
Reinforcement Learning with Stochastic Reward Machines

Jan Corazza1,2, Ivan Gavran2, Daniel Neider2

1 University of Zagreb
2 Max Planck Institute for Software System

corazzajan@gmail.com, gavran@mpi-sws.org, neider@mpi-sws.org

Abstract

Reward machines are an established tool for dealing with re-
inforcement learning problems in which rewards are sparse
and depend on complex sequences of actions. However, ex-
isting algorithms for learning reward machines assume an
overly idealized setting where rewards have to be free of
noise. To overcome this practical limitation, we introduce a
novel type of reward machines, called stochastic reward ma-
chines, and an algorithm for learning them. Our algorithm,
based on constraint solving, learns minimal stochastic reward
machines from the explorations of a reinforcement learn-
ing agent. This algorithm can easily be paired with existing
reinforcement learning algorithms for reward machines and
guarantees to converge to an optimal policy in the limit. We
demonstrate the effectiveness of our algorithm in two case
studies and show that it outperforms both existing methods
and a naive approach for handling noisy reward functions.

1 Introduction
The key assumption of a reinforcement learning (RL) model
is that the reward function is Markovian: the received reward
depends only on the agent’s immediate state and action. For
many practical RL tasks, however, the most natural concep-
tualization of the state-space is the one in which the reward
function depends on the history of actions that the agent has
performed. (Those are typically the tasks in which the agent
is rewarded for complex behaviors over a longer period.)

An emerging tool used for reinforcement learning in en-
vironments with such non-Markovian rewards are reward
machines. A reward machine is an automaton-like structure
which augments the state space of the environment, captur-
ing the temporal component of rewards. It has been demon-
strated that Q-learning (Sutton and Barto 2018), a standard
RL algorithm, can be adapted to use and benefit from reward
machines (Toro Icarte et al. 2018).

Reward machines are either given by the user, or inferred
by the agent on the fly (Gaon and Brafman 2020; Furelos-
Blanco et al. 2020; Xu et al. 2020). The used learning meth-
ods ensure that the inferred machine is minimal, enabling
quick optimal convergence. Besides a faster convergence,
learning minimal reward machines contributes to the inter-
pretability of problems with an unclear reward structure.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Reward machines only model deterministic rewards.
When the machine is not known upfront, existing learning
methods prove counterproductive in the presence of noisy
rewards, as there is either no reward machine consistent with
the agent’s experience, or the learned reward machine ex-
plodes in size, overfitting the noise.

In this paper, we introduce the notion of a stochastic re-
ward machine, which can capture noisy, non-Markovian re-
ward functions, together with a novel algorithm for learning
them. The algorithm is an extension of the constraint-based
formulation of Xu et al. (2020). The extension relies on the
parameters of the reward’s distribution, making sure that ex-
periential rewards respect the distribution. In every iteration,
if the agent establishes that its current hypothesis about the
machine is wrong, it updates the hypothesis (either by fixing
the machine’s parameters or by solving the constraint prob-
lem and learning a new machine).

While one could use the proposed algorithm to learn a
suitable (non-stochastic) reward machine and use that ma-
chine to guide the reinforcement learning process, we rec-
ognize the value of modeling stochasticity explicitly. First,
it reveals information about the distribution of rewards, im-
proving interpretability of the problem at hand. Second, a
direct correspondence between the stochastic reward func-
tion and the stochastic reward machine that models it makes
the exposition clearer.

In our experimental evaluation, we demonstrate the suc-
cessful working of our algorithm on two noisy, non-
Markovian case studies. We compare our algorithm with ex-
isting methods (which do not deal explicitly with noise) on
the same case studies: as expected, disregarding the noise by
using existing inference algorithms for classical RMs per-
forms substantially worse than our new approach. Finally,
we compare our algorithm to a baseline method that tries to
“average out” the noise.

To summarize, in this paper we 1) introduce stochastic
reward machines, 2) present a novel algorithm for learning
stochastic reward machines by a RL agent, and 3) experi-
mentally demonstrate the efficacy of our algorithm.

1.1 Related Work
Using finite state machines to capture non-Markovian re-
ward functions has been proposed already in the early
work on the topic (Bacchus, Boutilier, and Grove 1996).

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6429

Toro Icarte et al. (2018; 2020) introduced reward machines
(known as Mealy machines in other contexts) as a suitable
formalism and an algorithm that takes advantage of the re-
ward machine structure. Similar formalisms, including tem-
poral logics, have been proposed by others, too (Jothimuru-
gan, Alur, and Bastani 2019; Brafman, Giacomo, and Patrizi
2018; Camacho et al. 2019). This line of work assumes the
reward machine to be given.

The assumption of the user-provided reward machine has
been lifted in the follow-up works (Gaon and Brafman 2020;
Xu et al. 2020; Furelos-Blanco et al. 2020). Learning tempo-
ral representations of the reward has been explored in differ-
ent contexts: for multi-agents settings (Neary et al. 2020),
for reward shaping (Velasquez et al. 2021b), or with user-
provided advice (Neider et al. 2021). All these approaches
are fragile in presence of noisy rewards. Other approaches
focus on learning attainable sequences of labels (Hasanbeig
et al. 2021; Icarte et al. 2019), disregarding reward values.
If reward noise ranges over a finite set of values, Velasquez
et al. (2021a) propose active learning of reward machine-like
automata with a probabilistic transition function.

Outside of the non-Markovian context, many works stud-
ied noise in rewards. Everitt et al. (2017) give an overview
of potential sources of noise/corruption and provide the im-
possibility result for learning under arbitrarily corrupted re-
wards. Romoff et al. (2018) propose learning a reward esti-
mator function alongside the value function. Wang, Liu, and
Li (2020) consider a problem of rewards being flipped ac-
cording to a certain distribution. While all these works con-
sider much richer noise models, they are not readily appli-
cable to the non-Markovian rewards setting.

2 Preliminaries
This section introduces the necessary background on rein-
forcement learning and the formalism of reward machines
for capturing non-Markovian rewards. We illustrate all no-
tions on a running example called Mining. Mining, inspired
by variations of Minecraft (e.g., (Andreas, Klein, and Levine
2017)), models the problem of finding and exploiting ore in
an unknown environment. We use this example throughout
the paper.

Fig. 1 shows the Mining world. An agent moves in a
bounded grid-world intending to find valuable ore, gold (G)
and platinum (P), and bring it to the marketplace (M). Fur-
thermore, the agent’s success depends on the purity of the
ore and the market prices, which is stochastic and cannot
be influenced by the agent (though the spread of the market
prices can naturally be bounded). In order to do so success-
fully, the agent has to fulfill specific additional requirements,
such as finding equipment (E) beforehand and not stepping
into traps (T).

In reinforcement learning, an agent learns to solve such
tasks through repeated, often episodic interactions with an
environment. After each step, the agent receives feedback (a
reward r ∈ R ⊂ R) based on its performance and acts to
maximize a (discounted) sum of received rewards. This in-
teraction forms a stochastic process: while the environment
is in some state s ∈ S, the agent chooses an action a ∈ A
according to a policy π(s, a) (a function mapping states to

T T

E ⃝ E G

T T P

M T

P

T P

Figure 1: A simplified example of the Mining environment
grid and a trajectory. The agent’s initial state is shown as a
circle. Cells display their state labels, or are blank if the label
is ∅. The trajectory indicated by arrows shows the agent col-
lecting the equipment (E), finding platinum (P) and bringing
it to the marketplace (M).

probability distributions over the action space), causing the
environment to transition into the next state s′ ∈ S and giv-
ing the agent a reward r (where S is the state space and A
is the action space of the environment). A realization of this
process is a trajectory s0a1s1 . . . aksk (optionally, rewards
may be included in this sequence). The agent continually
updates its policy (i.e., learns) based on received rewards.

A reinforcement learning environment is formalized as a
Markov decision process (MDP). As is common in the con-
text of reward machines, we equip our MDPs with a labeling
function that maps transitions to labels. These labels corre-
spond to high-level events that are relevant for solving the
given task (e.g., finding gold, indicated by G).

Definition 1. A (labeled) Markov decision process is a tu-
pleM = (S, sI , A, p, P, L) consisting of a finite state space
S, an agent’s initial state sI ∈ S, a finite set A of actions,
and a probabilistic transition function p : S×A×S → [0, 1].
Additionally, a finite set P of propositional variables, and a
labeling function L : S × A× S → 2P determine the set of
relevant high-level events that the agent senses in the envi-
ronment. We define the size of an MDPM, denoted as |M|,
to be the cardinality of the set S (i.e., |M| = |S|).

Let us briefly illustrate this definition. The agent always
starts in state sI . It then interacts with the environment by
taking an action at each step. If the agent at state s ∈ S
takes the action a ∈ A, its next state will be s′ ∈ S with
probability p(s, a, s′). For this transition (s, a, s′), a labeling
function L emits a set of high-level labels. One can think of
these labels as knowledge provided by the user. If the user
can not provide any labeling function, L can simply return
the current transition.

The Mining example can be modeled by the MDP in
which states are fields of the grid world, and the agent’s ac-
tions are moving in four cardinal directions. The transition
function p models the possibility of the agent slipping when
making a move. The propositional variables used for label-
ing are E (equipment found) P (platinum found), G (gold
found), M (marketplace reached), T (fell into a trap), and ∅
(no relevant events).

To capture an RL problem fully, we need to equip an MDP
with a reward function. Formally, a reward function R maps

6430

trajectories from (S × A)+ × S to a cumulative distribu-
tion function over the set of possible rewardsR. For labeled
MDPs, the reward function typically depends on finite se-
quences of observed labels rather than on the more low-level
sequences of state-action pairs.

Let us emphasize the significance of defining the reward
function R over finite sequences of states and actions. Using
the entire history as the argument enables us to reward be-
haviors that respect temporal relations and persistence nat-
urally. For instance, in the Mining example, the goal is to
accomplish the following steps: (1) find equipment, (2) ex-
ploit a mine, (3) deliver the ore to the specified location,
all while avoiding traps. Note that the order in which the
agent performs these steps is crucial: finding ore and go-
ing to the marketplace without first picking up equipment is
not rewarded; stepping into traps ends the episode with re-
ward zero. Reward functions that make use of the agent’s
entire exploration (as opposed to only the current state and
action) have first been studied by Bacchus, Boutilier, and
Grove (1996) and are termed non-Markovian reward func-
tions.

Toro Icarte et al. (2018) have shown that reward ma-
chines (RMs) are a powerful formalism for representing
non-Markovian reward functions. Intuitively, one can view
the role of reward machines as maintaining the sufficient
amount of memory to turn the non-Markovian reward func-
tion back into a ordinary, Markovian one. This results in
an important feature of RMs: they enable using standard
RL algorithms (which would otherwise not be usable with
non-Markovian reward functions). Furthermore, taking ad-
vantage of the structure present in RMs, the algorithms can
be made more efficient.

On a technical level, RMs are finite-state automata that
transduce a sequence ℓ1ℓ2 . . . ℓk of labels into a sequence
r1r2 . . . rk of rewards. For the sake of brevity, we here omit
a formal definition and introduce the concept of RMs using
an example. To this end, let us consider the RM A in Fig. 2a,
which attempts to capture the reward function of the Mining
example and operates as follows.

Starting from the initial state vI , the machine transitions
to an intermediate state v1 upon finding equipment (indi-
cated by formula1 E). From there, A either moves to state v2
(upon finding platinum) or to state v3 (upon finding gold).
The reward, however, is delayed until the agent reaches the
marketplace (indicated by the label M) and A transitions to
the terminal state vT . Once this happens, the machine out-
puts a reward of 1 (if the agent has previously collected gold)
or a reward of 1.1 (if the agent has collected platinum). By
contrast, violating the prescribed order, failing to reach the
marketplace, or stepping onto a trap results in no reward for
the agent. For the label sequence (∅, {E}, ∅, {P}, ∅, ∅, {M})
(from Fig. 1), the machine A will produce the reward se-
quence (0, 0, 0, 0, 0, 0, 1).

Note, however, that the RM in Fig. 2a fails to capture the
stochastic nature of rewards in the Mining example, which

1We use propositional formulas to succinctly describe sets of
labels. For instance, the formula p∨q over P = {p, q} corresponds
to the set {{p}, {q}, {p, q}}.

E, 0

P, 0 G, 0

M, 1 M, 1.1

T, 0

vI

v1

v2 v3

vT

(a) RM: rewards are real num-
bers.

E, U([0, 0])

P, U([0, 0]) G, U([0, 0])

M, U([0.8, 1.2]) M, U([0.9, 1.3])

T, U([0, 0])

vI

v1

v2 v3

vT

(b) SRM: rewards are proba-
bility distributions.

Figure 2: Classical reward machine for the mining example
(left) and stochastic reward machine (right). Transitions are
labeled with input-output pairs, where labels are given by
propositional formulas encoding subsets of 2P . All states
have a transition to vT with output 0 on reading T (trap)
(only depicted for v1). All remaining, missing transitions are
self-loops with output 0.

stems from varying purity of the ore and market fluctua-
tions. This problem arises from an intrinsic property of re-
ward machines: they only allow outputs to be real numbers
and, hence, can only encode deterministic reward functions.
This observation shows that reward machines, as currently
defined and used in the literature, cannot capture the com-
mon phenomenon of noisy rewards! In the next section, we
show how to generalize the model of reward machines in
order to overcome this limitation.

3 Stochastic Reward Machines
To capture stochastic, non-Markovian reward functions, we
introduce the novel concept of stochastic reward machines.
Definition 2. A stochastic reward machine (SRM) A =
(V, vI , 2

P , O, δ, σ) is defined by a finite, nonempty set V of
states, an initial state vI ∈ V , an input alphabet 2P , a (de-
terministic) transition function δ : V × 2P → V , an output
alphabet O which is a finite set of cumulative distribution
functions (CDFs), and and output function σ : V ×2P → O.
We define the size of A, denoted as |A|, to be |V | (i.e., the
cardinality of the set V).

To define the semantics of a SRM, let s0a1s1 . . . aksk be
a trajectory of an RL episode and ℓ1 . . . ℓk the corresponding
label sequence with ℓi+1 = L(si, ai+1, si+1) for each i ∈
{0, . . . , k − 1}. The run of a SRM A on the label sequence
ℓ1 . . . ℓn is then a sequence v0ℓ1F1v1 . . . vn−1ℓnFnvn where
vi+1 = δ(vi, ℓi+1) and Fi = σ(vi, ℓi+1) for all i ∈
{0, . . . , k−1}. The sequence F1 . . . Fk of CDFs is now used
to determine the rewards that the agent receives: for each
i ∈ {0, . . . , k − 1}, the CDF Fi is sampled and the result-
ing reward ri ∈ R is returned. This process results in a pair
(λ, ρ) with λ = ℓ1 . . . ℓk and ρ = r1 . . . rk, which we call a
trace.

We will often refer to SRM’s output by the cor-
responding probability distribution. We focus on
continuous but bounded probability distributions,
{D1([a1, b1]), . . . , Dn([an, bn])} where n ∈ N and
Di([a, b]) is a distribution over the interval [a, b]. It is not
hard to see that the classical reward machines are a special

6431

case of Definition 2: one just has to set ai = bi for each
i ∈ {1, . . . , n}, which will result in probability distributions
that assign probability 1 to a single real number.

Fig. 2b shows an SRM B for the mining example. Note
the difference to the classical RM of Fig. 2a: the transi-
tions now output probability distributions instead of real
values (non-trivial uniform distributions are on transitions
from v2 to vT and from v3 to vT). This difference al-
lows us to capture the noise in the rewards of the exam-
ple. For example, the label sequence of our running ex-
ample (∅, {E}, ∅, {P}, ∅, ∅, {M}) will be transduced to a se-
quence of distributions. Sampling these distributions pro-
duces different reward sequences (e.g., (0, 0, 0, 0, 0, 0, 0.95)
and (0, 0, 0, 0, 0, 0, 1)).

Toro Icarte et al. introduced a version of Q-learning for
reward machines called QRM, which assumes that the re-
ward machine outputs deterministic rewards. In the follow-
ing, we examine if the guarantees of QRM can be retained
when working with stochastic reward machines.

3.1 QRM With Stochastic Reward Machines
In addition to specifying a learning task, reward machines
help with the learning process itself. QRM assumes knowl-
edge of a reward machine representation of environment re-
ward and splits the Q-function update over all RM states by
using transition outputs in lieu of empirical rewards.

For an MDP transition (s, a, s′) with label ℓ,
QRM executes Q-function updates Qv(s, a)

α←
r + γmaxa′ Qv′(s′, a′) for each reward machine state
v, with v′ being the succeeding state, α ∈ R the learning
rate, and r = σ(v, ℓ) the reward due to reading label ℓ in
state v. These updates are equivalent to regular Q-learning
updates in the cross-product of the original MDP and the
reward machine. The reward function is Markovian with
respect to the resulting cross-product decision process.
As Q-learning also converges correctly for a stochastic
Markovian reward, it is easy to see that QRM can find
the optimal policy induced by an SRM by using samples
r̂ ∼ σ(v, ℓ) in the update rule.

We also remark that SRMs allow for a relaxed notion of
equivalence. As we will show in the following lemma, it is
not necessary for two SRMs to be exactly equal in order to
induce the same optimal policy. We generalize the notion of
exact functional equivalence (that is necessary for RMs) into
the equivalence in expectation.
Definition 3. SRMs A and B are equivalent in expectation
(A ∼E B) if for every label sequence λ = ℓ1ℓ2 . . . ℓk we
have E[A(λ)i] = E[B(λ)i] for every 1 ≤ i ≤ k, that is if
they output sequences of CDFs with equal expected values
(where A(λ)i refers to the i-th CDF in the output sequence
A(λ)).

Lemma 1 can simplify representation and inference of
SRMs, allowing the algorithm to rely only on the expected
values of the transitions in the inferred SRM.
Lemma 1. If A = (V, vI , 2

P , O, δ, σ) and B =
(V ′, vI

′, 2P , O′, δ′, σ′) are equivalent in expectation then
they induce the same optimal policy over the same environ-
ment.

Now that it has been established that learning the opti-
mal policy using stochastic reward machines is viable, the
remaining question is whether one can drop the assumption
that knowledge of the environment reward is accessible, and
learn an SRM representation of it in conjunction with the
policy (instead of assuming it to be given).

4 Inferring SRMs
In this section, we show how to infer SRMs from data ob-
tained through the agent’s exploration. In Section 4.1, we
present a seemingly appealing baseline algorithm, and we
explain its weaknesses. We follow it by proposing SRMI
(SRM inference) as a better approach in Section 4.2.

Both algorithms intertwine RL and learning of SRMs by
starting with an initial hypothesis SRM and

(1) running QRM which generates a sequence of traces, and
(2) if there are traces contradicting the current hypothesis,

inferring a new one.
The steps repeat with the goal of recovering an SRM that

captures the environment reward and using it to learn the
optimal policy. QRM is performed in conjunction with the
latest hypothesis. Traces which contradict the hypothesis are
called counterexamples.

Due to Lemma 1, the task is simplified to finding an SRM
that is merely equivalent in expectation with environment
rewards (instead of agreeing on exact distributions). We as-
sume that a bound on noise dispersion ϵc > 0 is known (e.g.,
sensors come with pre-specified measurement error toler-
ance). Definition 4 uses the ϵc parameter to formalize the
notion of consistency with a trace.
Definition 4. A trace (λ, ρ) = (ℓ1ℓ2 . . . ℓk, r1r2 . . . rk) is
ϵc-consistent with an SRM H, which outputs a sequence of
distributions H(λ) = d1d2 . . . dk if for all 1 ≤ i ≤ k we
have |ri − E[di]| ≤ ϵc, i.e. if all of the observed rewards ri
are plausible samples fromH.

SRMI can only recover an SRM representation of a noisy
environment reward that meets an additional requirement,
which we formalize in Assumption 1. Informally, the as-
sumption requires the noise from one reward distribution not
to fully conceal the signal of a different one (unless they
share means). We are convinced this requirement is met in a
large class of practical, real-world scenarios.
Assumption 1. Let O = {D1([a1, b1]), . . . , Dn([an, bn])}
be the output alphabet of the environment SRM. Let ϵc =
maxi{bi − ai}/2 be the noise dispersion bound known to
the agent. We then assume that any two output distributions
that can be covered with an ϵc-interval must have equal ex-
pectations: for all 1 ≤ i, j ≤ n and µ ∈ R we have
[ai, bi] ∪ [aj , bj] ⊆ [µ − ϵc, µ + ϵc] =⇒ E[D([ai, bi])] =
E[D([aj , bj])].

This assumption is satisfied in the Mining example.
The set {U([0.1, 0.2]), U([0, 1])} breaks Assumption 1: ϵc-
intervals cannot distinguish these distributions, and they dif-
fer in expected values so they must be distinguished. The
set {U([0.1, 0.9]), U([0, 1])} respects it, and distinguishing
these distributions is unnecessary as they have equal expec-
tations.

6432

4.1 Baseline Algorithm
One may be tempted to repurpose existing techniques for
inferring reward machines from a collection of traces. There
are two important obstacles:

1. Traces may be prefix-inconsistent: during exploration,
the agent may encounter traces (ℓ1ℓ2 . . . ℓm, r1r2 . . . rm)
and (ℓ′1ℓ

′
2 . . . ℓ

′
n, r

′
1r

′
2 . . . r

′
n) s.t. for some 1 ≤ i ≤

min{m,n} we have ℓ1 . . . ℓi = ℓ′1 . . . ℓ
′
i but r1 . . . ri ̸=

r′1 . . . r
′
i. The consequence is that no reward machine can

capture both traces.
2. Even if a collection of traces where noise is present is

prefix-consistent, the (inferred) reward machine will tend
to be impractically large because it will overfit noisy data.

The baseline algorithm solves these problems by obtain-
ing multiple samples for each trace in the counterexample
set, and producing estimates for transition means before in-
ferring the structure of the reward machine. Starting with an
initial hypothesis the following steps are repeated:

(1) run QRM which generates a sequence of traces
(2) when a counterexample is encountered, pause QRM and

replay its trajectory until enough samples are collected
(3) preprocess the counterexample set so that multiple sam-

ples collected in (2) are collapsed into estimates for en-
vironment reward means

(4) use the deterministic RM inference method by Xu et al.
(2020) to infer the new minimal consistent hypothesis

As knowledge of environment SRM structure is not as-
sumed, it is necessary to sample traces (instead of indi-
vidual transitions). The number of samples required in (2)
is determined from ϵc and an additional parameter for the
minimal distance between two different transition means in
the environment SRM. The preprocessing in (3) ensures (up
to a confidence level) that different estimates for the same
means are aggregated into one, and the result respects ϵc-
consistency with the original sample set.

This approach seems to eliminate the two issues presented
by stochastic rewards: since every prefix is sampled many
times and then averaged and aggregated, there can be no
prefix inconsistencies. Furthermore, aggregation leaves little
room for overfitting noise. However, the agent must be able
to sample traces multiple times on demand. As we show in
section 5, this is costly, and sometimes even impossible.

4.2 SRMI
In contrast to the baseline algorithm, SRMI uses counterex-
amples to improve hypotheses immediately by relying on a
richer constraint solving method that is able to encode ϵc-
consistency with the counterexample set directly. This re-
moves the need for replaying trajectories.

As before, the task for the algorithm is to recover a min-
imal SRM that is equivalent in expectation to the true envi-
ronment one, and use it to learn the optimal policy. Starting
with an initial hypothesis SRM, the following steps are re-
peated:

(1) Run QRM and record all traces in a set A (Lines 5 to 6
in Algorithm 1).

Algorithm 1: SRMI
1 Initialize SRMH with a set of states V ;
2 Initialize a set of q-functions Q = {qv|v ∈ V };
3 Initialize X = ∅ and A = ∅;
4 for episode n = 1, 2, . . . do
5 (λ, ρ,Q)← QRM episode(H, Q);
6 add (λ, ρ) to A;
7 ifH not ϵc-consistent with (λ, ρ) then
8 add (λ, ρ) to X;
9 if found SRM Z isomorphic withH and

ϵc-consistent with X then
10 H′ ← Z;
11 else
12 inferH′ from X;
13 end
14 H ← Estimates (H′, A);
15 reinitialize Q;
16 end
17 end

(2) When a counterexample is encountered, add it to the
set X and attempt to make the current hypothesis ϵc-
consistent with X by shifting its outputs (Lines 7 to 10).

(3) If Step (2) failed, solve a constraint problem to infer the
new hypothesis (Line 12).

(4) Compute the final mean estimates to correct outputs of
the inferred hypothesis based on empirical rewards in A
(Line 14).

The algorithm generates a sequence of hypothesis SRMs
H1H2 · · · and a sequence of counterexample sets X1X2 · · ·
(with Xi ⊂ Xj for all i < j) where Hj is consistent with
Xj−1 (and thus every Xi for 1 ≤ i ≤ j). For simplicity,
we assume noise distributions are symmetric, but SRMI can
easily be extended to cover asymmetric ones (discussed in
the appendix). Hypothesis outputs are in the form D([µ −
ϵc, µ+ ϵc]), where D([a, b]) is a symmetric distribution over
an interval, and µ ∈ R is the estimated mean of a particular
transition. Two SRMs are structurally isomorphic (Line 9)
if their underlying automata without the reward output are
isomorphic in a graph-theoretic sense.

There are many ϵc-consistent SRMs that can be returned
by the constraint solving method in Line 12, not necessarily
having the best estimates for transition means. To correct for
this, the function Estimates assigns sets of observed rewards
to each hypothesis transition by simulating its runs on traces
in A and uses them to compute the final estimates.

Our algorithm categorized every counterexample as either
Type 1 or Type 2. A counterexample (λ, ρ) is of Type 1 with
respect toHi if there exists a graph-isomorphic SRM Z that
is consistent with (λ, ρ) and Xi−1 (otherwise it is Type 2).
Then Hi+1 = Z and Xi = Xi−1 ∪ {(λ, ρ)}. Intuitively the
current hypothesis can be ”fixed” to become consistent with
Type 1 counterexamples by shifting outputs without chang-
ing the structure of the SRM. We now discuss how our algo-
rithm handles counterexamples of Type 2.

6433

Inference of Stochastic Reward Machines When a new
Type 2 counterexample is encountered (i.e., outputs in the
current hypothesis cannot be shifted to make it consistent),
SRMI infers a new hypothesis from the counterexamples,
effectively solving the following task.

Task 1. Given a set of traces X and dispersion ϵc, produce
a minimal SRM that is ϵc-consistent with all traces in X .

We accomplish Task 1 by encoding it as a constraint prob-
lem in real arithmetic. Our encoding is an extension of the
encoding used in JIRP algorithm (Xu et al. 2020). Minimal-
ity is ensured by starting from machines of size n = 1,
increasing the size by 1 each time the constraint problem
proves unsatisfiable, and returning the first successful result.
For a given size, we use a collection of propositional and real
variables from which one can extract an SRM, and constrain
them so they (1) encode a valid SRM and (2) ensure that the
SRM is consistent with the set X . More precisely, for size
n ∈ N \ {0}, parameter ϵc, and counterexample set X , we
construct a formula ΦX,ϵc

n with the following two properties:

(a) ΦX,ϵc
n is satisfiable iff there exists an SRM H of size n

that is ϵc-consistent with every trace in X .
(b) Every satisfying assignment for variables in ΦX,ϵc

n con-
tains sufficient information to construct a consistent SRM
of size n.

The formula ΦX,ϵc
n is built using the following variables:

• dp,ℓ,q are propositional variables, true iff δ(p, ℓ) = q

• ov,ℓ are real variables that match the value of E[σ(v, ℓ)]
• xλ,v are propositional variables encoding machine runs,

true if the SRM arrives in state v upon reading label se-
quence λ

We use these variables to define constraints (1) - (4). For-
mula 1 requires that at the beginning (after an empty se-
quence), the SRM is in the initial state. Formula 2 requires
that the SRM transitions to exactly one state upon seeing a
label.

The remaining two formulas connect the SRM to the set
X (we use symbol Pref (X) for the set of prefixes of traces
in X). Formula 3 connects seen prefixes to the transition
function captured by variables dp,ℓ,q. Finally, Formula 4 en-
sures ϵc-consistency.

xϵ,vI ∧
∧

v∈V \{vI}

¬xϵ,v (1)

∧
p∈V

∧
ℓ∈2P

[[∨
q∈V

dp,ℓ,q

]
∧
[∧
q,q′∈V
q̸=q′

¬dp,ℓ,q ∨ ¬dp,ℓ,q′
]]

(2)

∧
(λℓ,ρr)∈Pref (X)

∧
p,q∈V

(xλ,p ∧ dp,ℓ,q)→ xλℓ,q (3)

∧
(λℓ,ρr)∈Pref (X)

∧
v∈V

xλ,v → |ov,ℓ − r| ≤ ϵc (4)

The formula ΦX,ϵc
n is defined as a conjunction of formulas

(1) - (4). One can easily see that properties (a), (b) hold for

Algorithm 2: Estimates

1 Initialize sets r(v, ℓ) for states v ∈ V and ℓ ∈ 2P ;
2 Initialize empty output function σ′;
3 for (λ, ρ) ∈ A do
4 Skip (λ, ρ) if not ϵc-consistent withH;
5 Simulate a run ofH on λ disregarding its outputs

and record rewards from ρ in corresponding
r(v, ℓ) sets;

6 for v ∈ V , ℓ ∈ 2P do
7 µ′ ← (max r(v, ℓ) + min r(v, ℓ))/2;
8 Set σ′(v, ℓ) = U [µ′ − ϵc, µ

′ + ϵc];
9 end

10 end
11 ReturnH with σ′ as the output function;

ΦX,ϵc
n as there is a bijection between assignments for which

ΦX,ϵc
n is true and consistent SRMs (modulo distributions).
LetH′ be the SRM constructed from a model that satisfies

the above constraints, with σH′(v, ℓ) = D([ov,ℓ − ϵc, ov,ℓ +
ϵc]). For every (λ, ρ) ∈ X of length k and 1 ≤ i ≤ k, due to
(4), we have |E[H′(λ)i]− ρi| < ϵc and soH′ is the new ϵc-
consistent hypothesis. WhenH′ is constructed by correcting
for a type 1 counterexample, it is consistent by definition.

Correcting Output Distributions in Inferred SRMs As
there can be many SRMs ϵc-consistent with X that are not
equivalent in expectation, Task 1 need not have a unique
solution. To illustrate how nonuniqueness can prohibit cor-
rect convergence of hypothesis SRMs, let X contain sam-
ples from a single-state SRM T with two possible outputs,
D([0, 1]) on ℓ1 and D([10, 100]) on ℓ2 (ϵc = (100−10)/2 =
45). For α ∈ R let Hα be a single-state SRM with two pos-
sible outputs, D([α − 45, α + 45]) on ℓ1 and D([10, 100])
on ℓ2. Then for all −44 ≤ α, β ≤ 45 (α ̸= β) we have
Hα ̸∼E Hβ , yet both are ϵc-consistent with X . Thus SRMI
must choose solutions to Task 1 so that any generated hy-
pothesis sequence will converge to the same limit T .

This is done in the Estimates step of Algorithm 1, which
simulates runs ofH′ (the inferred solution to Task 1) on con-
sistent traces in A, yielding final estimates of means based
on empirical rewards (shown in Algorithm 2). The need to
filter for consistency is due to the fact that the set of SRMs
consistent with A is often strictly smaller than the set of
those consistent with X . As X grows to capture more in-
formation about environment reward, the need for filtering
recedes.

Using the midrange estimator for outputs in H ensures it
remains consistent with the counterexamples. As new Type 1
counterexamples will always be found eventually, Estimates
runs infinitely often which guarantees convergence to cor-
rect means.

Convergence to an Optimal Policy
Theorem 1. Given Assumption 1 on the output alphabet of
the environment SRM and an ϵ-greedy exploration strategy,
SRMI converges in the limit to an SRM that is equivalent in
expectation to the true environment one.

6434

0 0.5 1 1.5 2 2.5 3

·106

0

0.2

0.4

0.6

0.8

1

steps

SRMI
baseline
JIRP

(a) Stochastic rewards

0 0.5 1 1.5 2 2.5 3

·106

0

0.2

0.4

0.6

0.8

1

steps

SRMI
baseline
JIRP

(b) Non-stochastic rewards

Figure 3: Results on the mining environment

The proof of Theorem 1 follows similar reasoning to the
convergence proof for JIRP. We first establish that SRMI
does not revisit structurally isomorphic SRMs. As there are
only finitely many such structures for a fixed maximal size,
SRMI ”settles” in a final structure. Then Assumption 1 guar-
antees that Estimates will converge to the correct expecta-
tions.
Corollary 1. SRMI converges to an optimal policy in the
limit.

Corollary 1 follows from Theorem 1 due to Lemma 1,
which guarantees that two SRMs that are equivalent in ex-
pectation induce the same optimal policy, and finally due
to the fact that QRM with stochastic reward machines con-
verges to an optimal policy.

5 Results
To assess the performance of SRMI, we have implemented
a Python 3 prototype based on code by Toro Icarte et al.
(2018), which we will make publicly available (also see
the supplementary material). To assess its performance, we
compare SRMI to the baseline algorithm and the JIRP algo-
rithm for classical reward machines on two case studies: the
mining example from Section 2 and an example inspired by
harvesting (which we describe shortly).

Our primary metric is the cumulative reward averaged
over the last 100 episodes. We conducted 10 independent
runs for each algorithm, using Z3 (de Moura and Bjørner
2008) as the constraint solver. All experiments were con-
ducted on a 3 GHz machine with 1.5 TB RAM.

Mining Fig. 3a shows the comparison on the Mining envi-
ronment. The interquartile ranges for the reward are drawn

H ∧ B, U([0, 0])

S, U([1.6, 2.4])

¬ H, U([−1.2,−0.8])

vI v1 v2 vM

vG

vB

(a) SRM: all missing transitions are
self-loops with reward 0

0.1

0.1
0.8

0.8

0.1

0.1

0.8

0.1

0.1

G

M

B

(b) MDP

Figure 4: Harvest environment

0 0.5 1 1.5 2 2.5

·104

−40

−30

−20

−10

0

10

steps

SRMI
baseline
JIRP

(a) Stochastic rewards

0 0.5 1 1.5 2 2.5

·104

−40

−30

−20

−10

0

10

steps

SRMI
baseline
JIRP

(b) Non-stochastic rewards

Figure 5: Results on the harvest environment

as shaded areas, while the medians are drawn as solid lines.
For this case study, we have set the baseline algorithm to
replay 20 traces per counterexample. As can be seen from
the figure, SRMI converges faster to an optimal policy (re-
ward 1) than both the baseline algorithm and JIRP. The latter
times out because it is unable to deal the noise properly and
tries to infer larger and larger RMs.

Fig. 3b compares SRMI, baseline, and JIRP on a non-
stochastic version of the Mining environment using the re-
ward machine of Fig. 2a to define the rewards. All algo-
rithms perform equally well. Thus, SRMI does not incur a
runtime penalty, even when used in non-stochastic settings.

Harvest The Harvest environment represents a crop-
farming cycle. The agent is rewarded for performing a se-
quence of actions, P, W, H, S (plant, water, harvest, sell),
and penalized for breaking it. MDP states G, M, B (good,
medium, bad) transition as given by the dynamics in Fig. 4b.
The labeling function L(s, a, s′) returns the transition, ef-
fectively making trajectories s0a1s1 . . . aksk their own la-
bel sequences. The reward mean depends on the MDP state
during the harvest action as shown in Fig. 4a.

The Harvest example is well suited for showing the ben-
efits of SRMI over the baseline, because the probability that
the agent will repeatedly see a given trajectory is very low.

Fig. 5a shows the comparison on the Harvest environ-
ment. SRMI was successful in learning the optimal policy,
while the baseline algorithm got stuck in collecting the re-
quired number of samples (5), and JIRP again timed out.
In a modified Harvest environment, without noise, the algo-
rithms do equally well (Fig. 5b).

6 Conclusion
In this work we introduced Stochastic reward machines as
a general way of representing non-Markovian stochastic re-
wards in RL tasks, and the SRMI algorithm that is able to in-
fer an SRM representation of the environment reward based
on traces, and use it to learn the optimal policy. We have
shown SRMI is an improvement over prior methods.

References
Andreas, J.; Klein, D.; and Levine, S. 2017. Modular
multitask reinforcement learning with policy sketches. In
ICML’2017, 166–175. JMLR. org.
Bacchus, F.; Boutilier, C.; and Grove, A. J. 1996. Rewarding

6435

Behaviors. In AAAI/IAAI, Vol. 2, 1160–1167. AAAI Press /
The MIT Press.
Brafman, R. I.; Giacomo, G. D.; and Patrizi, F. 2018.
LTLf/LDLf Non-Markovian Rewards. In AAAI, 1771–1778.
AAAI Press.
Camacho, A.; Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.;
and McIlraith, S. A. 2019. LTL and Beyond: Formal Lan-
guages for Reward Function Specification in Reinforcement
Learning. In IJCAI, 6065–6073. ijcai.org.
de Moura, L. M.; and Bjørner, N. 2008. Z3: An Efficient
SMT Solver. In TACAS, volume 4963 of Lecture Notes in
Computer Science, 337–340. Springer.
Everitt, T.; Krakovna, V.; Orseau, L.; and Legg, S. 2017. Re-
inforcement Learning with a Corrupted Reward Channel. In
IJCAI, 4705–4713. ijcai.org.
Furelos-Blanco, D.; Law, M.; Russo, A.; Broda, K.; and Jon-
sson, A. 2020. Induction of Subgoal Automata for Rein-
forcement Learning. In AAAI, 3890–3897. AAAI Press.
Gaon, M.; and Brafman, R. I. 2020. Reinforcement Learning
with Non-Markovian Rewards. In AAAI, 3980–3987. AAAI
Press.
Hasanbeig, M.; Jeppu, N. Y.; Abate, A.; Melham, T.; and
Kroening, D. 2021. DeepSynth: Automata Synthesis for Au-
tomatic Task Segmentation in Deep Reinforcement Learn-
ing. In AAAI, 7647–7656. AAAI Press.
Icarte, R. A. T.; Waldie, E.; Klassen, T.; Valenzano, R.; Cas-
tro, M. P.; and McIlraith, S. A. 2019. Learning Reward Ma-
chines for Partially Observable Reinforcement Learning. In
NeurIPS.
Jothimurugan, K.; Alur, R.; and Bastani, O. 2019. A Com-
posable Specification Language for Reinforcement Learning
Tasks. In NeurIPS, 13021–13030.
Neary, C.; Xu, Z.; Wu, B.; and Topcu, U. 2020. Reward ma-
chines for cooperative multi-agent reinforcement learning.
arXiv preprint arXiv:2007.01962.
Neider, D.; Gaglione, J.; Gavran, I.; Topcu, U.; Wu, B.; and
Xu, Z. 2021. Advice-Guided Reinforcement Learning in a
non-Markovian Environment. In AAAI, 9073–9080. AAAI
Press.
Romoff, J.; Henderson, P.; Piché, A.; François-Lavet, V.; and
Pineau, J. 2018. Reward Estimation for Variance Reduc-
tion in Deep Reinforcement Learning. In CoRL, volume 87
of Proceedings of Machine Learning Research, 674–699.
PMLR.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Toro Icarte, R.; Klassen, T. Q.; Valenzano, R. A.; and McIl-
raith, S. A. 2018. Using Reward Machines for High-Level
Task Specification and Decomposition in Reinforcement
Learning. In ICML, volume 80 of Proceedings of Machine
Learning Research, 2112–2121. PMLR.
Toro Icarte, R.; Klassen, T. Q.; Valenzano, R. A.; and
McIlraith, S. A. 2020. Reward Machines: Exploiting Re-
ward Function Structure in Reinforcement Learning. CoRR,
abs/2010.03950.

Velasquez, A.; Beckus, A.; Dohmen, T.; Trivedi, A.; Topper,
N.; and Atia, G. 2021a. Learning Probabilistic Reward Ma-
chines from Non-Markovian Stochastic Reward Processes.
arXiv:2107.04633.
Velasquez, A.; Bissey, B.; Barak, L.; Beckus, A.; Alkhouri,
I.; Melcer, D.; and Atia, G. K. 2021b. Dynamic Automaton-
Guided Reward Shaping for Monte Carlo Tree Search. In
AAAI, 12015–12023. AAAI Press.
Wang, J.; Liu, Y.; and Li, B. 2020. Reinforcement Learning
with Perturbed Rewards. In AAAI, 6202–6209. AAAI Press.
Xu, Z.; Gavran, I.; Ahmad, Y.; Majumdar, R.; Neider, D.;
Topcu, U.; and Wu, B. 2020. Joint Inference of Reward Ma-
chines and Policies for Reinforcement Learning. In ICAPS,
590–598. AAAI Press.

6436

