
Graph Neural Controlled Differential Equations for Traffic Forecasting

Jeongwhan Choi, Hwangyong Choi, Jeehyun Hwang, Noseong Park
Yonsei University, Seoul, South Korea

{jeongwhan.choi, hwangyong753, hwanggh96, noseong}@yonsei.ac.kr

Abstract

Traffic forecasting is one of the most popular spatio-temporal
tasks in the field of machine learning. A prevalent approach
in the field is to combine graph convolutional networks and
recurrent neural networks for the spatio-temporal processing.
There has been fierce competition and many novel methods
have been proposed. In this paper, we present the method
of spatio-temporal graph neural controlled differential equa-
tion (STG-NCDE). Neural controlled differential equations
(NCDEs) are a breakthrough concept for processing sequen-
tial data. We extend the concept and design two NCDEs: one
for the temporal processing and the other for the spatial pro-
cessing. After that, we combine them into a single framework.
We conduct experiments with 6 benchmark datasets and 20
baselines. STG-NCDE shows the best accuracy in all cases,
outperforming all those 20 baselines by non-trivial margins.

Introduction
The spatio-temporal graph data frequently happens in real-
world applications, ranging from traffic to climate forecast-
ing (Zaytar and El Amrani 2016; Shi et al. 2015, 2017; Liu
et al. 2016; Racah et al. 2016; Kurth et al. 2018; Cheng et al.
2018a,b; Hossain et al. 2015; Ren et al. 2021; Tekin et al.
2021; Li et al. 2018; Yu, Yin, and Zhu 2018; Wu et al. 2019;
Guo et al. 2019; Bai et al. 2019; Song et al. 2020; Huang
et al. 2020; Bai et al. 2020; Li and Zhu 2021; Chen, Segovia-
Dominguez, and Gel 2021; Fang et al. 2021). For instance,
the traffic forecasting task launched by California Perfor-
mance of Transportation (PeMS) is one of the most popular
problems in the area of spatio-temporal processing (Chen
et al. 2001; Yu, Yin, and Zhu 2018; Guo et al. 2019).

Given a time-series of graphs {Gti
def
= (V, E ,Fi, ti)}Ni=0,

where V is a fixed set of nodes, E is a fixed set of edges,
ti is a time-point when Gti is observed, and Fi ∈ R|V|×D
is a feature matrix at time ti which contains D-dimensional
input features of the nodes, the spatio-temporal forecasting
is to predict Ŷ ∈ R|V|×S×M , e.g., predicting the traffic vol-
ume for each location of a road network for the next S time-
points (or horizons) given past N + 1 historical traffic pat-
terns, where |V| is the number of locations to predict and
M = 1 because the volume is a scalar, i.e., the number of

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Time

Path

NCDE

Data

Hidden

Temporal Processing

Spatial ProcessingNCDE

Hidden

......

......

......

......

......

Figure 1: The overall workflow in our proposed STG-NCDE

vehicles. We note that V and E do not change over time — in
other words, the graph topology is fixed — whereas the node
input features can change over time. We use upper boldface
to denote matrices and lower boldface for vectors.

For this task, a diverse set of techniques have been pro-
posed. In this paper, however, we design a method based on
neural controlled differential equations (NCDEs) for the first
time. NCDEs, which are considered as a continuous ana-
logue to recurrent neural networks (RNNs), can be written
as follows:

z(T) = z(0) +

∫ T

0

f(z(t); θf)dX(t) (1)

= z(0) +

∫ T

0

f(z(t); θf)
dX(t)

dt
dt, (2)

where X is a continuous path taking values in a Banach
space. The entire trajectory of z(t) is controlled over time
by the path X (cf. Fig. 2). Leaning the CDE function f for a
downstream task is a key point in NCDEs.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6367

Time

Path

NCDE

Data

Hidden

Neural CDE

......

......

......

Figure 2: The overall workflow of the original NCDE
for processing time-series. The path X is created from
{(ti,xi)}Ni=0 by an interpolation algorithm and therefore,
this technology is robust to irregular time-series data.

The theory of the controlled differential equation (CDE)
had been developed to extend the stochastic differential
equation and the Itô calculus far beyond the semimartin-
gale setting of X — in other words, Eq. (1) reduces to the
stochastic differential equation if and only if X meets the
semimartingale requirement. For instance, a prevalent ex-
ample of the path X is a Wiener process in the case of
the stochastic differential equation. In CDEs, however, the
path X does not need to be such semimartingale or mar-
tingale processes. NODEs are a technology to parameterize
such CDEs and learn from data. In addition, Eq. (2) contin-
uously reads the values dX(t)

dt and integrates them over time.
In this regard, NODEs are equivalent to continuous RNNs
and show the state-of-the-art accuracy in many time-series
tasks and data.

However, it has not been studied yet how to combine the
NCDE technology (i.e., temporal processing) and the graph
convolutional processing technology (i.e., spatial process-
ing). We integrate them into a single framework to solve the
spatio-temporal forecasting problem.

In the original setting of NCDEs, there exists a single
time-series, denoted {(ti,xi)}Ni=0, where xi ∈ RD is a D-
dimensional vector and ti is a time-point when xi is ob-
served. In our setting, however, there exist |V| different time-
series patterns to consider, each of which is somehow corre-
lated to neighboring time-series patterns. Figs. 1 and. 2 show
the difference between them.

The pre-processing step in our method is to create a con-
tinuous path X(v) for each node v ∈ V . For this, we use the
same technique as that in the original NCDE design. Given
a discrete time-series {xi}Ni=0, the original NCDE runs an
interpolation algorithm to build its continuous path. We ap-
ply the same method for each node separately, and a set of
paths, denoted {X(v)}|V|v=1, will be created.

The main step is to jointly apply a spatial and a temporal
processing method to {X(v)}|V|v=1, considering its graph con-
nectivity. In our case, we design an NCDE model equipped
with a graph processing technique for both the spatial and

the temporal processing. We then derive the last hidden vec-
tor z(v)(T) for each node v and there is the last output
layer to predict ŷ(v) ∈ RS×M , which collectively consti-
tutes Ŷ ∈ R|V|×S×M .

We conduct experiments with 6 benchmark datasets col-
lected by California Performance of Transportation (PeMS),
which are the most widely used datasets in this topic, to
compare with 20 baseline methods. Our proposed method
clearly outperforms all those methods in terms of three stan-
dard evaluation metrics. Our contributions can be summa-
rized as follows:
1. We design two NCDEs for learning the temporal and spa-

tial dependencies of traffic conditions and combine them
into a single framework.

2. NCDEs are robust to irregular time-series by the design.
Owing to this characteristic, our method is also robust
to the irregularity of the temporal sequence, i.e., some
observations can be missing.

3. Our large-scale experiments with 6 datasets and 20 base-
lines clearly show the efficacy of the proposed method.
We, for the first time, perform irregular traffic forecasting
to reflect real-world environments where sensing values
can be missing (see Table 5 and Table 6).

Related Work and Preliminaries
In this section, we summarize our literature review related
to our NCDE-based spatio-temporal forecasting.

Neural Ordinary Differential Equations (NODEs)
Prior to NCDEs, neural ordinary differential equations
(NODEs) introduced how to continuously model resid-
ual neural networks (ResNets) with differential equations.
NODE can be written as follows:

z(T) = z(0) +

∫ T

0

f(z(t), t;θf)dt; (3)

where the neural network parameterized by θf approximates
z(t)
dt , and we rely on various ODE solvers to solve the inte-

gral problem, ranging from the explicit Euler method to the
4th order Runge–Kutta (RK4) method and the Dormand–
Prince (DOPRI) method (Dormand and Prince 1980).

In particular, Eq. (3) reduces to the residual connection
when being solved by the explicit Euler method. In this re-
gard, NODEs generalize ResNets in a continuous manner.
STGODE utilizes this NODE technology to solve the spatio-
temporal forecasting problem (Fang et al. 2021).

Neural Controlled Differential Equations (NCDEs)
Whereas NODEs generalize ResNets, NCDEs in Eq. (1)
generalize RNNs in a continuous manner. Controlled differ-
ential equations (CDEs) are a more advanced concept than
ordinary differential equations (ODEs). The integral prob-
lem in Eq. (3) is a Rienmann integral problem whereas it is
a Riemann–Stieltjes integral problem in Eq. (2). The origi-
nal CDE formulation in Eq. (1) reduces Eq. (2) where z(t)

dt

is approximated by f(z(t); θf)
dX(t)
dt .

6368

Once z(t)
dt is somehow successfully formulated in a close

math form, we can utilize those existing ODE solvers to
solve Eq. (2). Therefore, many techniques developed for
solving NODEs can be applied to NCDEs as well.

Traffic Forecasting
The problem of traffic forecasting is an emerging research
topic in the field of spatio-temporal machine learning. When
being solved in high accuracy, it has non-trivial impacts
to our daily life. We introduce several milestone papers
in this field. DCRNN (Li et al. 2018) combines graph
convolution with recurrent neural networks in an encoder-
decoder manner. STGCN (Yu, Yin, and Zhu 2018) combines
graph convolution with gated temporal convolution. Graph-
WaveNet (Wu et al. 2019) combines adaptive graph con-
volution with dilated casual convolution to capture spatial-
temporal dependencies. ASTGCN (Guo et al. 2019) uti-
lizes both the spatial-temporal attention mechanism and the
spatial-temporal convolution. STG2Seq (Bai et al. 2019)
uses a multiple gated graph convolutional module and a
seq2seq architecture with an attention mechanisms to make
multi-step prediction. STSGCN (Song et al. 2020) utilizes
multiple localized spatial-temporal subgraph modules to
synchronously capture the localized spatial-temporal cor-
relations directly. LSGCN (Huang et al. 2020) integrates
a novel attention mechanism and graph convolution into a
spatial gated block. AGCRN (Bai et al. 2020) utilizes node
adaptive parameter learning to capture node-specific spa-
tial and temporal correlations in time-series data automat-
ically without a pre-defined graph. STFGNN (Li and Zhu
2021) captures hidden spatial-dependenies by a novel fusion
operation of various spatial and temporal graphs, treated
for different time periods in parallel. Z-GCNETs (Chen,
Segovia-Dominguez, and Gel 2021) integrates the new time-
aware zigzag topological layer into time-conditioned GCNs.
STGODE (Fang et al. 2021) captures spatial-temporal dy-
namics through a tensor-based ODE.

Proposed Method
The spatio-temporal processing of a time-series of graphs
{Gti

def
= (V, E ,Fi)}Ni=0 is obviously more difficult than the

spatial processing only (i.e., GCNs) or the temporal process-
ing only (i.e., RNNs). As such, there have been proposed
many neural networks combining GCNs and RNNs. In this
paper, we design a novel spatio-temporal model based on
the NCDE and the adaptive topology generation technolo-
gies. We describe our proposed method in this section. We
first review its overall design and then introduce details.

Overall Design
Our method includes one pre-processing and one main pro-
cessing steps as follows:
1. Its pre-processing step is to create a continuous pathX(v)

for each node v, where 1 ≤ v ≤ |V|, from {F (v)
i }Ni=0.

F
(v)
i ∈ RD means the v-th row of Fi, and {F (v)

i } stands
for the time-series of the input features of v. We use

the natural cubic spline method for interpolating the dis-
crete time-series {F (v)

i } and building a continuous path.
Among many, the natural cubic spline has a couple of
suitable characteristics to be used in our method: i) it cre-
ates a continuous path and ii) the created path is twice
differentiable. In particular, the second characteristic is
important when it comes to calculating the gradients of
the proposed model.

2. The above pre-processing step happens before training
our model. Then, our main step, which combines a GCN
and an NCDE technologies, calculates the last hidden
vector for each node v, denoted z(v)(T).

3. After that, we have an output layer to predict ŷ(v) ∈
RS×M for each node v. After collecting those predic-
tions for all nodes in V , we have the prediction matrix
Ŷ ∈ R|V|×S×M .

Graph Neural Controlled Differential Equations
Our proposed spatio-temporal graph neural controlled dif-
ferential equation (STG-NCDE) consists of two NCDEs:
one for processing the temporal information and the other
for processing the spatial information.

Temporal Processing The first NCDE for the temporal
processing can be written as follows:

h(v)(T) = h(v)(0) +

∫ T

0

f(h(v)(t); θf)
dX(v)(t)

dt
dt, (4)

where h(v)(t) is a hidden trajectory (over time t ∈ [0, T]) of
the temporal information of node v. After stacking h(v)(t)

for all v, we can define a matrix H(t) ∈ R|V|×dim(h(v)).
Therefore, the trajectory created by H(t) over time t con-
tains the hidden information of the temporal processing re-
sults. Eq. (4) can be equivalently rewritten as follows using
the matrix notation:

H(T) =H(0) +

∫ T

0

f(H(t); θf)
dX(t)

dt
dt, (5)

where X(t) is a matrix whose v-th row is X(v). The CDE
function f separately processes each row in H(t). The key
in this design is how to define the CDE function f parame-
terized by θf . We will describe shortly how to define it. One
good thing is that f does not need to be a RNN. By design-
ing it with fully-connected layers only, for instance, Eq. (5)
converts it to a continuous RNN.

Spatial Processing After that, the second NCDE starts for
its spatial processing as follows:

Z(T) = Z(0) +

∫ T

0

g(Z(t); θg)
dH(t)

dt
dt, (6)

where the hidden trajectory Z(t) is controlled by H(t)
which is created by the temporal processing.

After combining Eqs. (5) and (6), we have the following
single equation which incorporates both the temporal and
the spatial processing:

Z(T) = Z(0) +

∫ T

0

g(Z(t); θg)f(H(t); θf)
dX(t)

dt
dt,

(7)

6369

where Z(t) ∈ R|V|×dim(z(v)) is a matrix created after stack-
ing the hidden trajectory z(v) for all v. In this NCDE, a hid-
den trajectory z(v) is created after considering the trajecto-
ries of its neighbors — for ease of writing, we use the matrix
notation in Eqs. (6) and (7). The key part is how to design
the CDE function g parameterized by θg for the spatial pro-
cessing.

CDE Functions We now describe the two CDE func-
tions f and g. The definition of f : R|V|×dim(h(v)) →
R|V|×dim(h(v)) is as as follows:

f(H(t); θf) = ψ(FC|V|×dim(h(v))→|V|×dim(h(v))(AK)),

...
A1 = σ(FC|V|×dim(h(v))→|V|×dim(h(v))(A0)),

A0 = σ(FC|V|×dim(h(v))→|V|×dim(h(v))(H(t))),

(8)

where σ is a rectified linear unit, ψ is a hyperbolic tan-
gent, and FCinput size→output size means a fully-connected
layer whose input size is input size and output size is
also output size. θf refers to the parameters of the fully-
connected layers. This function f independently processes
each row ofH(t) with the K fully connected-layers.

For the spatial processing, we need to define one more
CDE function g. The definition of g : R|V|×dim(z(v)) →
R|V|×dim(z(v)) is as follows:

g(Z(t); θg) = ψ(FC|V|×dim(z(v))→|V|×dim(z(v))(B1)),

(9)
B1 = (I + φ(σ(E ·Eᵀ)))B0Wspatial, (10)
B0 = σ(FC|V|×dim(z(v))→|V|×dim(z(v))(Z(t))),

(11)

where I is the |V| × |V| identity matrix, φ is a softmax ac-
tivation, E ∈ R|V|×C is a trainable node-embedding ma-
trix, Eᵀ is its transpose, and Wspatial is a trainable weight
transformation matrix. Conceptually, φ(σ(E · Eᵀ)) corre-
sponds to the normalized adjacency matrix D−

1
2AD−

1
2 ,

where A = σ(E · Eᵀ) and the softmax activation plays a
role of normalizing the adaptive adjacency matrix (Wu et al.
2019; Bai et al. 2020). We also note that Eq. (10) is identi-
cal to the first order Chebyshev polynomial expansion of the
graph convolution operation (Kipf and Welling 2017) with
the normalized adaptive adjacency matrix. Eqs. (9) and (11)
do not mix the rows of their input matrices Z(t) and B1. It
is Eq. (10) where the rows of B0 are mixed for the spatial
processing.

Initial Value Generation The initial value of the tem-
poral processing, i.e., H(0), is created from Ft0 as fol-
lows: H(0) = FCD→dim(h(v))(Ft0). We also use the
following similar strategy to generate Z(0): Z(0) =
FCdim(h(v))→dim(z(v))(H(0)). After generating these ini-
tial values for the two NCDEs, we can calculate Z(T) after
solving the Riemann–Stieltjes integral problem in Eq. (7).

How to Train
To implement Eq. (7) — we do not separately implement
Eqs. (5) and (6) — we define the following augmented ODE:

d

dt

[
Z(t)
H(t)

]
=

[
g(Z(t); θg)f(H(t); θf)

dX(t)
dt

f(H(t); θf)
dX(t)
dt

]
, (12)

where the initial values Z(0) andH(0) are generated in the
aforementioned ways. We then train the parameters of the
initial value generation layer, the CDE functions, including
the node-embedding matrix E, and the output layer. From
z(v)(T), i.e., the v-th row of Z(T), the following output
layer produces ŷ(v).

ŷ(v) = z(v)(T)Woutput + boutput, (13)

where Woutput ∈ Rdim(z(v)(T))→S×M and boutput ∈
RS×M are a trainable weight and a bias of the output layer.
We use the following L1 loss as the training objective, which
is defined as:

L =

∑
τ∈T

∑
v∈V ‖y(τ,v) − ŷ(τ,v)‖1
|V| × |T |

, (14)

where T is a training set, τ is a training sample, and y(τ,v)

is the ground-truth of node v in τ . We also use the standard
L2 regularization of the parameters, i.e., weight decay.

The well-posedness1 of NCDEs was already proved in
(Lyons, Caruana, and Lévy 2007, Theorem 1.3) under the
mild condition of the Lipschitz continuity. We show that our
NCDE layers are also well-posed problems. Almost all ac-
tivations, such as ReLU, Leaky ReLU, SoftPlus, Tanh, Sig-
moid, ArcTan, and Softsign, have a Lipschitz constant of 1.
Other common neural network layers, such as dropout, batch
normalization and other pooling methods, have explicit Lip-
schitz constant values. Therefore, the Lipschitz continuity
of f and g can be fulfilled in our case. Therefore, it is a
well-posed training problem. Thus, our training algorithm
solves a well-posed problem, so its training process is stable
in practice.

Experiments
We describe our experimental environments and results. We
conduct experiments with time-series forecasting. Our soft-
ware and hardware environments are as follows: UBUNTU
18.04 LTS, PYTHON 3.9.5, NUMPY 1.20.3, SCIPY 1.7,
MATPLOTLIB 3.3.1, TORCHDIFFEQ 0.2.2, PYTORCH 1.9.0,
CUDA 11.4, and NVIDIA Driver 470.42, i9 CPU, and
NVIDIA RTX A6000. We use 6 datasets and 20 baseline
models, which is one of the largest scale experiments in the
field of traffic forecasting. For additional figures, tables, and
best hyperparameter settings are in (Choi et al. 2021).

Datasets
In the experiment, we use six real-world traffic datasets,
namely PeMSD7(M), PeMSD7(L), PeMS03, PeMS04,

1A well-posed problem means i) its solution uniquely exists,
and ii) its solution continuously changes as input data changes.

6370

Dataset |V| Time Steps Time Range Type
PeMSD3 358 26,208 09/2018 - 11/2018 Volume
PeMSD4 307 16,992 01/2018 - 02/2018 Volume
PeMSD7 883 28,224 05/2017 - 08/2017 Volume
PeMSD8 170 17,856 07/2016 - 08/2016 Volume

PeMSD7(M) 228 12,672 05/2012 - 06/2012 Velocity
PeMSD7(L) 1,026 12,672 05/2012 - 06/2012 Velocity

Table 1: The summary of the datasets used in our work. We
predict either traffic volume (i.e., # of vehicles) or velocity.

PeMS07, and PeMS08, which were collected by California
Performance of Transportation (PeMS) (Chen et al. 2001) in
real-time every 30 second and widely used in the previous
studies (Yu, Yin, and Zhu 2018; Guo et al. 2019; Fang et al.
2021; Chen, Segovia-Dominguez, and Gel 2021; Song et al.
2020). More details of the datasets are in Table 1. We note
that they contain different types of values: i) the number of
vehicles, or ii) velocity.

Experimental Settings
The datasets are already split with a ratio of 6:2:2 into train-
ing, validating, and testing sets. In these datasets, the interval
between two consecutive time-points is 5 minutes. All exist-
ing papers, including our paper, use the forecasting settings
of S = 12 andM = 1 after reading past 12 graph snapshots,
i.e., N = 11 — note that the graph snapshot index i starts
from 0. In short, we conduct a 12-sequence-to-12-sequence
forecasting, which is the standard benchmark setting in this
domain.

We use the mean absolute error (MAE), the mean absolute
percentage error (MAPE), and the root mean squared error
(RMSE) to measure the performance of different models.

Baselines We compare our proposed STG-NCDE with the
following baseline models in conjunction with the previous
models we introduced in the related work section — in total,
we use 20 baseline models:
1. HA (Hamilton 2020) uses the average value of the last 12

times slices to predict the next value.
2. ARIMA is a statistical model of time series analysis.
3. VAR (Hamilton 2020) is a time series model that captures

spatial correlations among all traffic series.
4. TCN (Bai, Kolter, and Koltun 2018) consists of a stack of

causal convolutional layers with exponentially enlarged
dilation factors.

5. FC-LSTM (Sutskever, Vinyals, and Le 2014) is LSTM
with fully connected hidden unit.

6. GRU-ED (Cho et al. 2014) is an GRU-based baseline
and utilize the encoder-decoder framework for multi-step
time series prediction.

7. DSANet (Huang et al. 2019) is a correlated time series
prediction model using CNN networks and self-attention
mechanism for spatial correlations.

Hyperparameters For our method, we test with the fol-
lowing hyperparameter configurations: we train for 200
epochs using the Adam optimizer, with a batch size of 64
on all datasets. The two dimensionalities of dim(h(v)) and
dim(z(v)) are {32, 64, 128, 256}, the node embedding size

Model MAE RMSE MAPE
STGCN 14.88 (117.0%) 24.22 (113.6%) 12.30 (121.8%)
DCRNN 14.90 (117.1%) 24.04 (112.7%) 12.75 (126.1%)

GraphWaveNet 15.94 (125.3%) 26.22 (122.9%) 12.96 (128.2%)
ASTGCN(r) 14.86 (116.9%) 23.95 (112.3%) 12.25 (121.3%)

STSGCN 14.45 (113.5%) 23.58 (110.5%) 11.42 (113.0%)
AGCRN 13.32 (104.7%) 22.29 (104.5%) 10.37 (102.7%)
STFGNN 13.92 (109.5%) 22.57 (105.8%) 11.30 (111.9%)
STGODE 13.56 (106.6%) 22.37 (104.8%) 10.77 (106.6%)

Z-GCNETs 13.22 (104.0%) 21.92 (102.7%) 10.44 (103.4%)
STG-NCDE 12.72 (100.0%) 21.33 (100.0%) 10.10 (100.0%)

Table 2: The average error of some selected highly perform-
ing models across all the six datasets. Inside the parentheses,
we show their performance relative to our method.

C is from 1 to 10, and the number of K in Eq. (8) is in
{1, 2, 3}. The learning rate in all methods is in {1× 10−2,
5× 10−3, 1× 10−3, 5× 10−4, 1× 10−4} and the weight
decay coefficient is in {1× 10−4, 1× 10−3, 1× 10−2}.
An early stop strategy with a patience of 15 iterations on
the validation dataset is used. The best hyperparameters are
in (Choi et al. 2021) for reproducibility. For baselines, we
run their codes with a hyperparameter search process based
on their recommended configurations if their accuracy is not
known for a dataset. If known, we use their officially re-
ported accuracy.

Experimental Results
Tables 3 and 4 present the detailed prediction performance.
Overall, our proposed method, STG-NCDE, clearly marks
the best average accuracy as summarized in Table 2. For
each notable model, we list its average MAE/RMSE/MAPE
from the six datasets. Inside the parentheses, we also show
the relative accuracy in comparison with our method. For
instance, STGCN shows an MAE that is 17.0% worse than
that of our method. All existing methods show worse errors
in all metrics than our method.

We now describe experimental results in each dataset.
STG-NCDE shows the best accuracy in all cases, followed
by Z-GCNETs, AGCRN, STGODE and so on. There are
no existing methods that are as stable as STG-NCDE. For
instance, STGODE shows reasonably low errors in many
cases, e.g., an RMSE of 27.84 in PeMSD3 by STGODE,
which is the second best result vs. 27.09 by STG-NCDE.
However, it is outperformed by AGCRN and Z-GCNETs
for PeMSD7. Only our method, STG-NCDE, shows reliable
predictions in all cases.

We also visualize the ground-truth and the predicted
curves by our method and Z-GCNETs in Fig. 3. Node 111
and 261 (resp. Node 9 and 112) are two of the highest traffic
areas in PeMSD4 (resp. PeMSD8). Since Z-GCNETs shows
reasonable performance, its predicted curve is similar to that
of our method in many time-points. As highlighted with
boxes, however, our method shows much more accurate pre-
dictions for challenging cases. In particular, our method sig-
nificantly outperforms Z-GCNETs for the highlighted time-
points for Node 111 in PeMSD4 and Node 9 in PeMSD8,
for which Z-GCNETs shows nonsensical predictions, i.e.,
the prediction curves are straight.

6371

Model PeMSD3 PeMSD4 PeMSD7 PeMSD8
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA 31.58 52.39 33.78% 38.03 59.24 27.88% 45.12 65.64 24.51% 34.86 59.24 27.88%
ARIMA 35.41 47.59 33.78% 33.73 48.80 24.18% 38.17 59.27 19.46% 31.09 44.32 22.73%

VAR 23.65 38.26 24.51% 24.54 38.61 17.24% 50.22 75.63 32.22% 19.19 29.81 13.10%
FC-LSTM 21.33 35.11 23.33% 26.77 40.65 18.23% 29.98 45.94 13.20% 23.09 35.17 14.99%

TCN 19.32 33.55 19.93% 23.22 37.26 15.59% 32.72 42.23 14.26% 22.72 35.79 14.03%
TCN(w/o causal) 18.87 32.24 18.63% 22.81 36.87 14.31% 30.53 41.02 13.88% 21.42 34.03 13.09%

GRU-ED 19.12 32.85 19.31% 23.68 39.27 16.44% 27.66 43.49 12.20% 22.00 36.22 13.33%
DSANet 21.29 34.55 23.21% 22.79 35.77 16.03% 31.36 49.11 14.43% 17.14 26.96 11.32%
STGCN 17.55 30.42 17.34% 21.16 34.89 13.83% 25.33 39.34 11.21% 17.50 27.09 11.29%
DCRNN 17.99 30.31 18.34% 21.22 33.44 14.17% 25.22 38.61 11.82% 16.82 26.36 10.92%

GraphWaveNet 19.12 32.77 18.89% 24.89 39.66 17.29% 26.39 41.50 11.97% 18.28 30.05 12.15%
ASTGCN(r) 17.34 29.56 17.21% 22.93 35.22 16.56% 24.01 37.87 10.73% 18.25 28.06 11.64%
MSTGCN 19.54 31.93 23.86% 23.96 37.21 14.33% 29.00 43.73 14.30% 19.00 29.15 12.38%
STG2Seq 19.03 29.83 21.55% 25.20 38.48 18.77% 32.77 47.16 20.16% 20.17 30.71 17.32%
LSGCN 17.94 29.85 16.98% 21.53 33.86 13.18% 27.31 41.46 11.98% 17.73 26.76 11.20%

STSGCN 17.48 29.21 16.78% 21.19 33.65 13.90% 24.26 39.03 10.21% 17.13 26.80 10.96%
AGCRN 15.98 28.25 15.23% 19.83 32.26 12.97% 22.37 36.55 9.12% 15.95 25.22 10.09%
STFGNN 16.77 28.34 16.30% 20.48 32.51 16.77% 23.46 36.60 9.21% 16.94 26.25 10.60%
STGODE 16.50 27.84 16.69% 20.84 32.82 13.77% 22.59 37.54 10.14% 16.81 25.97 10.62%

Z-GCNETs 16.64 28.15 16.39% 19.50 31.61 12.78% 21.77 35.17 9.25% 15.76 25.11 10.01%
STG-NCDE 15.57 27.09 15.06% 19.21 31.09 12.76% 20.53 33.84 8.80% 15.45 24.81 9.92%

Only temporal 20.44 32.82 20.03% 26.31 40.97 17.95% 28.77 44.39 12.60% 20.83 32.55 13.01%
Only spatial 15.92 27.17 15.14% 19.86 31.92 13.35% 21.72 34.73 9.24% 17.58 27,76 11.27%

Table 3: Forecasting error on PeMSD3, PeMSD4, PeMSD7 and PeMSD8

Model PeMSD7(M) PeMSD7(L)
MAE RMSE MAPE MAE RMSE MAPE

HA 4.59 8.63 14.35% 4.84 9.03 14.90%
ARIMA 7.27 13.20 15.38% 7.51 12.39 15.83%

VAR 4.25 7.61 10.28% 4.45 8.09 11.62%
FC-LSTM 4.16 7.51 10.10% 4.66 8.20 11.69%

TCN 4.36 7.20 9.71% 4.05 7.29 10.43%
TCN(w/o causal) 4.43 7.53 9.44% 4.58 7.77 11.53%

GRU-ED 4.78 9.05 12.66% 3.98 7.71 10.22%
DSANet 3.52 6.98 8.78% 3.66 7.20 9.02%
STGCN 3.86 6.79 10.06% 3.89 6.83 10.09%
DCRNN 3.83 7.18 9.81% 4.33 8.33 11.41%

GraphWaveNet 3.19 6.24 8.02% 3.75 7.09 9.41%
ASTGCN(r) 3.14 6.18 8.12% 3.51 6.81 9.24%
MSTGCN 3.54 6.14 9.00% 3.58 6.43 9.01%
STG2Seq 3.48 6.51 8.95% 3.78 7.12 9.50%
LSGCN 3.05 5.98 7.62% 3.49 6.55 8.77%

STSGCN 3.01 5.93 7.55% 3.61 6.88 9.13%
AGCRN 2.79 5.54 7.02% 2.99 5.92 7.59%
STFGNN 2.90 5.79 7.23% 2.99 5.91 7.69%
STGODE 2.97 5.66 7.36% 3.22 5.98 7.94%

Z-GCNETs 2.75 5.62 6.89% 2.91 5.83 7.33%
STG-NCDE 2.68 5.39 6.76% 2.87 5.76 7.31%

Only temporal 3.34 6.68 8.41% 3.54 7.03 8.89%
Only spatial 2.77 5.40 7.00% 2.99 5.85 7.60%

Table 4: Forecasting error on PeMSD7(M) and PeMSD7(L)

Ablation, Sensitivity, and Additional Studies
Ablation Study As ablation study models, we define the
following two models: i) the first ablation model has only
the temporal processing part, i.e., Eq. (5), and ii) the second
ablation model has only the spatial processing part which
can be written as follows:

Z(T) = Z(0) +

∫ T

0

g(Z(t); θg)
dX(t)

dt
dt, (15)

where the trajectory Z(t) over time is controlled by X(t).
We accordingly change the model architecture for this abla-

06:00 12:00 18:00 24:00 06:00
Time

100
200
300
400
500
600
700
800

Tr
af

fic
 F

lo
w

Truth
STG-NCDE
Z-GCNETs

(a) Node 111 in PeMSD4

06:00 12:00 18:00 24:00 06:00
Time

100

200

300

400

Tr
af

fic
 F

lo
w

Truth
STG-NCDE
Z-GCNETs

(b) Node 261 in PeMSD4

12:00 18:00 24:00 06:00 12:00
Time

100
200
300
400
500
600
700
800

Tr
af

fic
 F

lo
w

Truth
STG-NCDE
Z-GCNETs

(c) Node 9 in PeMSD8

12:00 18:00 24:00 06:00 12:00
Time

25
50
75

100
125
150
175
200
225

Tr
af

fic
 F

lo
w

Truth
STG-NCDE
Z-GCNETs

(d) Node 112 in PeMSD8

Figure 3: Traffic forecasting visualization. More visualiza-
tions in other datasets are in our full paper (Choi et al. 2021).

tion study model. The first (resp. second) model is denoted
as “Only temporal” (resp. “Only spatial”) in the tables.

In all cases, the ablation study model only with the spa-
tial processing significantly outperforms that only with the
temporal processing, e.g., an RMSE of 27.09 in PeMSD3 by
the spatial processing vs. 32.82 by the temporal processing.
However, STG-NCDE, which utilizes both the temporal and
the spatial processing, outperforms them. This shows that
we need both of them to achieve the best model accuracy.

In Fig. 4 (a), we also compare their training curves in

6372

0 10 20 30 40 50 60 70
Epochs

50
100
150
200
250
300

Tr
ai

ni
ng

 L
os

s
STG-NCDE
Only Spatial
Only Temporal

2 4 6 8 1020

40

60

(a) Training curve in PeMSD7

2 4 6 8 10
C(Node embedding dimension)

20

22

24

M
AE

MAE

9

10

M
AP

E

MAPE

(b) Sensitivity to C in PeMSD7

Figure 4: Training curve and sensitivity analysis. More re-
sults in other datasets are in our full paper (Choi et al. 2021).

1 2 3 4 5 6 7 8 9 101112
Horizon

18

20

22

24

26

28

M
AE

STG-NCDE
AGCRN
Z-GCNETs
STGODE

(a) MAE on PeMSD7

1 2 3 4 5 6 7 8 9 101112
Horizon

8
9

10
11
12
13

M
AP

E

STG-NCDE
AGCRN
Z-GCNETs
STGODE

(b) MAPE on PeMSD7

1 2 3 4 5 6 7 8 9 101112
Horizon

14
15
16
17
18
19

M
AE

STG-NCDE
AGCRN
Z-GCNETs
STGODE

(c) MAE on PeMSD8

1 2 3 4 5 6 7 8 9 101112
Horizon

9.0
9.5

10.0
10.5
11.0
11.5
12.0

M
AP

E

STG-NCDE
AGCRN
Z-GCNETs
STGODE

(d) MAPE on PeMSD8

Figure 5: Prediction error at each horizon. More results in
other datasets are in our full paper (Choi et al. 2021).

PeMSD7. STG-NCDE’s loss curve is stabilized after the
second epoch whereas the other two ablation models require
longer time until their loss curves are stabilized.

Sensitivity to C Fig. 4 (b) shows the MAE and MAPE by
varying the node embedding size C. The two error metrics
are stabilized after C = 7. With C = 10, we can achieve the
best accuracy.

Error for Each Horizon In our notation, S denotes the
length of forecasting, i.e., the number of forecasting hori-
zons. Since the benchmark dataset has a setting of S = 12,
we show the model error for each forecasting horizon in
Fig. 5. It is obvious that the error levels show a high cor-
relation to S. For all horizons, STG-NCDE shows smaller
errors than other baselines.

Irregular Traffic Forecasting In reality, traffic sensors
can be damaged and we cannot collect data in some areas
for a certain amount of time. In order to reflect this situa-
tion, we randomly drop 10% to 50% of sensing values for
each node independently. Since NCDEs are able to consider

Model Missing rate MAE RMSE MAPE
STG-NCDE

10%
19.36 31.28 12.79%

Only Temporal 26.26 40.89 17.66%
Only Spatial 19.73 31.67 13.20%
STG-NCDE

30%
19.40 31.30 13.04%

Only Temporal 26.86 41.73 18.35%
Only Spatial 19.83 31.95 13.29%
STG-NCDE

50%
19.98 32.09 13.48%

Only Temporal 28.15 43.54 19.14%
Only Spatial 20.14 32.30 13.30%

Table 5: Forecasting error on irregular PeMSD4

Model Missing rate MAE RMSE MAPE
STG-NCDE

10%
15.68 24.96 10.05%

Only Temporal 21.18 33.02 13.26%
Only Spatial 16.85 26.63 11.12%
STG-NCDE

30%
16.21 25.64 10.43%

Only Temporal 21.46 33.37 13.57%
Only Spatial 18.46 29.03 12.16%
STG-NCDE

50%
16.68 26.17 10.67%

Only Temporal 22.68 35.14 14.11%
Only Spatial 17.98 28.12 11.87%

Table 6: Forecasting error on irregular PeMSD8. More re-
sults in other datasets are in our full paper (Choi et al. 2021).

irregular time-series by the design, STG-NCDE is also able
to do it without any changes on its model design, which is
one of the most distinguishable points in comparison with
existing baselines. Tables 5 and 6 summarize its results. In
comparison with the results in Table 3, our model’s perfor-
mance is not significantly degraded. We note that other base-
lines listed in Table 3 cannot do irregular forecasting and we
compare STG-NCDE with its ablation models in Tables 5
and 6.

Conclusions
We presented a spatio-temporal NCDE model to perform
traffic forecasting. Our model has two NCDEs: one for tem-
poral processing and the other for spatial processing. In
particular, our NCDE for spatial processing can be con-
sidered as an NCDE-based interpretation of graph convo-
lutional networks. In our experiments with 6 datasets and
20 baselines, our method clearly shows the best overall ac-
curacy. In addition, our model can perform irregular traffic
forecasting where some input observations can be missing,
which is a practical problem setting but not actively consid-
ered by existing methods. We believe that the combination
of NCDEs and GCNs is a promising research direction for
spatio-temporal processing.

Acknowledgements
Noseong Park is the corresponding author. This work was
supported by the Yonsei University Research Fund of 2021,
and the Institute of Information & Communications Tech-
nology Planning & Evaluation (IITP) grant funded by the
Korean government (MSIT) (No. 2020-0-01361, Artificial
Intelligence Graduate School Program (Yonsei University),

6373

and No. 2021-0-00155, Context and Activity Analysis-based
Solution for Safe Childcare).

References
Bai, L.; Yao, L.; Kanhere, S. S.; Wang, X.; and Sheng,
Q. Z. 2019. STG2Seq: Spatial-Temporal Graph to Sequence
Model for Multi-step Passenger Demand Forecasting. In IJ-
CAI.
Bai, L.; Yao, L.; Li, C.; Wang, X.; and Wang, C. 2020.
Adaptive Graph Convolutional Recurrent Network for Traf-
fic Forecasting. In NeurIPS, volume 33, 17804–17815.
Bai, S.; Kolter, J. Z.; and Koltun, V. 2018. An Empiri-
cal Evaluation of Generic Convolutional and Recurrent Net-
works for Sequence Modeling. arXiv:1803.01271.
Chen, C.; Petty, K.; Skabardonis, A.; Varaiya, P.; and Jia,
Z. 2001. Freeway performance measurement system: min-
ing loop detector data. Transportation Research Record,
1748(1): 96–102.
Chen, Y.; Segovia-Dominguez, I.; and Gel, Y. R. 2021. Z-
GCNETs: Time Zigzags at Graph Convolutional Networks
for Time Series Forecasting. In ICML.
Cheng, L.; Zang, H.; Ding, T.; Sun, R.; Wang, M.; Wei,
Z.; and Sun, G. 2018a. Ensemble recurrent neural network
based probabilistic wind speed forecasting approach. Ener-
gies, 11(8).
Cheng, W.; Shen, Y.; Zhu, Y.; and Huang, L. 2018b. A neural
attention model for urban air quality inference: Learning the
weights of monitoring stations. In AAAI.
Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bougares, F.;
Schwenk, H.; and Bengio, Y. 2014. Learning phrase rep-
resentations using RNN encoder-decoder for statistical ma-
chine translation. In EMNLP.
Choi, J.; Choi, H.; Hwang, J.; and Park, N. 2021. Graph
Neural Controlled Differential Equations for Traffic Fore-
casting. arXiv preprint arXiv:2112.03558.
Dormand, J.; and Prince, P. 1980. A family of embedded
Runge-Kutta formulae. Journal of Computational and Ap-
plied Mathematics, 6(1): 19 – 26.
Fang, Z.; Long, Q.; Song, G.; and Xie, K. 2021. Spatial-
Temporal Graph ODE Networks for Traffic Flow Forecast-
ing. In KDD.
Guo, S.; Lin, Y.; Feng, N.; Song, C.; and Wan, H. 2019. At-
tention Based Spatial-Temporal Graph Convolutional Net-
works for Traffic Flow Forecasting. In AAAI.
Hamilton, J. D. 2020. Time series analysis. Princeton uni-
versity press.
Hossain, M.; Rekabdar, B.; Louis, S. J.; and Dascalu, S.
2015. Forecasting the weather of Nevada: A deep learning
approach. In IJCNN.
Huang, R.; Huang, C.; Liu, Y.; Dai, G.; and Kong, W. 2020.
LSGCN: Long Short-Term Traffic Prediction with Graph
Convolutional Networks. In IJCAI, 2355–2361.
Huang, S.; Wang, D.; Wu, X.; and Tang, A. 2019. DSANet:
Dual Self-Attention Network for Multivariate Time Series
Forecasting. In CIKM.

Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Classi-
fication with Graph Convolutional Networks. In ICLR.
Kurth, T.; Treichler, S.; Romero, J.; Mudigonda, M.; Luehr,
N.; Phillips, E.; Mahesh, A.; Matheson, M.; Deslippe, J.;
Fatica, M.; et al. 2018. Exascale deep learning for cli-
mate analytics. In International Conference for High Per-
formance Computing, Networking, Storage and Analysis.
IEEE.
Li, M.; and Zhu, Z. 2021. Spatial-Temporal Fusion Graph
Neural Networks for Traffic Flow Forecasting. In AAAI.
Li, Y.; Yu, R.; Shahabi, C.; and Liu, Y. 2018. Diffusion Con-
volutional Recurrent Neural Network: Data-Driven Traffic
Forecasting. In ICLR.
Liu, Y.; Racah, E.; Correa, J.; Khosrowshahi, A.; Lavers, D.;
Kunkel, K.; Wehner, M.; Collins, W.; et al. 2016. Appli-
cation of deep convolutional neural networks for detecting
extreme weather in climate datasets. arXiv preprint.
Lyons, T. J.; Caruana, M.; and Lévy, T. 2007. Differential
equations driven by rough paths. Springer.
Racah, E.; Beckham, C.; Maharaj, T.; Kahou, S. E.; Pal, C.;
et al. 2016. ExtremeWeather: A large-scale climate dataset
for semi-supervised detection, localization, and understand-
ing of extreme weather events. arXiv preprint.
Ren, X.; Li, X.; Ren, K.; Song, J.; Xu, Z.; Deng, K.; and
Wang, X. 2021. Deep Learning-Based Weather Prediction:
A Survey. Big Data Research, 23.
Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.;
and Woo, W.-c. 2015. Convolutional LSTM network: A
machine learning approach for precipitation nowcasting. In
NeurIPS.
Shi, X.; Gao, Z.; Lausen, L.; Wang, H.; Yeung, D.-Y.; Wong,
W.-k.; and Woo, W.-c. 2017. Deep learning for precipitation
nowcasting: A benchmark and a new model. arXiv preprint.
Song, C.; Lin, Y.; Guo, S.; and Wan, H. 2020. Spatial-
Temporal Synchronous Graph Convolutional Networks: A
New Framework for Spatial-Temporal Network Data Fore-
casting. In AAAI.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
sequence learning with neural networks. In NeurIPS.
Tekin, S. F.; Karaahmetoglu, O.; Ilhan, F.; Balaban, I.; and
Kozat, S. S. 2021. Spatio-temporal Weather Forecasting
and Attention Mechanism on Convolutional LSTMs. arXiv
preprint.
Wu, Z.; Pan, S.; Long, G.; Jiang, J.; and Zhang, C. 2019.
Graph WaveNet for Deep Spatial-Temporal Graph Model-
ing. In IJCAI, 1907–1913.
Yu, B.; Yin, H.; and Zhu, Z. 2018. Spatio-Temporal Graph
Convolutional Networks: A Deep Learning Framework for
Traffic Forecasting. In IJCAI.
Zaytar, M. A.; and El Amrani, C. 2016. Sequence to se-
quence weather forecasting with long short-term memory
recurrent neural networks. International Journal of Com-
puter Applications.

6374

