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Abstract

Simplicial neural networks (SNN) have recently emerged as
the newest direction in graph learning which expands the idea
of convolutional architectures from node space to simplicial
complexes on graphs. Instead of pre-dominantly assessing
pairwise relations among nodes as in the current practice,
simplicial complexes allow us to describe higher-order in-
teractions and multi-node graph structures. By building upon
connection between the convolution operation and the new
block Hodge-Laplacian, we propose the first SNN for link
prediction. Our new Block Simplicial Complex Neural Net-
works (BScNets) model generalizes the existing graph con-
volutional network (GCN) frameworks by systematically in-
corporating salient interactions among multiple higher-order
graph structures of different dimensions. We discuss theoret-
ical foundations behind BScNets and illustrate its utility for
link prediction on eight real-world and synthetic datasets. Our
experiments indicate that BScNets outperforms the state-of-
the-art models by a significant margin while maintaining low
computation costs. Finally, we show utility of BScNets as the
new promising alternative for tracking spread of infectious
diseases such as COVID-19 and measuring the effectiveness
of the healthcare risk mitigation strategies.

Introduction

Graph Convolutional Networks (GCNs) is a powerful ma-
chinery for graph learning, allowing for efficient exploration
of various pairwise interactions among graph nodes. How-
ever, most GCN-based approaches tend to be limited in
their ability to efficiently exploit and propagate information
across higher-order structures (Morris et al. 2019; Xiao and
Deng 2020). In turn, many recent studies on cyber-physical,
social, and financial networks suggest that relations among
multi-node graph structures, as opposed to pairwise interac-
tion among nodes, may be the key toward understanding hid-
den mechanisms behind structural organization of complex
network systems. For example, disease transmission might
be influenced not only by one-to-one interactions but also
be largely impacted by various group relations and social
reinforcement induced by each person’s social circle, e.g.,
COVID-19 anti-mask and anti-vaccine views. To enhance
the obfuscation efforts in money laundering schemes, crim-
inals involve complex interactions not only among multiple
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individuals but also among multiple criminal groups. Such
higher-order graph interactions beyond the node space and
multi-node structures may be naturally modelled using sim-
plicial complexes.

Simplicial neural networks (SNN) is the newly emerging
direction in graph learning which extends convolutional op-
eration to data that live on simplicial complexes. SNNs have
recently been successfully applied to graph classification
and trajectory forecasting (Ebli, Defferrard, and Spreemann
2020; Bunch et al. 2020; Roddenberry, Glaze, and Segarra
2021; Bodnar et al. 2021). The key engine behind SNNs
is the Hodge—de Rham theory that generalizes the standard
graph Laplacian which describes node-to-node interactions
via edges to Hodge-Laplacian which allows us to model dif-
fusion from edges to edges via nodes, edges to edges via
triangles, triangles to triangles via edges, etc (Lim 2020;
Schaub et al. 2020). Furthermore, Hodge-Laplacian estab-
lishes a natural connection between higher-order proper-
ties of discrete representations, e.g., graphs, and continuous
representations, e.g., manifolds. As such, Hodge-Laplacian-
based analytics opens multiple new perspectives for geo-
metric representations at the interface of shape analysis,
graph theory, and geometric deep learning (GDL) (Wang
and Solomon 2019; Hajij, Istvan, and Zamzmi 2020).

In this paper we make the first step toward bridging SNNs
with link prediction on graphs. We propose a new Block
Simplicial Complex Neural Networks (BScNets) model, by
building upon the connection between convolution operation
and block Hodge-style representation. In contrast to other
SNNs which tend to focus only on edge-to-edge informa-
tion flows, or Hodge 1-Laplacian, BScNets allows us to si-
multaneously incorporate salient interactions among multi-
ple simplicial complexes on graphs. Specifically, our BSc-
Nets scheme is composed of two components: the Adap-
tive Hodge Laplacian Based Block (AHLB) which describes
multi-level structures and adaptively learns hidden depen-
dencies among geometric representations of higher-order
structures, and the Hodge-Style Adaptive Block Convolu-
tion (H-ABC) Module which automatically infers relations
among multi-dimensional simplices. Our results indicate
that this novel integration of information flows across not
one but multiple higher-order structures via the Block Hodge
Laplacian analytics yields the highest performance in link
prediction tasks.



Significance and novelty of our contributions can be sum-
marized as follows:

e Our BScNets is the first SNN for link prediction on
graphs, bridging the recently emerging concepts of con-
volutional architectures on simplicial complexes with
topological signal processing on graphs.

e We propose a new (random-walk based) adaptive Hodge
Laplacian based block operator which simultaneously
integrates knowledge on interactions among multiple
higher-order graph structures and discuss its theoretical
properties.

e We extensively validate BScNets on real-world and syn-
thetic datasets, from such diverse domains as criminal,
collaboration and transportation networks. Our results
indicate that BScNets outperforms the state-of-the-art
models by a significant margin while maintaining low
computation costs.

o We discuss utility of BScNets and SNN tools as the new
promising alternative for tracking spread of infectious
diseases such as COVID-19 and evaluating healthcare
risk mitigation strategies.

Related Work

Link Prediction GCN-based methods are known to be the
powerful machinery for link prediction tasks. Specifically,
the Graph Autoencoder (GAE) (Kipf and Welling 2016)
and its variational version, i.e., Variational Graph Autoen-
coder (VGAE), are first employed to link prediction on ci-
tation networks. SEAL (Zhang and Chen 2018) extracts lo-
cal enclosing subgraphs around the target links and learns a
function mapping the subgraph patterns to link existence. In
addition, the Hyperbolic Graph Convolutional Neural Net-
works (HGCN) (Chami et al. 2019) leverages both the hy-
perbolic geometry and GCN framework to learn node repre-
sentations. Another interesting recent strategy is to use pair-
wise topological features to find latent representations of ge-
ometrical structure of graph using GCN (Yan et al. 2021).
Our method differs from these approaches in that it explic-
itly models the higher-dimensional graph substructures and
higher-order interactions via building an adaptive and in-
terpretable Hodge block representation. Moreover, we pro-
pose a novel Hodge-style adaptive block convolution mod-
ule to aggregate topological features encoded in the simpli-
cial complexes by investigating relationships between sim-
plices of different orders. This higher-order simplicial rep-
resentation is substantially more general than the structural
representation of node sets.

Simplicial Neural Networks Modeling higher-order in-
teractions on graphs is an emerging direction in graph rep-
resentation learning. While the role of higher-order graph
structures for graph learning has been documented for a
number of years (Agarwal, Branson, and Belongie 2006;
Johnson and Goldring 2012) and involve such diverse appli-
cations as graph signal processing in electric, transportation
and neuroscience systems, including link prediction (Ben-
son et al. 2018), integration of higher-order graph substruc-
tures into deep learning on graphs has emerged only in 2020.
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Indeed, several most recent studies propose to leverage sim-
plicial information to perform neural networks on graphs.
For instance, Ebli, Defferrard, and Spreemann (2020) de-
velops a model called Simplicial Neural Networks, which
integrates the simplicial Laplacian of a simplicial complex
into neural network framework based on simplicial Lapla-
cian. Message Passing Simplicial Networks (MPSNs) (Bod-
nar et al. 2021) is proposed by performing massage pass-
ing on simplicial complexes for graph classification. Simi-
larly, SCoNe (Roddenberry, Glaze, and Segarra 2021) uses
the GCN architecture depended on simplicial complexes to
extrapolate trajectories on trajectory data. Besides, the con-
volutional message passing scheme on cell complex (Hajij,
Istvan, and Zamzmi 2020) is shown to facilitate representa-
tional learning on graphs. Moreover, to emphasize the uni-
fying principles offered by the categorical and cochain no-
tions, Hajij et al. (2021) brings deep learning on complexes
and discrete exterior calculus via topological networks. Our
approach further advances these recent results by explicitly
exploiting local topological information encoded in simpli-
cial complexes of multiple dimensions and extracting the
key interaction relations among multiple higher-order graph
structures, which leads to significant gains in link prediction
accuracy.

Block Simplicial Complex Neural Networks

We consider a graph G = (V,&, X)), where V is the set
of nodes (|V| = n) and € C V x V is the set of edges
(€] = m). Furthermore, each node v; is associated with a
d-dimensional vector of attributes x; which is the i-th row of
matrix X € R"*¢ (where d is the input feature dimension).
Connectivity of G can be encoded in a form of an adjacency
matrix A € R™*™ with entries [A];; = 1 if nodes ¢ and j
are connected and 0, otherwise. For undirected graph G, A
is symmetric (i.e., A = A"

Background on Hodge Theory One of the focal points
of graph theory and, in virtue of it, GDL, is graph Lapla-
cian. Laplacian allows us to establish a natural link between
discrete representations, e.g., graphs, and continuous repre-
sentations, e.g., manifolds (Chung and Graham 1997). The
(unnormalized) graph Laplacian is defined as Lo = D — A,
and Ly is a symmetric and positive-semidefinite matrix.
The Laplacian L represents a discrete counterpart of the
Laplacian operator in vector calculus. In particular, as di-
vergence of the gradient of some twice-differentiable multi-
variate function in vector calculus, the Laplacian operator is
the flux density of the gradient flow of this function. That is,
Laplacian measures how much the value of the function at
any given point differs from average values of the function
evaluated at nearby points. In turn, in the discrete case sim-
ilarly, graph Laplacian L, measures diffusion from node to
node through edges and, broadly speaking, assesses at what
extent the graph G differs at one node from the graph G at
surrounding nodes. While L, contains some very important
information on the topology of G, the natural question arises
what if we are interested in diffusion dynamics on graph sub-
structures beyond the node level? For example, formation
of money laundering activities within criminal networks by



default involves very complex multi-node interactions and,
hence, cannot be well captured by methods that focus on the
dyadic graph relationships. To assess such higher-order net-
work properties, we can study graphs in terms of topological
objects such as simplicial complexes and exploit the discrete
Hodge theory, particularly, Hodge-Laplacian-based analyt-
ics as generalization of Laplacian dynamics to polyadic sub-
structures of G.

Definition 1 A family A of finite subsets of a set V is an
abstract simplicial complex if for every o € A, 7 C o im-
plies T € A. Le., A is closed under the operation of taking
subsets. If |o| = k + 1, then o is called a k-simplex. Every
subset T C o such that |o| = k is called a face of o. All
simplices in A that have o as face are called co-faces. Di-
mension of A is the largest dimension of any of its faces, or
o< if there is no upper bound on the dimension of the faces.

Hence, nodes of G are 0-simplices, edges are 1-simplices,
and triangles are 2-simplices. For a k-simplex of £ > 0,
we can also define its orientation by (arbitrary) selecting
some order for its nodes, and two orderings are said to be
equivalent if they differ by an even permutation. As a re-
sult, for a given k-simplex o with orientation [ig, 2, . . . , ix],
any face of o is assigned its own orientation (or “identi-
fyer”) [ig, %1, ..., 8—1,%j41,- .., (i.e., we omit the j-th
element). To study diffusion among higher-order substruc-
tures of G, we now form a real-valued vector space C*
which is endowed with basis from the oriented k-simplices
and whose elements are called k-chains. Diffusion through
higher-order graph substructures can be then defined via lin-
ear maps among spaces C* of k-chains on G (Lim 2020).

Definition 2 A linear map 0y, : C* — C*~1 is called a
boundary operator. The adjoint of the boundary map induces
the co-boundary operator 9% : C* — C*k*1. Matrix repre-
sentations of Oy, and 6,3— are By, and B,l—, respectively.

An operator over oriented k-simplices Ly, : C* — C* is
called the k-Hodge Laplacian, and its matrix representation
is given by

Ly = B} By, + B;11 B}, (D

where B}, By, and Bj,11B)., are often referred to L™

and L}”, respectively.

As By = 0, the standard graph Laplacian L is a subcase
of (1) which tracks diffusion process from nodes to nodes
via edges. Indeed, Ly = BlBlT, where B; is an n X m-
incidence matrix of G (i.e., B1[ij] = 1 if node 7 and edge
4 are incident and 0, otherwise). In turn, L‘f"w" =B IB 1
is often referred to as edge Laplacian and assesses diffusion
from edges to edges via nodes. Finally, Hodge 1-Laplacian
L, measures variation on functions defined on graph edges
(i.e., 1-simplices) with respect to the incidence relations
among edges and nodes (i.e., 0-simplices) and edges and tri-
angles (i.e., 2-simplices). More generally, L measures vari-
ation on functions defined on k-simplices of G with respect
to incidence relations among k-simplices with (k — 1)- and
(k + 1)-simplices. Figure 1 shows an example of the simpli-
cial complex on a graph (more details are in Appendix A.1).
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Figure 1: An example of generating simplicial complex from
a classroom environment network, where T, is the teacher_0
and S, is the student_u (u € {0,...,6}). (a) Graph structure
of the classroom environment network; (b) Simplicial com-
plex of the classroom environment network; B, and B are
the corresponding node-to-edge and edge-to-face incidence
matrices, respectively.

Random Walk Based Block Hodge-Laplacian Opera-
tor While the Hodge theory allows us to systematically de-
scribe diffusion across higher-order graph substructures, or
k-simplices of any k, all current studies are restricted solely
to Hodge 1-Laplacian Lq (Schaub et al. 2020; Roddenberry,
Glaze, and Segarra 2021; Bodnar et al. 2021). In this pa-
per we propose a new random walk based block Hodge-
Laplacian operator which enables us to simultaneously in-
tegrate knowledge on interactions among higher-order sub-
structures of various orders into graph learning.

Definition 3 The K-block Hodge-Laplacian Lk is a di-
vergence operator on the direct sum of vector spaces C*,
k € Zso. That is, £ : &5 C* — @k C*. Block
Hodge-Laplacian £ can be represented as a diagonal
block matrix diag{Lg, L1, ..., Lk}. Furthermore, by se-
lecting a subset of indices {k1,...,k;,... . k;} € Z>o, we
can consider a reduced block Hodge-Laplacian * £ ;, with a
matrix representation diag{Ly,, Ly,, ..., Ly, }, which al-
lows us to describe interaction relations among a particu-
lar subset of higher-order graph substructures. Here posi-
tive integers K and kj are bounded by the dimension of the
abstract simplicial complex A on G and in practice, K and
kj are typically < 2.

The K-block Hodge-Laplacian £ is related to the Dirac
operator in differential geometry (i.e., Dirac operator is a
square root of £) (Lloyd, Garnerone, and Zanardi 2016).
As such, £ has multiple implications for analysis of syn-
chronization dynamics and coupling of various topological
signals on graphs, with applications in physics and quantum
information processing (Calmon et al. 2021).

Lemma 1 For K,J € Z>o, operators £x and Re s are
symmetric and semipositive-definite, i.e. £x > 0 and
RBe; >0, 8= (Lx)  and BL; = (Be))T.

Furthermore, we propose the random walk-based block
Hodge-Laplacian, i.e., r-th power of block Hodge-Laplacian
representation (where r € Z~g). Our random walk-based
block Hodge-Laplacian is inspired by the recent success in



random walk based graph embeddings and simplicial com-
plexes but is designed to conduct informative joint random
walks on higher-order Hodge Laplacians instead of limited
powering Hodge 1-Laplacian (Benson et al. 2018; Bodnar
et al. 2021). Indeed, successfully travelling through higher-
order topological features will provide us with additional
feature information which is valuable for learning edge em-
beddings. The following Lemma 2 provides insight on the
interplay among random walks on various k-simplices and
their respective Hodge-Laplacian representation.

Lemma 2 Forany r € Zxo and K, J € ZL>o, the r-power
of (£x)" and (BL;)" are given by @kKZO((LZ"w”)T +
(L,")") and 69;’:1((%3“’”)’“ + (LZf)T) respectively.

Adaptive Hodge Laplacian Based Block Analytics Our
new approach to learning higher-order graph topology is
motivated by the following question: Can we capture the in-
teraction relations among k-simplices on the graph G whose
orders are farther than k—1 and k+1 apart? While address-
ing this problem falls outside the Hodge-de Rham theory on
the simplicial Hodge Laplacians, we provide an affirmative
answer to this question through building an adaptive Hodge
Laplacian Based Block Operator.

Without loss of generality, let us consider a 2-block (re-
duced) Hodge-Laplacian

Our goal is to construct a new linear operator such that
we describe interaction relations among Ly, and Ly, . This
problem can be addressed by defining and learning a sim-
ilarity function f(Ly,, Ly,). The natural choice for such
similarity function is the inner product among elements in
C*1 (i.e., k1-chains) and elements in C*? (i.e., ky-chains).
However, in general, dim(C*1) # dim(C*2). Assume that
di = dim(C*) > dy = dim(C*?). Hence, instead we
can consider a similarity function based on the inner product
between elements in C'*2 and elements in Pg, Ck1, je., the
projection of C** on the lower dimensional space. Here Py,
is the corresponding orthogonal projector and, given sym-
metry of Ly, can be formed by the eigenvectors of Ly,
corresponding to the top dy largest eigenvalues. Our new
Adaptive Hodge Laplacian Based (AHLB) Block operator
then takes the form

Ly | O

5L )

|

Lkl ‘ f(]P)dsz’ULkz)
f(]P)dsznLkz)T ‘ Lkz

Note that in general, linear operator LY € R(d1+d2)x (di+dz)

is no longer a Laplacian. For example, while ]L2B is symmet-
ric (by construction), it may not satisfy the condition of pos-
itive semidefinitess (see Lemma 3 in Appendix A.2). How-
ever, as shown below, AHLB opens multiple opportunities to
better describe higher-order interactions on graphs that are
inaccessible not only with individual k-Hodge Laplacians
but even with the K-block Hodge-Laplacian operator (see
the ablation study for more details). In addition, followed
by Lemma 2, we also consider a case when AHLB is con-
structed based on the r-th power of £+, and our studies in-

LY = 3)
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dicate that on average the best results are achieved for r = 2
(see Table 3 and Appendix A.3).

Armed with the AHLB operator (Eq. 3), we can uti-
lize the non-local message operation f(-,-) (Wang et al.
2018) to capture long-range relations and intrinsic higher-
order connectivity among entities in the 2-block (reduced)
Hodge-Laplacian £, i.e., f (P4, Lk, , Lk, ) placed in the off-
diagonal. We now describe the choices of non-local message
passing functions which can be used for f(-,-) in the fol-
lowing. Specifically, given two higher-order Hodge Lapla-
cians Ly, and Lj,, we define two types of the non-local
message passing functions to capture the relations between
[Pa, Lk, )i € R% and [Ly,]; € R% (i.e., topological em-
bedding of the i-th graph substructure in Py, L, and topo-
logical embedding of the j-th graph substructure in Ly, re-
spectively) as

(1) Inner-Product

F(Pay Lk, Jis [Lky ) =< [Pay Ly iy [Lk, 5 > -

Since all considered Laplacians in our case are over the real
field R, we can consider a dot-product. However, in a more
general case of multivariable functions on graph simplices,
f(-,+) can be an inner-product.

(2) Embedded Inner-Product

f(Pa, Ly, Ji, [Lk,]5) =< O¢[Pa, Li, |i, ©p[Lg,]; >,

where ©; € R¥*% and @, € R4 are weight matrices
to be learned, and d.. is the embedding dimension. As such,
we infer the relation value between two simplices.

Finally, the adaptive Hodge block can be formulated as

“4)

where softmax function is applied to normalize the block
operator Lf , and the ReLU activation function (where
ReLU(-) = max (0,-)) eliminates both weak pairwise re-
lation among higher-dimensional simplices and weak con-

]ﬂf = softmax (ReLU (LE )) ,

. . ~B
nections. As a result, the adaptive Hodge block L, can dy-
namically learns interactions among simplices of different
dimensions.

Hodge-Style Adaptive Block Convolution Module
Armed with the AHLB operator, we now discuss how to
construct the Hodge-style adaptive block convolution and
use it to learn the distance between two nodes in the embed-
ding space. Instead of using graph convolutional operator,

i.e., Lo, we adopt the AHLB operator ]I~42B to demonstrate
the effectiveness of the proposed novel higher-order Hodge
convolution operator. The Hodge-style adaptive block con-
volution (H-ABC) module is given by

Ze+1) _ (sz“@ﬁ‘)) @é@, (5)

where Z(© = X € R™* is node features matrix, @) ¢

Réx(d1+d2) and @) € R(B+d2)xdou are two trainable
weight matrices at layer ¢, and d,,, denotes the dimension of
node embedding at the (¢)-th layer through the H-ABC op-
eration. For the link prediction task, we use the Fermi-Dirac



decoder (Nickel and Kiela 2017) to compute the distance
between the two nodes. Formally,

: fH-ABC _
dist,,, =

(Z(erl) _ Z$)£+1))2,

u

6)

where dis » € R1*dout ig the distance between nodes
v and v in a local spatial domain.

tH—ABC
u

Graph Convolution Layer Similar to the process of
computing distances between learnable node embeddings
with the Hodge-style adaptive block convolution, we also
use graph convolution operation (Eq. 7) to evaluate the dis-
tance (Eq. 8) between the node embeddings of nodes u and
v as

HY — LHOeY,
S — (U — D),

@)
®)

where L = D, '/?(A 4+ I)D;'/* (where D, is the degree
matrix of A + I, i.e., [D,];; = Zj[A + I];), HO =

X e R™*4 is node features matrix, @gé) € R%%dour is the
trainable weight matrix, d,,¢ denotes the dimension of node
embedding at the (¢)-th layer through the graph convolution
operation, distSS € R'*out is the distance between nodes

u and v in global spatial domain.

Distance between Two Nodes We wrap the concatena-
tion of Hodge-style adaptive convolution and graph convolu-
tion operation outputs (i.e., in Egs. 6 and 8) into Multi-layer
Perceptron (MLP) block

dist = ReLU( fyrp([ma x dist%, 75 x dist™™BC))),

where [-, -] denotes the concatenation of the outputs from
H-ABC module and graph convolution operation, fyyp is
an MLP layer that maps the concatenated embedding to
a d,-dimensional space, and 7, and 7mg are the hyper-
parameters representing the weight of each distance (i.e.,
dist) in the (£ 4 1)-th layer. Based on the propagation rule
above, the edges connection probability can be computed
as prob(u, v) = [exp ((dist,, — 8)/n) + 1] ", where & and
n are hyperparameters. Then, training via standard back-
propagation is performed via binary cross-entropy loss func-
tion using negative sampling. Figure 2 illustrates our pro-
posed BScNets framework, which consists of the Hodge-
style adaptive block convolution module and graph convo-
Iution operation (see the Appendix A.4 for details).

Experimental Study

Datasets We experiment on three types of networks (i) cita-
tion networks: Cora and PubMed (Sen et al. 2008); (ii) social
networks: (1) flight network: Airport (Chami et al. 2019),
(2) criminal networks: Meetings and Phone Calls (Cavallaro
et al. 2020), and (3) contact networks: High School network
and Staff Community (Salathé et al. 2010; Eletreby et al.
2020); (iii) disease propagation tree: Disease (Chami et al.
2019). The statistics and more details of the datasets are pro-
vided in Appendix B.1.1.

Baselines We compare against ten state-of-the-art
(SOA) baselines, including (i) MLP, (ii) GCN (Kipf
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Figure 2: The architecture of BScNets (for more details see
Appendix A.4).

and Welling 2017), (iii) Simplified Graph Convolution
(SGC) (Wu et al. 2019), (iv) Graph Attention Networks
(GAT) (Velickovi¢ et al. 2018), (v) GraphSAG (SAGE),
(vi) SEAL (Zhang and Chen 2018), (vii) Hyperbolic neural
networks (HNN) (Ganea, Bécigneul, and Hofmann 2018),
(viii) Hyperbolic Graph Convolutional Neural Networks
(HGCN) (Chami et al. 2019), (ix) Persistence Enhanced
Graph Neural Network (PEGN) (Zhao et al. 2020), and (x)
Topological Loop-Counting Graph Neural Network (TLC-
GNN) (Yan et al. 2021). Further details of baselines are con-
tained in Appendix B.1.2.

Experiment Settings We implement our proposed BSc-
Nets with Pytorch framework on two NVIDIA RTX 3090
GPUs with 24 GiB RAM. Following (Chami et al. 2019),
for all datasets, we randomly split edges into 85%/5%/10%
for training, validation, and testing. Further, for all datasets,
BScNets is trained by the Adam optimizer with the Cross
Entropy Loss function. For all methods, we run 20 times
with the same partition and report the average and standard
deviation of ROC AUC values. More details about the ex-
perimental setup and hyperparameters are in Appendix B.2.
Our datasets and codes are available on https://github.com/
BScNets/BScNets.git.

Experiment Results Tables 1 and 2 show the compar-
ison of our proposed BScNets with SOAs for link pre-
diction tasks on six network datasets (i.e., Cora, PubMed,
Meetings, Phone Calls, Airport, and Disease) and two con-
tact network datasets (i.e., High School and Staff Com-
munity), respectively. The results indicate that our BSc-
Nets consistently achieves the best performance on all net-
work datasets compared to all SOAs. Particularly, from Ta-
ble 1, we find that: (i) Compared to the spectral-based Con-
VGNNs (i.e., GCN and SGC), BScNets yields more than
3.32% relative improvements to the existing best results
for all six datasets; (i) BScNets outperforms spatial-based
ConvGNN s (i.e., GAT, SAGE, and SEAL) with a signifi-
cant margin; (iii) Compared to the hyperbolic-based NNs
(i.e., HNN and HGCN), BScNets improves upon HGCN
(which performs best among the hyperbolic-based models)
by a margin of 2.00%, 1.29%, 5.51%, 11.62%, 1.20% and
7.91% on datasets Cora, PubMed, Meetings, Phone Calls,
Airport, and Disease, respectively; (iv) BScNets further im-
proves PH-based ConvGNNs (i.e., PEGN and TLC-GNN)



with a significant margin on all six datasets. Additionally,
Table 2 shows performance of BScNets and baseline meth-
ods on High School network and Staff Community. BSc-
Nets obtains the superior results on all datasets, outperform-
ing the representative spectral-, spatial-, PH-based models
including GCN, SEAL, and TLC-GNN by a large margin.
Based on the one-sided two-sample t-test, our BScNets also
demonstrates statistically significant improvement in perfor-
mance (marked by *) compared to the existing best results
in ROC AUC for all eight datasets (see Appendix B.5 for
additional experimental results of BScNets).

Overall, the results show that BScNets can accurately cap-
ture the key structural information on the graph, both at the
dyadic and polyadic levels of interactions, and achieves a
highly promising performance in link prediction.

Model High School  Staff Community
GCN (Kipf and Welling 2017)  63.55 + 1.72 64.97 + 6.88
SEAL (Zhang and Chen 2018)  68.13 £ 1.50 65.60 + 3.46
HGCN (Chami et al. 2019) 67.30 + 1.28 66.75 + 1.38
TLC-GNN (Yan et al. 2021) 69.15 + 1.49 67.35 +5.29
BScNets (ours) *71.68 + 1.72 *79.13 + 2.95

Table 2: ROC AUC for link prediction on contact networks.

Ablation Study To further investigate the importance of
the different components in BScNets, we have conducted
an ablation study of our proposed model on Cora and Dis-
ease and results are presented in Table 3 (* means statisti-
cally significant result). We compare our BScNets with three
ablated variants, i.e., (i) BScNets without random walk on
block Hodge-Laplacian (W/o Random walks), (ii) BScNets
without relation modeling (off-diagonal terms) (W/o Rela-
tion), and (iii) BScNets without the AHLB operator but with
Hodge 1-Laplacian (With only Ly; i.e., instead of using the
block structure, we directly incorporate Hodge 1-Laplacian
L into the Hodge-style convolution module by replacing

]Lf with L, in Eq. 5). The results indicate that, when ablat-
ing the above components, the ROC AUC score of BScNets
drops significantly. For both datasets, random walk mecha-
nism on the block Hodge-style representation significantly
improves the results as it utilizes higher-order relationships
expressed in the graph data and learns embeddings beyond
the node-space. In addition, we show that BScNets outper-
forms BScNets without relation modeling due to the fact
that relation modeling integrates the learnt relationship be-
tween information in multi-dimensional simplices into the
Hodge-style adaptive block convolutional encoder. More-
over, as expected, we find that replacing the AHLB operator
by only Hodge 1-Laplacian results in a significant decrease
in performance that indicates that block structure and off-
diagonal higher-order relationships consistently boost the
performance of link prediction.

Computational Complexity Incidence matrices B and
B, can be calculated efficiently with the computational
complexity O(n + m) and O(m + q) respectively, where
n is the number of O-simplices (i.e., nodes), m is the num-
ber of 1-simplices (i.e., edges), and ¢ is the number of 2-
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simplices (filled triangles). For large-scale graphs, we sam-
ple € x m edges (where ¢ € (0,1]) from edge set £ and
then pass these € x m edges to construct higher-order Hodge
Laplacians. Thus this sparse sampling reduces the computa-
tion complexity of constructing By and B to O(n—+¢exm)
and O(e x m + ¢') respectively (where ¢’ denotes the num-
ber of 2-simplices after sparse sampling). This sampling
method is motivated by the DropEdge technique (Rong et al.
2019) which has been used to prevent over-fitting and over-
smoothing in GCNs via randomly removing edges from the
graph. Equipping BScNets with edge sampling results in
substantial reductions in the size of the input data and, as
such, computational complexity. Table in Appendix B.4 re-
ports the average running time of incidence matrices gen-
eration for target network, training time per epoch of our
BScNets model on all datasets, and running time compari-
son between BScNets and baselines.

Infectious Disease Transmission As recently noted
by lacopini et al. (2019); Schaub et al. (2020); Li et al.
(2021), higher-order relationships such as multi-member
group interactions, may be the key driving factors behind
contagion dynamics, and simplicial complexes offer a natu-
ral way to describe such polyadic group relations. Here we
are motivated by the two interlinked questions: Can we use
link prediction with and without simplicial complexes to re-
construct unobserved social interactions and then to approx-
imate the underlying contagion dynamics in the whole pop-
ulation? How accurate are the link prediction methods, with
and without simplicial complexes, in reflecting the impact of
disease mitigation strategies?

Indeed, in practice public healthcare professionals might
have records on most registered residents (i.e., nodes) via,
e.g., social security offices. However, there is only partial
information on social interactions (i.e., edges) among these
individuals. Our goals are to (i) predict social links among
individuals where the interaction information is unknown,
(i) assess how mitigation strategies will impact the epidemic
spread predicted from the reconstructed network, and (iii)
evaluate how close the infection curves on the reconstructed
data are to the infection curve on the whole true population.
More details about the procedure of infectious disease trans-
mission evaluation are provided in Appendix B.3.

We adopt the Susceptible-Exposed-Infected-Recovered
(SEIR) (Kermack and McKendrick 1927) epidemic model.
We set the infection curve delivered by SEIR on the whole
population as the ground truth. We perturb certain fraction of
links (i.e., remove the real links and add fake links) from the
whole population to address the real world scenario when we
do not have access to information on all social interactions.
We then apply two link prediction methods to the network
with perturbation, with and without simplicial complexes,
BScNets and TLC-GNN, respectively. We now reconstruct
the whole population by using BScNets and TLC-GNN
and consider the two infection curves yielded by SEIR on
the BScNets-based and TLC-GNN-based reconstructed net-
works. In addition, we assess sensitivity of the BScNets and
TLC-GNN curves to mitigation strategies where more cen-
tral nodes (individuals) are targeted to receive a vaccine, to



Model Cora PubMed Meetings  Phone Calls Airport Disease
MLP 83.15+0.51 84.10 £0.97 63.20+6.22 60.10 £6.72 89.51 +0.52 72.62 £ 0.61
HNN (Ganea, Bécigneul, and Hofmann 2018) 89.00 +0.10 94.87 £0.11 71.00 & 3.28 60.90 +4.25 90.78 £0.22 75.10 &+ 0.35
GCN (Kipf and Welling 2017) 90.42 +£0.28 91.11 £0.55 72.08 +4.19 61.50 +5.80 89.27 +0.42 64.70 £+ 0.56
GAT (Velickovic et al. 2018) 93.89 £0.13 91.22 £0.12 74.00 £4.68 63.40 +5.20 90.55 4+ 0.37 69.99 4+ 0.32
SAGE (Hamilton, Ying, and Leskovec 2017) 86.24 +0.65 85.96 £ 1.16 72.30 +5.25 62.07 +5.49 9047 £0.59 65.91 +0.33
SGC (Wu et al. 2019) 91.67 £0.20 94.10 £0.20 73.38 +£3.49 63.80 +5.71 90.01 +£0.32 65.21 +0.23
SEAL (Zhang and Chen 2018) 9255+ 0.50 92.424+0.12 71.09 £7.50 62.96 +4.17 95.16 +0.39 85.23 4+ 0.79
HGCN (Chami et al. 2019) 93.00 £0.45 96.29 £0.18 83.20 £4.15 70.20 +3.77 96.40 +0.19 90.80 4+ 0.30
PEGN (Zhao et al. 2020) 93.13 £ 0.50 95.824+0.20 74.17 +£5.00 6523 £4.15 9546+0.71 83.61 £1.26
TLC-GNN (Yan et al. 2021) 94.22 +0.78 97.03 £0.10 73.20+5.32 66.17 £3.90 96.60 £ 0.69 86.19 + 1.23
BScNets (ours) *94.90 + 0.70 *97.55 + 0.12 *88.05 £ 5.51 *79.43 + 6.04 *97.57 £+ 0.67 *98.60 + 0.58

Table 1: ROC AUC and standard deviations for link prediction. Bold numbers denote the best results. * means statistically

significant result.

Architecture Cora Disease

BScNets *94.90 +0.70  *98.60 + 0.58
‘W/o Random walk 93.79 + 0.85 93.38 + 5.85
W/o Relation 94.00 4 0.60 95.90 &+ 1.13
With L, 93.73 £ 0.44 93.43 +1.89

Table 3: Ablation study of the network architecture (%).

quarantine or are persuaded to wear masks (Chen et al. 2021;
Curiel and Ramirez 2021). Under the targeted mitigation
strategies, a fraction of the most central nodes cannot trans-
mit the disease. The ‘base’ infection curve is obtained from
the whole population where such central nodes are removed
from the disease spread. In turn, BScNets and TLC-GNN
operate on the partially observed data where some edges
are perturbed (as discussed above) and, upon reconstructing
the unknown social interactions, BScNets and TLC-GNN
are asked to re-determine their own individuals to be tar-
geted through the disease mitigation strategy. We perform
these experiments on the High School network (Salathé et al.
2010; Eletreby et al. 2020). We select TLC-GNN as the com-
peting link prediction approach as it is a runner-up (see Ta-
ble 2). We set the edge perturbation rate to 20%. We con-
sider betweenness and degree centralities. We simulate each
scenario 50 times and average the results. (For more experi-
ments see Appendix B.3).

Figure 3 shows the infection curves during the time period
of 180 days fitted to (i) the original network, (ii) the BSc-
Nets reconstructed network, and (iii) the TLC-GNN recon-
structed network, under targeted mitigation strategy based
on the betweenness centrality. We observe that the infection
curve of the BScNets-reconstructed network (curvegsenets)
is significantly closer to the ‘base’ infection curve (i.e.,
CUIVepase) than the curve based on TLC-GNN (curveunner-up)-
Most importantly, we find that while the peaks of the
curvepscnets and the curvey,e are very close, i.e. 59.1% and
59.8%, respectively, the TLC-GNN curve (which does not
account for multi-node group interactions) tends to substan-
tially underestimate the number of infected individuals. For
instance, at day ¢ = 30, t = 60, t = 90, ¢ = 120, and at day
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t = 180, TLC-GNN suggests that only 0.5%, 2.2%, 10.1%,
29.5%, and 54.2% of population are infected, while the
ground truth ‘base’ curve projects that 0.6%, 2.9%, 12.2%,
32.2%, and 59.8% are infected. That is, the difference be-
tween TLC-GNN and the ‘base’ curve, even for such small
network, reaches 5% of the population, which eventually
translates into significant societal implications such as short-
ages of health care facilities and overall system unprepared-
ness to pandemics like COVID-19. This phenomenon also
confirms the most recent premise of epidemiological studies
that higher-order interactions among multi-node groups (i.e.,
simplicial complexes) are the hidden driving factors behind
the disease transmission mechanism. In turn, BScNets and
other SNNs may be the most promising direction not only
to capture such higher-order group interactions but also to
reveal hidden polyadic relations in social networks.

0.8 Fraction of infected

+— Mean Fraction of Infected Curve (Ground-truth)
Predicted Mean Fraction of Infected Curve (BScNets)
-=- Predicted Mean Fraction of Infected Curve (TLC-GNN)

Fraction
<) =) o <) <)
w > 0 o

o
N

e
-

0.0

140 160 180

120

80 100
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20 40 60

Figure 3: SEIR infection curves based on the original High
School (HS) network (purple), BScNets-reconstructed HS
network(orange), and TLC-GNN-reconstructed HS network
(green), under betweenness-based mitigation strategy.

Conclusion

We have proposed the first SNN for link prediction. We have
shown that relations among multiple multi-node structures
play a significant role in graph learning. In the future, we
will extend the ideas of simplicial DL to dynamic networks.
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