead faster to an adversarial example. More-
over, the difference of the candidatesM ′ and ∆′ withM and
∆ shrinks gradually with the iterations which mimics the re-
duction of the step size in gradient-based optimization: ini-
tial large steps allow to quickly decrease the objective loss,
but smaller steps are necessary to refine a close-to-optimal
solution at the end of the algorithm. Finally, we impose a
limit N on the maximum number of queries of the classifier,
i.e. evaluations of the objective function.

As objective function L to be minimized, we use in the
case of untargeted attacks the margin loss Lmargin(f(·), y) =
fy(·) − maxr 6=y fr(·), where y is the correct class, so that
L < 0 is equivalent to misclassification, whereas for tar-
geted attacks we use the cross-entropy loss LCE of the target

class t, namely LCE(f(·), t) = −ft(·) + log
(∑K

r=1 e
fr(·)

)
.

The code of the Sparse-RS framework is available at
https://github.com/fra31/sparse-rs.

Sparse-RS for l0-Bounded Attacks
The first threat model we consider are l0-bounded adversar-
ial examples where only up to k pixels or k features/color
channels of an input xorig ∈ [0, 1]h×w×c (width w, height
h, color c) can be modified, but there are no constraints on
the magnitude of the perturbations except for those of the in-
put domain. Note that constraining the number of perturbed
pixels or features leads to two different threat models which
are not directly comparable. Due to the combinatorial nature
of the l0-threat model, this turns out to be quite difficult for
continuous optimization techniques which are more prone to
get stuck in suboptimal maxima.
l0-RS algorithm. We first consider the threat model

where up to k pixels can be modified. Let U be the set
of the h · w pixels. In this case the set M ⊂ U from
Alg. 1 is initialized sampling uniformly k elements of U ,
while ∆ ∼ U({0, 1}k×c), that is random values in {0, 1}
(every perturbed pixel gets one of the corners of the color
cube [0, 1]c). Then, at the i-th iteration, we randomly select
A ⊂ M and B ⊂ U \ M , with |A| = |B| = α(i) · k,
and create M ′ = (M \ A) ∪ B. ∆′ is formed by sam-
pling random values from {0, 1}c for the elements in B, i.e.
those which were not perturbed at the previous iteration. The
quantity α(i) controls how muchM ′ differs fromM and de-
cays following a predetermined piecewise constant schedule
rescaled according to the maximum number of queries N .
The schedule is completely determined by the single value
αinit, used to calculate α(i) for every iteration i, which is
also the only free hyperparameter of our scheme. We provide
details about the algorithm, schedule, and values of αinit in
App. A and B, and ablation studies for them in App. G. For
the feature based threat model each color channel is treated
as a pixel and one applies the scheme above to the “gray-
scale” image (c = 1) with three times as many “pixels”.

Comparison of Query Efficiency of l0-RS
We compare pixel-based l0-RS to other black-box untar-
geted attacks in terms of success rate versus query efficiency.
The results of targeted attacks are in App. A. Here we focus
on attacking normally trained VGG-16-BN and ResNet-50
models on ImageNet, which contains RGB images resized
to shape 224×224, that is 50,176 pixels, belonging to 1,000
classes. We consider perturbations of size k ∈ {50, 150}
pixels to assess the effectiveness of the untargeted attacks
at different thresholds with a limit of 10,000 queries. We
evaluate the success rate on the initially correctly classified
images out of 500 images from the validation set.

Competitors. Many existing black-box pixel-based l0-
attacks (Narodytska and Kasiviswanathan 2017; Schott et al.
2019; Croce and Hein 2019) do not aim at query efficiency
and rather try to minimize the size of the perturbations.
Among them, only CornerSearch (Croce and Hein 2019) and
ADMM attack (Zhao et al. 2019) scale to ImageNet. How-
ever, CornerSearch requires 8×#pixels queries only for the
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Figure 2: Progression of the success rate vs number of
queries for black-box pixel-based l0-attacks on ImageNet in
the untargeted setting. At all sparsity levels l0-RS (red) out-
performs PGD0 (blue) and JSMA-CE (green) with gradient
estimation and ADMM attack (black).

Hen  Eel→ Guenon  Porcupine→Pole → Traffic light

Figure 3: Untargeted l0-adversarial examples generated by
our pixel-based l0-RS algorithm for k = 50 pixels.

initial phase, exceeding the query limit we fix by more than
40 times. The ADMM attack tries to achieve a successful
perturbation and then reduces its l0-norm. Moreover, we in-
troduce black-box versions of PGD0 (Croce and Hein 2019)
with the gradient estimated by finite difference approxima-
tion as done in prior work, e.g., see (Ilyas et al. 2018). As a
strong baseline, we introduce JSMA-CE which is a version
of the JSMA algorithm (Papernot et al. 2016) that we adapt
to the black-box setting: (1) for query efficiency, we estimate
the gradient of the cross-entropy loss instead of gradients of
each class logit, (2) on each iteration, we modify the pixels
with the highest gradient contribution. More details about
the attacks can be found in App. A.

Results. We show in Fig. 2 the success rate vs the num-
ber of queries for all black-box attacks. In all cases, l0-RS
outperforms its competitors in terms of the final success rate
by a large margin—the second best method (PGD0 w/ GE)
is at least 30% worse. Moreover, l0-RS is query efficient as
it achieves results close to the final ones already with a low
number of queries. For example, on VGG with k = 150,
l0-RS achieves 100% of success rate using on average only
171 queries, with a median of 25. Unlike other methods,
l0-RS can achieve almost 100% success rate by perturbing

attack type VGG ResNet

l0-bound in pixel space k = 50

JSMA-CE white-box 42.6% 39.6%
PGD0 white-box 87.0% 81.2%

ADMM black-box 30.3% 29.0%
JSMA-CE with GE black-box 49.6% 44.8%

PGD0 with GE black-box 61.4% 51.8%
CornerSearch∗ black-box 82.0% 72.0%

l0-RS black-box 98.2% 95.8%

l0-bound in feature space k = 50

SAPF∗ white-box 21.0% 18.0%
ProxLogBarrier white-box 33.0% 28.4%

EAD white-box 39.8% 35.6%
SparseFool white-box 43.6% 42.0%

VFGA white-box 58.8% 55.2%
FMN white-box 83.8% 77.6%

PDPGD white-box 89.6% 87.2%
ADMM black-box 32.6% 29.0%

CornerSearch∗ black-box 76.0% 62.0%
l0-RS black-box 92.8% 88.8%

Table 1: ImageNet: Robust test error of l0-attacks. The en-
tries with ∗ are evaluated on 100 points instead of 500 be-
cause of their high computational cost. All black-box at-
tacks use 10k queries except CornerSearch which uses 600k.
l0-RS outperforms all black- and white-box attacks.

50 pixels which is only 0.1% of the total number of pixels.
We visualize the adversarial examples of l0-RS in Fig. 3.

Using l0-RS for Accurate Robustness Evaluation
In this section, our focus is the accurate evaluation of ro-
bustness in the l0-threat model. For this, we evaluate exist-
ing white-box methods and black-box methods together. In-
stead of the success rate taken only over correctly classified
examples, here we rather consider robust error (similarly to
(Madry et al. 2018)), which is defined as the classification
error on the adversarial examples crafted by an attacker.

White-box attacks on ImageNet. We test the robust-
ness of the ImageNet models introduced in the previous sec-
tion to l0-bounded perturbations. As competitors we con-
sider multiple white-box attacks which minimize the l0-
norm in feature space: SAPF (Fan et al. 2020), ProxLog-
Barrier (Pooladian et al. 2020), EAD (Chen et al. 2018),
SparseFool (Modas, Moosavi-Dezfooli, and Frossard 2019),
VFGA (Césaire et al. 2020), FMN (Pintor et al. 2021)
and PDPGD (Matyasko and Chau 2021). For the l0-threat
model in pixel space we use two white-box baselines: PGD0
(Croce and Hein 2019), and JSMA-CE (Papernot et al. 2016)
(where we use the gradient of the cross-entropy loss to gen-
erate the saliency map). Moreover, we show the results of
the black-box attacks from the previous section (all with a
query limit of 10,000), and additionally use the black-box
CornerSearch for which we use a query limit of 600k and
which is thus only partially comparable. Details of the at-
tacks are available in App. A. Table 1 shows the robust error
given by all competitors: l0-RS achieves the best results for
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attack type l2-AT ResNet l1-AT ResNet

l0-bound in pixel space k = 24

PGD0 white-box 68.7% 72.7%
CornerSearch black-box 59.3% 64.9%

l0-RS black-box 85.7% 81.0%

l0-bound in feature space k = 24

VFGA white-box 40.5% 27.5%
FMN white-box 52.9% 28.2%

PDPGD white-box 46.4% 26.9%
CornerSearch black-box 43.2% 29.4%

l0-RS black-box 63.4% 38.3%

Table 2: CIFAR10: Robust test error of untargeted l0-attacks
in pixel and feature space on a l2- resp. l1-AT model.

pixel and feature based l0-threat model on both VGG and
ResNet, outperforming black- and white-box attacks. We
note that while the PGD attack has been observed to give
accurate robustness estimates for l∞- and l2-norms (Madry
et al. 2018), this is not the case for the l0 constraint set. This
is due to the discrete structure of the l0-ball which is not
amenable for continuous optimization.

Comparison on CIFAR-10. In Table 2 we compare
the strongest white- and black-box attacks on l1- resp. l2-
adversarially trained PreAct ResNet-18 on CIFAR-10 from
(Croce and Hein 2021) and (Rebuffi et al. 2021) (details in
App. A.5). We keep the same computational budget used
on ImageNet. As before, we consider perturbations with l0-
norm k = 24 in pixel or feature space: in both cases l0-RS
achieves the highest robust test error outperforming even all
white-box attacks. Note that, as expected, the model robust
wrt l1 is less vulnerable to l0-attacks especially in the feature
space, whose l1-norm is close to that used during training.

Robust generative models on MNIST. (Schott et al.
2019) propose two robust generative models on MNIST,
ABS and Binary ABS, which showed high robustness
against multiple types of lp-bounded adversarial examples.
These classifiers rely on optimization-based inference us-
ing a variational auto-encoder (VAE) with 50 steps of gra-
dient descent for each prediction (times 1,000 repetitions).
It is too expensive to get gradients with respect to the input
through the optimization process, thus (Schott et al. 2019)
evaluate only black-box attacks, and test l0-robustness with
sparsity k = 12 using their proposed Pointwise Attack with
10 restarts. We evaluate on both models CornerSearch with a
budget of 50,000 queries and l0-RS with an equivalent bud-
get of 10,000 queries and 5 random restarts. Table 3 sum-
marizes the robust test error (on 100 points) achieved by
the attacks (the results of Pointwise Attack are taken from
(Schott et al. 2019)). For both classifiers, l0-RS yields the
strongest evaluation of robustness suggesting that the ABS
models are less robust than previously believed. This illus-
trates that despite we have full access to the attacked VAE
model, a strong black-box l0-attack can still be useful for an
accurate robustness evaluation.
l0-RS on malware detection. We apply our method on a

malware detection task and show its effectiveness in App. B.

attack type k = 12 (pixels)
ABS Binary ABS

Pointwise Attack black-box 31% 23%
CornerSearch black-box 29% 28%

l0-RS black-box 55% 51%

Table 3: Robust test error on robust models (Schott et al.
2019) on MNIST by different attacks on 100 test points.

Theoretical Analysis of l0-RS
Given the empirical success of l0-RS, here we analyze it
theoretically for a binary classifier. While the analysis does
not directly transfer to neural networks, most modern neu-
ral network architectures result in piecewise linear classifiers
(Arora et al. 2018) , so that the result approximately holds in
a sufficiently small neighborhood of the target point x.

As in the malware detection task in App. B, we assume
that the input x has binary features, x ∈ {0, 1}d, and we
denote the label by y ∈ {−1, 1} and the gradient of the
linear model by wx ∈ Rd. Then the Problem (1) of finding
the optimal l0 adversarial example is equivalent to:

arg min
‖δ‖0≤k

xi+δi∈{0,1}

y 〈wx, x+ δ〉 = arg min
‖δ‖0≤k

δi∈{0,1−2xi}

〈ywx, δ〉

= arg min
‖δ‖0≤k
δi∈{0,1}

〈ywx � (1− 2x)︸ ︷︷ ︸
ŵx

, δ〉,

where � denotes the elementwise product. In the white-
box case, i.e. when wx is known, the solution is to simply
set δi = 1 for the k smallest weights of ŵx. The black-
box case, where wx is unknown and we are only allowed
to query the model predictions 〈ŵx, z〉 for any z ∈ Rd, is
more complicated since the naive weight estimation algo-
rithm requires O(d) queries to first estimate ŵx and then
to perform the attack by selecting the k minimal weights.
This naive approach is prohibitively expensive for high-
dimensional datasets (e.g., d = 150,528 on ImageNet as-
suming 224 × 224 × 3 images). However, the problem of
generating adversarial examples does not have to be always
solved exactly, and often it is enough to find an approximate
solution. Therefore we can be satisfied with only identify-
ing k among the m smallest weights. Indeed, the focus is
not on exactly identifying the solution but rather on having
an algorithm that in expectation requires a sublinear number
of queries. With this goal, we show that l0-RS satisfies this
requirement for large enough m.
Proposition 1 The expected number tk of queries needed
for l0-RS with α(i) = 1/k to find a set of k weights out of
the smallest m weights of a linear model is:

E [tk] =
k−1∑
i=0

(d− k)k

(k − i)(m− i)
< (d− k)k

ln(k) + 2

m− k
.

The proof is deferred to the supplement and resembles
that of the coupon collector problem. For non-linear mod-
els, l0-RS uses α(i) > 1/k for better exploration initially,
but then progressively reduces it. The main conclusion from
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attack VGG ResNet
success rate mean queries med. queries success rate mean queries med. queries

untarget.
20× 20

bl
ac

k-
bo

x LOAP w/ GE 55.1% ± 0.6 5879 ± 51 7230 ± 377 40.6% ± 0.1 6870 ± 10 10000 ± 0
TPA 46.1% ± 1.1 6085* ± 83 8080* ± 1246 49.0% ± 1.2 5722* ± 64 5280* ± 593

Sparse-RS + SH 82.6% 2479 514 75.3% 3290 549
Sparse-RS + SA 85.6% ± 1.1 2367 ± 83 533 ± 40 78.5% ± 1.0 2877 ± 64 458 ± 43

Patch-RS 87.8% ± 0.7 2160 ± 44 429 ± 22 79.5% ± 1.4 2808 ± 89 438 ± 68
White-box LOAP 98.3% - - 82.2% - -

targeted
40× 40

bl
ac

k-
bo

x LOAP w/ GE 23.9% ± 0.9 44134 ± 71 50000 ± 0 18.4% ± 0.9 45370 ± 88 50000 ± 0
TPA 5.1% ± 1.2 29934* ± 462 34000* ± 0 6.0% ± 0.5 31690* ± 494 34667* ± 577

Sparse-RS + SH 63.6% 25634 19026 48.6% 31250 50000
Sparse-RS + SA 70.9% ± 1.2 23749 ± 346 15569 ± 568 53.7% ± 0.9 32290 ± 239 40122 ± 2038

Patch-RS 72.7% ± 0.9 22912 ± 207 14407 ± 866 55.6% ± 1.5 30290 ± 317 34775 ± 2660
White-box LOAP 99.4% - - 94.8% - -

Table 4: Success rate and query statistics of image-specific patches. Black-box attacks are given 10k/50k queries for untar-
geted/targeted case. SH is a deterministic method. The query statistics are computed on all images with 5 random seeds. ∗ TPA
uses an early stopping mechanism to save queries, thus might not use all queries. Patch-RS outperforms all other methods in
success rate and query efficiency.

Parrot→ Torch Castle
→ Traffic light

Speedboat
→ Amphibian

Bee eater
→ Tiger cat

Newfoundland
→ Bucket Geyser→ Racer

Figure 4: Image-specific untargeted (20× 20 pixels, left) and targeted (40× 40, right) patches generated by Patch-RS.

Proposition 1 is that E [tk] becomes sublinear for large
enough gap m− k, as we illustrate in Fig. 11 in App. F.

Sparse-RS for Adversarial Patches
Another type of sparse attacks which recently received
attention are adversarial patches introduced by (Brown
et al. 2017). There the perturbed pixels are localized, often
square-shaped, and limited to a small portion of the image
but can be changed in an arbitrary way. While some works
(Brown et al. 2017; Karmon, Zoran, and Goldberg 2018)
aim at universal patches, which fool the classifier regard-
less of the image and the position where they are applied,
which we consider in the next section, we focus first on
image-specific patches as in (Yang et al. 2020; Rao, Stutz,
and Schiele 2020) where one optimizes both the content and
the location of the patch for each image independently.

General algorithm for patches. Note that both location
(step 6 in Alg. 1) and content (step 7 in Alg. 1) have to be
optimized in Sparse-RS, and on each iteration we check
only one of these updates. We test the effect of different fre-
quencies of location/patch updates in an ablation study in
App. G.2. Since the location of the patch is a discrete vari-
able, random search is particularly well suited for its opti-
mization. For the location updates in step 6 in Alg. 1, we
randomly sample a new location in a 2D l∞-ball around

the current patch position (using clipping so that the patch
is fully contained in the image). The radius of this l∞-ball
shrinks with increasing iterations in order to perform pro-
gressively more local optimization (see App. C for details).

For the update of the patch itself in step 7 in Alg. 1, the
only constraints are given by the input domain [0, 1]d. Thus
in principle any black-box method for an l∞-threat model
can be plugged in there. We use Square Attack (SA) (An-
driushchenko et al. 2020) and SignHunter (SH) (Al-Dujaili
and O’Reilly 2020) as they represent the state-of-the-art in
terms of success rate and query efficiency. We integrate both
in our framework and refer to them as Sparse-RS + SH
and Sparse-RS + SA. Next we propose a novel random
search based attack motivated by SA which together with
our location update yields our novel Patch-RS attack.
Patch-RS. While SA and SH are state-of-the-art for l∞-

attacks, they have been optimized for rather small perturba-
tions whereas for patches all pixels can be manipulated ar-
bitrarily in [0, 1]. Here, we design an initialization scheme
and a sampling distribution specific for adversarial patches.
As initialization (step 2 of Alg. 1), Patch-RS uses ran-
domly placed squares with colors in {0, 1}3, then it samples
updates of the patch (step 7) with shape of squares, of size
decreasing according to a piecewise constant schedule, until
a refinement phase in the last iterations, when it performs
single-channel updates (exact schedule in App. C). This is
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in contrast to SA where random vertical stripes are used as
initialization and always updates for all three channels of a
pixel are sampled. The ablation study in App. G.2 shows
how both modifications contribute to the improved perfor-
mance of Patch-RS.

Experiments. In addition to Sparse-RS + SH,
Sparse-RS + SA, and Patch-RS, we consider two exist-
ing methods. i) TPA (Yang et al. 2020) which is a black-box
attack aiming to produce image-specific adv. patches based
on reinforcement learning. While (Yang et al. 2020) allows
multiple patches for an image, we use TPA in the standard
setting of a single patch. ii) Location-Optimized Adversarial
Patches (LOAP) (Rao, Stutz, and Schiele 2020), a white-
box attack that uses PGD for the patch updates, which we
combine with gradient estimation in order to use it in the
black-box scenario (see App. C for details). In Table 4 we
report success rate, mean and median number of queries
used for untargeted attacks with patch size 20 × 20 and
query limit of 10,000 and for targeted attacks (random tar-
get class for each image) with patch size 40 × 40 and max-
imally 50,000 queries. We attack 500 images of ImageNet
with VGG and ResNet as target models. The query statis-
tics are computed on all 500 images, i.e. without restricting
to only successful adversarial examples, as this makes the
query efficiency comparable for different success rates. Our
Sparse-RS + SH, Sparse-RS + SA and Patch-RS
outperform existing methods by a large margin, showing the
effectiveness of our scheme to optimize both location and
patch. Among them, our specifically designed Patch-RS
achieves the best results in all metrics. We visualize its re-
sulting adversarial examples in Fig. 4.

Universal Adversarial Patches
A challenging threat model is that of a black-box, targeted
universal adversarial patch attack where the classifier should
be fooled into a chosen target class when the patch is ap-
plied inside any image of some other class. Previous works
rely on transfer attacks: in (Brown et al. 2017) the univer-
sal patch is created using a white-box attack on surrogate
models, while the white-box attack of (Karmon, Zoran, and
Goldberg 2018) directly optimizes the patch for the target
model on a set of training images and then only tests gener-
alization to unseen images. Our goal is a targeted black-box
attack which crafts universal patches that generalize to un-
seen images when applied at random locations (see exam-
ples in Fig. 5). To our knowledge, this is the first method for
this threat model which does not rely on a surrogate model.

We employ Alg. 1 where for the creation of the patches in
step 7 we use either SH, SA or our novel sampling distribu-
tion introduced in Patch-RS in the previous section. The
loss in Alg. 1 is computed on a small batch of 30 training im-
ages and the initial locations M of the patch in each of the
training images are sampled randomly. In order not to overfit
on the training batch, we resample training images and loca-
tions of the patches (step 6 in Alg. 1) every 10k queries (total
query budget 100k). As stochastic gradient descent this is a
form of stochastic optimization of the population loss (ex-
pectation over images and locations) via random search.

Experiments. We apply the above scheme to

attack VGG

Transfer PGD 3.3%
Transfer MI-FGSM 1.3%

PGD w/ GE 35.1%
ZO-AdaMM 45.8%

Sparse-RS + SH 63.9%
Sparse-RS + SA 72.9% ± 3.6

Patch-RS 70.8% ± 1.3

Table 5: Success rate of targeted universal 50× 50 patches.

Butterfly
→ Rottweiler Persian cat→ Slug Starfish

→ Polecat

Echidna
→ Rottweiler Geyser→ Slug Electric guitar

→ Polecat

Figure 5: We visualize two images in each column with the
same targeted universal patch generated by Patch-RS that
changes the predictions to the desired target class.

Sparse-RS + SH/SA and Patch-RS to create uni-
versal patches of size 50 × 50 for 10 random target classes
on VGG (we repeat it for 3 seeds for RS-based methods).
We compare to (1) the transfer-based attacks obtained via
PGD (Madry et al. 2018) and MI-FGSM (Dong et al. 2018)
using ResNet as surrogate model, and to (2) ZO-AdaMM
(Chen et al. 2019) based on gradient estimation. The
results in Table 5 show that our Sparse-RS + SH/SA and
Patch-RS outperform other methods by large margin. We
provide extra details and results for frames in App. E.

Conclusion

We propose a versatile framework, Sparse-RS, which
achieves state-of-the-art success rate and query efficiency in
multiple sparse threat models: l0-perturbations, adversarial
patches and adversarial frames (see App. D). Moreover, it
is effective in the challenging task of crafting universal ad-
versarial patches without relying on surrogate models, un-
like the existing methods. We think that strong black-box
adversarial attacks are a very important component to assess
the robustness against such localized and structured attacks,
which go beyond the standard lp-threat models.
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