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Abstract
Meta-learning models transfer the knowledge acquired from
previous tasks to quickly learn new ones. They are trained on
benchmarks with a fixed number of data points per task. This
number is usually arbitrary and it is unknown how it affects
performance at testing. Since labelling of data is expensive,
finding the optimal allocation of labels across training tasks
may reduce costs. Given a fixed budget of labels, should we
use a small number of highly labelled tasks, or many tasks
with few labels each? Should we allocate more labels to some
tasks and less to others? We show that: 1) If tasks are homo-
geneous, there is a uniform optimal allocation, whereby all
tasks get the same amount of data; 2) At fixed budget, there
is a trade-off between number of tasks and number of data
points per task, with a unique solution for the optimum; 3)
When trained separately, harder task should get more data, at
the cost of a smaller number of tasks; 4) When training on
a mixture of easy and hard tasks, more data should be allo-
cated to easy tasks. Interestingly, Neuroscience experiments
have shown that human visual skills also transfer better from
easy tasks. We prove these results mathematically on mixed
linear regression, and we show empirically that the same re-
sults hold for few-shot image classification on CIFAR-FS and
mini-ImageNet. Our results provide guidance for allocating
labels across tasks when collecting data for meta-learning.

Introduction
Deep learning (DL) models require a large amount of data
in order to perform well, when trained from scratch, but la-
beling data is expensive and time consuming. An effective
approach to avoid the costs of collecting and labeling a large
amount of data is transfer learning: train a model on one big
dataset, or a few related datasets that are already available,
and then fine-tune the model on the target dataset, which can
be of much smaller size (Donahue et al. 2014). In this con-
text, there has been a recent surge of interest in the field of
meta-learning, which is inspired by the ability of humans
to learn how to learn (Hospedales et al. 2020). A model is
meta-trained on a large number of tasks, each characterized
by a small dataset, and meta-tested on the target dataset.

The number of data points per task is usually set to
an arbitrary number in standard meta-learning benchmarks.
For example, in few-shot image classification benchmarks,
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such as mini-ImageNet (Vinyals et al. 2017), (Ravi and
Larochelle 2017) and CIFAR-FS (Bertinetto et al. 2019),
each task has five classes (5-way) and either one or five im-
ages per class is used during testing (1-shot or 5-shots). Dur-
ing training, the number of data points per class is usually set
to an arbitrary value, and it remains unclear how this number
should be set to achieve the best testing performance. We fo-
cus on training, rather than testing data, because the former
can be optimized by following specific procedures for data
partitioning and collection.

Intuitively, one would think that the performance always
improves with the number of training data points. However,
if the total number of labels is limited, is it better to have
a large number of tasks with little data in each task, or a
smaller number of highly labelled tasks? Should some tasks
be given more labels than other tasks? The answers to these
questions remain unknown, although they are important to
inform the design of new meta-learning benchmarks and the
application of meta-learning algorithms to real problems, es-
pecially given that data labelling is costly. Hence, we address
these questions for the first time, for a specific meta-learning
algorithm: MAML (Finn, Abbeel, and Levine 2017). Our
contributions are:

• We introduce the problem of optimizing data allocation
in meta-learning, with a fixed budget of total data points
to distribute across training tasks. We show that, when
tasks are homogeneous, the optimal solution is distribut-
ing data uniformly across tasks: all tasks get the same
amount of data. This setting is considered in most meta-
learning problems (See ’The data allocation problem’
section , Theorem 1).
• When data is distributed uniformly across tasks, we show

that the trade-off between number of tasks and number of
data points per task, at fixed budget, has a unique solution
for the optimum for large budgets (section ’Solution of
the uniform allocation’, Theorems 2, 3, Figures 1, 2).
• Next, we consider the problem of two sets of tasks, easy

and hard. When trained separately, we show that hard
tasks need more data (per task) than easy tasks. While
it is intuitive that hard tasks require more data for train-
ing, we emphasize that the total number of data points is
fixed by the given budget, therefore the number of tasks
is smaller (section ’Separate training’, Figure 3).
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• Finally, we study the problem of training a non-
homogeneous mixture of easy and hard tasks. In contrast
to when they are trained separately, we show that better
performance is obtained by allocating more data to easy
tasks. Our interpretation is that, as long as learning trans-
fers from easy to hard tasks, it is better to train more on
the former since they are easier to learn. Interestingly,
human visual skills also transfer better from easy tasks
(Ahissar and Hochstein 1997) (section ’Joint training’ ,
Figure 4).

We prove results mathematically on mixed linear regres-
sion, and confirm those results empirically on few-shot im-
age classification on CIFAR-FS and mini-ImageNet (code in
the supplementary material).

Related Work
In the context of meta-learning and mixed linear regression,
the work of (Kong et al. 2020) asks whether more tasks with
a small amount of data can compensate for a lack of tasks
with big data. However, they do not address the problem
of finding the optimal allocation of data for a fixed bud-
get, which is the main scope of our work. The work of
(Shekhar, Javidi, and Ghavamzadeh 2020) studies the prob-
lem of allocating a fixed budget of data points to a finite set
of discrete distributions. In contrast to our work, they do not
study the meta-learning problem and their data has no la-
bels. Similar to us, a few theoretical studies looked at the
problem of mixed linear regression in the context of meta-
learning ((Bernacchia 2021), (Denevi et al. 2018), (Bai et al.
2021), (Tripuraneni, Jin, and Jordan 2020), (Du et al. 2020),
(Collins, Mokhtari, and Shakkottai 2020), (Gao and Sener
2020)). However, none of these studies look into the prob-
lem of data allocation, which is our main focus.

An alternative approach to avoid labelling a large amount
of data is active learning, where a model learns with fewer
labels by accurately selecting which data to learn from (Set-
tles 2010). In the context of meta-learning, the option of im-
plementing active learning has been considered in a few re-
cent studies (Bachman, Sordoni, and Trischler 2017), (Gar-
cia and Bruna 2018), (Kim et al. 2018), (Finn, Xu, and
Levine 2019), (Requeima et al. 2020). However, they con-
sidered the active labeling of data within a given task, for
the purpose of improving performance in that task only. In-
stead, we ask how data should be distributed across tasks.

In the context of recommender systems and text classifica-
tion, a few studies considered whether labeling a data point,
within a given task, may increase performance not only in
that task but also in all other tasks. This problem has been re-
ferred to as multi-task active learning (Reichart et al. 2008),
(Zhang 2010), (Saha et al. 2011), (Harpale 2012), (Fang
et al. 2017), or multi-domain active learning (Li et al. 2012),
(Zhang et al. 2016). However, none of these studies consider
the problem of meta-learning with a fixed budget. A few
studies have looked into actively choosing the next task in a
sequence of tasks (Ruvolo and Eaton 2013), (Pentina, Shar-
manska, and Lampert 2015), (Pentina and Lampert 2017),
(Sun, Cong, and Xu 2018), but they do not look at how to
distribute data across tasks.

Meta-Learning
The reader may refer to (Hospedales et al. 2020) for a gen-
eral introduction to meta-learning with neural networks. In
this work, we consider the cross-task setting, where we have
a distribution of tasks τ ∼ p(τ) and a distribution of data
points for a given task Dτ ∼ p(D|τ). Each task has a loss
function L(θ;D) that depends on a set of parameters θ and
dataD. Here we assume that the loss has the same functional
form across tasks (e.g. square loss if they are all regression
tasks, cross-entropy if they are all classification tasks). The
goal of meta-learning is minimizing the mean of the loss
across tasks and data.

In the meta-training phase, m tasks (τi)
m
i=1 are sam-

pled from p(τ) and, for each task, nti training data points

Dti = (xtij , y
t
ij)

nt
i
j=1 and nvi validation data points Dvi =

(xvij , y
v
ij)

nv
i
j=1, are sampled independently from the same dis-

tribution p(D|τi). We assume that the data is given by input
x - label y pairs. The meta-training loss is a function of the
data and the meta-parameters ω, is equal to

Lmeta
(
ω;Dt,Dv

)
=

1

m

m∑
i=1

1

nvi

nv
i∑

j=1

L
(
θ(ω,Dti);xvij , yvij

)
(1)

The parameters are adapted to each task i by using the trans-
formation θ(ω,Dti). Different meta-learning algorithms cor-
respond to a different choice of this transformation. Here we
use MAML (Finn, Abbeel, and Levine 2017), which per-
forms a fixed number of stochastic gradient descent steps
with respect to the data for each task. With a single gradient
step, that is equal to

θ(ω,Dti) = ω − αi
nti

nt
i∑

j=1

∇ωL
(
ω;xtij , y

t
ij

)
(2)

where αi is the learning rate for task i. This equation cor-
responds to a full-batch update, employing all the data for
a given task, but mini-batch gradient updates can be per-
formed as well. A number k of gradient steps may be used
instead of one. This step is referred to as inner loop of meta-
learning.

The loss in Eq.(1) is minimized with respect to the meta-
parameters ω, namely

ω?
(
Dt,Dv

)
= arg min

ω
Lmeta

(
ω;Dt,Dv

)
(3)

This minimum is searched by stochastic gradient descent,
using a distinct learning rate αmeta. At each gradient step,
Eq.(2) is computed for each task and the gradient of Eq.(1)
with respect to ω is taken. This step is referred to as outer
loop of meta-learning. Note that Eq.(1) includes all m tasks,
which translates into full-batch training when taking the gra-
dient. However, a mini-batch of tasks may be also drawn
from the set of m tasks at each step of the optimization.
Standard optimization procedures such as early stopping and
scheduling of the learning rate αmeta can be applied. In the
case of mixed linear regression (section ’Solution of the uni-
form allocation’ ), we solve Eq.(3) exactly by linear algebra.
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In the meta-testing phase, the test loss Ltest is computed
using the optimal value ω? and test datasets D̃t, D̃v

Ltest
(
Dt,Dv, D̃t, D̃v

)
= Lmeta

(
ω?
(
Dt,Dv

)
; D̃t, D̃v

)
(4)

The test datasets correspond to a new draw of both tasks and
data points. The values of hyperparameters m,nt, nv, α, k
for meta-testing are not necessarily the same as those used
during meta-training. The main focus of this work is opti-
mizingm,nti, n

v
i for meta-training, while they are fixed dur-

ing meta-testing. To evaluate the performance of the model
for a given choice of the hyperparameters, we compute the
average test loss, defined as

Ltest(nt1, . . . ntm, nv1, . . . nvm) = E
Dt

E
Dv

Ẽ
Dt

Ẽ
Dv

Ltest (5)

The Data Allocation Problem
We denote the number of data points per task i during meta-
training as Ni = nti + nvi , equal to the sum of training and
validation data. In all experiments we used an equal split of
training and validation, nti = nvi = ni. We assume that the
total number of data points for meta-training, referred to as
budget, is constant and equal to b =

∑m
i=1Ni = 2

∑m
i=1 ni.

This is equal to the total number of data points across all
training tasks, and is assumed fixed, while the number of
data points per task Ni are allowed to vary. We denote by n
the vector of ni values, n = (n1, . . . , nm), and define the
data allocation problem of finding the value of n such that
the average test loss is minimized

n? = arg min
n :

∑m
i=1 ni=b/2

Ltest(n1, . . . , nm) (6)

The optimal value n? is referred to as optimal allocation,
it may depend on the budget and on other hyperparameters
of the model. The optimal allocation determines which tasks
should get more or less data, for a fixed budget b and number
of tasks m. In the following theorem, we provide conditions
under which the optimal data allocation is uniform.

Theorem 1. If the test loss Ltest is invariant under permu-
tations of task allocations, i.e. permutations of its arguments
(n1, . . . , nm) then the uniform allocation n = (n, . . . , n)
with n = b

2m is a local extremum of the constrained opti-
mization problem, provided that it is non-degenerate.

Furthermore, if

Ltest
(
n1 + n2

2
,
n1 + n2

2
, n3, ..., nm

)
≤ Ltest(n1, ..., nm),

(7)
for all n1, ..., nm, subject to

∑k
i=1 ni = b

2 , then the uni-
form allocation is the global minimum of the data allocation
problem.

Proof. The proof of the first part (see Modern Purkiss prin-
ciple) is given by (Waterhouse 1983), noting that the action
of the symmetric group preserves the constraint and is ir-
reducible, while the proof of the second part (global mini-
mum) is given by (Keilson 1967).

Note that convexity of the test loss is a sufficient condi-
tion for the global minimum. We show in the ’Mixed lin-
ear regression’ section that the Purkiss principle applies
to the case of mixed linear regression with homogeneous
tasks. This result motivates, in addition to the data allocation
problem (6), the study of the uniform allocation problem,
in which the number of data points is assumed to be equal
across tasks, but now the number of tasks m is allowed to
vary. The solution of this problem is defined by

n? = arg min
n : nm=b/2

Ltest(n) (8)

In this case, the question is whether to have more data and
less tasks, or less data and more tasks, for the fixed budget
b. In the next sections, we study both problems of data al-
location and uniform allocation on mixed linear regression
and few-shot image classification on CIFAR-FS and mini-
ImageNet.

Computation of the Optimum
In the case of linear regression, we derive exact expressions
for Ltest and n? in some limiting cases. In few-shot image
classification, and in further linear regression experiments,
we estimate Ltest empirically by searching a grid of val-
ues of n. We average the test loss over multiple repetitions
with different data samples and different initial conditions
for ω. Then, we determine the mean and standard deviation
for the optimum n? by the following procedure: we gener-
ate multiple instances of test loss/accuracy vs n by sampling
uniformly from the repetitions at each value of n, we record
the optimal n? of each instance and construct a distribution
of n? across all instances. We also provide nonlinear (sinu-
soid) regression experiments in the supplementary material
of (Cioba et al. 2021).

Solution of the Uniform Allocation
In this section we consider the problem of uniform alloca-
tion, while the non-uniform case is studied in the section
’Easy vs hard tasks’ . We look at the trade-off between hav-
ing either more tasks or more data per task, for a fixed bud-
get, and we show that this problem has a unique optimum.
We study this trade-off on two problems: mixed linear re-
gression, where we compute a closed form expression for
the optimum, and few-shot image classification, where we
show empirical results.

Mixed Linear Regression
In mixed linear regression, each task is characterized by a
different linear function, and the loss is the mean squared
error:

L (θ;x, y) =
1

2

(
y − θTx

)2
(9)

where the label y is a scalar, while the input x and the
parameter θ are vectors of p components. Each task cor-
responds to a different value of the generating parameter
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Figure 1: The optimal number of data points per task is constant for large budgets: linear regression. A: Test loss vs. number of
data points per task at fixed budget (more data points imply less tasks). Dots: experimental values; Lines: theoretical prediction
Eq.(10), different lines correspond to different budgets (legend). As predicted by Theorem 2, theoretical prediction is more
accurate for larger budgets. Each curve has a unique optimum. B: Optimal number of data points per task vs. budget, the four
points correspond to the four curves in panel A. The theoretical prediction of Eq.(11) (orange line) is close to the estimated
experimental optimum (see section ’Computation of the optimum’ for its computation).

θ. Across tasks, that is distributed according to a Gaussian
θ ∼ N

(
θ0,

ν2

p Ip

)
where θ0, ν are hyperparameters, and Ip is the p×p iden-

tity matrix. The distribution of data for a given task is given
by y | x,θ ∼ N

(
θTx, σ2

)
and x ∼ N

(
0, λ2Ip

)
where σ is the label noise and λ is the input variabil-

ity. Each data point is independently drawn from this distri-
bution, for either training or validation set. We distinguish
between the case of homogeneous tasks, where all tasks
have the same values of (σ, λ), and non-homogeneous tasks,
where we allow those values to vary across tasks. In the fol-
lowing theorem, we compute an approximate expression for
the average test loss for mixed linear regression.

Theorem 2. Consider the algorithm of section (MAML
one-step) and data generated according to the mixed linear
regression model. Let

∑m
i=1 ni > p (underparameterized

model), and let ni = ni(ξ), m = m(ξ) be any functions of
order Θ(ξ) as ξ →∞. Then, the average test loss is equal to

Ltest =
σ2
r

2

(
1 +

λ4rα
2
rp

nr

)
+
λ2rhrν

2

2
+

+
λ2rhrp

2

[
m∑
i=1

λ2ihi

]−2 m∑
i=1

λ2i
ni

{

σ2
i

[
hi +

λ4iα
2
i

ni
[(ni + 1) g1i + p g2i]

]
+

+
ν2

p
λ2i [(ni + 1) g3i + p g4i]

}
+O

(
ξ−3
)

(10)

where the subscript i denotes meta-training hyperparame-
ters for task i, while the subscript r denotes meta-testing

hyperparameters. We have defined the function hi =(
1− λ2iαi

)2
+ λ4iα

2
i
p+1
ni

, and the functions g are polyno-
mials in λ2iαi with coefficients of order O(1), defined in the
appendix of (Cioba et al. 2021).

Proof. The proof is given in (Cioba et al. 2021). It provides a
generalization of the results of (Bernacchia 2021) in the case
of non-homogeneous tasks and parametric input variability.

When tasks are homogeneous (σi = σ, λi = λ) and a
fixed learning rate is used for all meta-training tasks (αi =
α), we note that the test loss (10) is permutation invariant,
thus the Purkiss principle of Theorem 1 applies. Therefore,
in the remainder of this section we consider only the case
of uniform allocation (ni = n). Non-homogeneous tasks
and non-uniform allocation are studied in the ’Easy vs hard
tasks’ section . Note also that Theorem 2 assumes an under-
parameterized model (p <

∑m
i=1 ni). For completeness, we

also study the overparameterized case in the supplement to
(Cioba et al. 2021).

Figure 1A plots the meta-test loss of mixed linear regres-
sion as a function of n for different budgets. It shows a
good agreement between the experiments and the theoreti-
cal prediction of equation (10) (see (Cioba et al. 2021) for
details). According to equation (10), the error between the-
ory and experiment is expected to be of order O

(
b−3/2

)
,

since b ∼ O
(
ξ2
)
, indeed theoretical prediction is more ac-

curate for larger budgets. As expected, test loss decreases
with budget, since more data implies better performance. We
emphasize that curves have a convex shape, implying that
there is a unique optimal value of n for each budget. While
the curves tend to flatten at large budgets, the optimum re-
mains approximately constant, as shown in Figure 1B. In
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Figure 2: The optimal number of data points per task is constant for large budgets: Few-shot image classification: A,B: CIFAR-
FS, D,E: mini-ImageNet dataset. Format is the same as of Figure 1. Curves are noisy and tend to flatten at large budgets,
but there seems to be a unique optimum for each budget value. The optimum is computed empirically as explained in the
’Computation of the optimum’ section . The optimal number of data points converges to ∼ 7 for CIFAR-FS and to ∼ 10 for
mini-ImageNet. Error bars show standard deviation.

the following theorem, we compute the unique solution of
the uniform allocation problem for mixed linear regression.

Theorem 3. Under the assumptions of Theorem 2, consider
the test loss of Equation (10) and the uniform allocation
problem in Equation (8) . Furthermore, let p = p(ξ) be a
function of order Θ(ξ) as ξ → ∞, neglect orders O

(
ξ−2
)

in Equation (10). Then, for all sufficiently small values of the
learning rate α, the uniform allocation problem has a unique
minimum, which does not depend on the budget and is given
by

n? = Cp

where the constant C is defined in the appendix of (Cioba
et al. 2021).

Proof. The proof is provided in the appendix of (Cioba et al.
2021).

This theorem implies that once the suitable error terms
in the approximation of Ltest are ignored, there is a unique
and constant optimum for the number of data points per task
at large budgets. Note that the magnitude of the error terms
does depend on the budget and the relation between n, p and
m. While the theoretical optimum does not depend on the
budget, it may depend on whether tasks are hard or easy (see

section ’Easy vs hard tasks’). Figure 1B shows the optimal
n? as a function of budget, it shows that the theoretical value
of the optimum (orange line) agrees with the experiments.

Few-Shot Image Classification
We next tested whether the results of mixed linear regression
generalize to the more interesting problem of few-show im-
age classification. In this case, the loss function is the cross-
entropy, L (θ;x, y) = −yT log (fθ(x)), where y is a one-hot
encoding of the class label, and fθ(x) is the output vector of
a neural network with parameters θ and input x. We use a
convolutional neural network commonly used with MAML
on image classification (Finn, Abbeel, and Levine 2017) (see
appendix of (Cioba et al. 2021)).

We investigate the CIFAR-FS (Bertinetto et al. 2019) and
mini-ImageNet (Vinyals et al. 2017) datasets, which are few-
shot versions of CIFAR-100 and ImageNet, respectively.
Both classification problems are 5-way: each task contains
5 classes. We refer to the number of data points per class,
which has to be multiplied by 5 to find the number of data
points per task. As in previous studies, we used 5 shots dur-
ing testing (5 data points per class), while the number of
shots during training depends on the data allocation.

In previous work (Vinyals et al. 2017), (Bertinetto et al.
2019), we note that tasks are usually re-sampled indefinitely
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Figure 3: Hard tasks prefer more data (and less tasks) when trained separately. Few shot image classification on CIFAR-FS. A:
Tasks are made harder by drawing classes within a hierarchy; B: Tasks are made harder by adding label noise. Both plots show
test accuracy versus the number of data points per class, as in Figure 2A. Each plot shows an estimate of the point of maximum
accuracy, with error bars showing standard deviation (see the ’Computation of the optimum’ section for its computation). In
both cases, performance is lower and the optimal number of data points per class is larger for hard tasks.

until convergence of the model, thus there is no limit on
the number of tasks that can be generated. We instead pre-
sample a set of tasks in order to fix the budget constraint.
For comparison, we also run experiments in the usual way,
and we call this the infinite budget case. However, the total
number of labels is fixed and, even if tasks are re-sampled
indefinitely, it does not imply that the amount of data is infi-
nite, rather the same image may appear in multiple tasks.

As expected, Figure 2 shows that test performance im-
proves with the budget, for both CIFAR-FS and mini-
ImageNet (Figure 2A,C). For infinite budget, the accuracy
is similar to previously reported values (∼ 63% for mini-
ImageNet (Finn, Abbeel, and Levine 2017), ∼ 71% for
CIFAR-FS (Bertinetto et al. 2019)). For CIFAR-FS, the op-
timal number of data points per class was∼ 20 at small bud-
gets, but decreased and remained approximately constant at
∼ 7 for large budgets (Figure 2B). For mini-ImageNet, the
optimal number of data points per class was ∼ 5 at very
small budget and then increased and remain approximately
constant at ∼ 10 (Figure 2D). The performance curves in
Figure 2A,C tend to flatten at higher budgets, but the opti-
mum does not change significantly. Overall, the empirical
study of both datasets confirms our prediction that the opti-
mal number of data points per task is constant at large bud-
gets.

Easy vs. Hard Tasks
In this section we consider the case of non-homogeneous
tasks. We distinguish between two sets of tasks, easy and
hard. We use two independent definitions of hard tasks, one
affects the input and the other affects the output (label) of
a dataset. We apply this definition in a similar way to both
mixed linear regression and few-shot image classification.

For the problem of mixed linear regression, we define task
difficulty in terms of the hyperparameters σ and λ. A task
is harder if it has a larger σ (at equal λ) or smaller λ (at

equal σ). The case of larger σ is intuitive, a task is harder
to learn if labels are more corrupted by noise. In the case of
smaller λ, the smaller input range makes it harder to solve
the regression problem in presence of noise.

In few-shot image classification, the first method to make
a task harder is to introduce label noise (Song et al. 2021):
each input image has 20% probability of having its label
swapped with another random class. The second method is
similar to (Collins, Mokhtari, and Shakkottai 2020): we take
advantage of the hierarchical tree of the CIFAR-100 dataset
and we constraint each task to draw classes from one of
three superclasses: 1) animals, 2) vegetations, 3) object and
scenes. Therefore, we assume that each task has a smaller
variability of its input, not in terms of pixels color or in-
tensity, but in terms of semantic relations. Intuitively, it is
harder to distinguish inputs when they are more similar to
each other. We refer to the two different definitions as, re-
spectively, noisy labels and class hierarchy.

Separate Training
Before studying the training of a mixture of easy and hard
tasks, we ask what is the optimal uniform allocation when
the two types of tasks are trained separately. In mixed linear
regression, the expression for the optimum of the uniform al-
location n? is given by Eq.(11), but is hard to evaluate how
it depends on σ and λ. Therefore we computed an approxi-
mation that holds for small α′ (see appendix of (Cioba et al.
2021)):

n? =

[
2

(
1 +

σ′2

ν2

)] 1
3

α′
4
3 p+O

(
α′

5
3

)
(11)

where α′ = λ2α and σ′ = σ/λ. The optimum increases with
σ, suggesting that harder tasks require more data (and less
tasks) at fixed budget. For λ, there are two opposing forces:
1) On one hand a smaller λ is equivalent to amplifying out-
put noise σ′ and increasing the optimum n?; 2) On the other
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Figure 4: When training on a mixture of easy and hard tasks, it is better to allocate more data to easy tasks. Few shot image
classification on CIFAR-FS. A: Tasks are made harder by drawing classes within a hierarchy; B: Tasks are made harder by
adding label noise. Both plots show test accuracy versus the relative amount of easy vs hard data points per class. Each plot
shows an estimate of the point of maximum accuracy, with error bars showing standard deviation. In both cases, a slightly
higher performance is obtained by allocating more data to easy tasks than to hard ones.

hand, λ rescales the learning rate α′ with the opposite and
stronger effect that a smaller λ decreases the optimum.

Figure 3 shows that introducing task difficulty in few-shot
image classification on CIFAR-FS increases the optimum
for both methods (A: class hierarchy; B: noisy labels, see
(Cioba et al. 2021) ’Easy and hard tasks creation’). As ex-
pected, performance is lower for hard tasks in both cases
(note that we train and test on the same set of tasks, either
only easy or only hard). While it is intuitive that hard tasks
require more data to learn, we emphasize that, for a fixed
budget, this comes at the expense of a smaller number of
tasks.

Joint Training
We now turn to the problem of training on a mixture of easy
and hard tasks. In addition to a fixed budget, we further as-
sume an equal number of easy and hard tasks, and a con-
stant sum of easy and hard data points per task. Therefore,
the only hyperparameter of interest is the relative number
of data points per task for easy vs hard. Note that we use a
mixture of easy and hard tasks also for testing, but we al-
ways use an equal number of easy and hard data points and
tasks in that case (see (Cioba et al. 2021)).

After the results of section , we expect better results when
allocating more data to hard tasks. Surprisingly we find that
the opposite is true. Figure 4 shows that a slightly higher
performance is obtained when allocating more data to easy
tasks, in few-shot image classification on CIFAR-FS for
both methods (Panel A: class hierarchy; Panel B: noisy la-
bels). Intuitively, easy tasks are easier to learn than hard
tasks. Therefore, it may be that if training on easy tasks
transfers to better performance on hard tasks, then it is better
to allocate more data to easy tasks.

Discussion
In this paper we analysed the problem of optimal data allo-
cation in meta-learning when the budget of labelled exam-

ples is limited. When tasks are homogeneous, we showed
that uniform data allocation across tasks is optimal (under
the assumptions of Theorem 1). We further studied whether
one should use less tasks with more data or more tasks and
less data. For mixed linear regression, we found a unique so-
lution for the optimum at large budgets. We confirmed this
finding empirically on few-shot image classification (an ex-
ample of nonlinear regression is also included in the supple-
mentary material of (Cioba et al. 2021)).

In the case of non-homogeneous tasks, with a mixture of
easy and hard tasks, we showed how to optimally allocate
data between the two types of tasks. In particular, we found
that it is better to allocate more data to easy tasks. This re-
sult echoes findings in experimental neuroscience, where it
was found that human visual skills indeed transfer better
from easy tasks than from hard ones (Ahissar and Hochstein
1997). Our findings provide a guideline for collecting meta-
learning data in a way that achieves the best performance
under a fixed budget. We do not expect our study to have a
negative societal impact, at least not in a direct way.

Overall, our study exemplifies the importance of optimal
data allocation in meta-learning and gives a series of empir-
ical and theoretical insights on the relation between model
performance and data allocation for MAML. While the be-
haviour of other meta-learners need not be the same, we sur-
mise that the problem of training models close to optimal
allocation is important, and leave much space for empirical
study in a variety of contexts, as well as for the develop-
ment of a more general theoretical framework. For example,
we have only scratched the surface of the problem of non-
uniform allocation, which requires much further study.
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