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Abstract

In this paper, we consider the problem of lacking theo-
retical foundation and low execution efficiency of the in-
stance selection methods based on the k-nearest neighbour
rule when processing large-scale data. We point out that the
core idea of these methods can be explained from the per-
spective of Bayesian decision theory, that is, to find which
instances are reducible, irreducible, and deleterious. Then,
based on the percolation theory, we establish the relation-
ship between these three types of instances and local ho-
mogeneous cluster (i.e., a set of instances with the same la-
bels). Finally, we propose a method based on an accelerat-
ed k-means algorithm to construct local homogeneous clus-
ters and remove the superfluous instances. The performance
of our method is studied on extensive synthetic and bench-
mark data sets. Our proposed method can handle large-scale
data more effectively than the state-of-the-art instance se-
lection methods All code and data results are available at
https://github.com/CQQXY161120/Instance-Selection.

Introduction
The massive data collected in many practical problems
present new challenges for data mining and knowledge dis-
covery approaches (Hariri, Fredericks, and Bowers 2019).
For example, training the support vector machines (SVM)
classifier (Chang and Lin 2011) is time-consuming on a
dataset with more than one million instances (Singh, Roy,
and Mohan 2016). Therefore, for these large-scale data, s-
calability becomes an issue. One of the most common ways
to deal with this problem is instance selection (Brighton and
Mellish 2002; Olvera-López et al. 2010; Hamidzadeh, Mon-
sefi, and Yazdi 2015). It removes redundant and deleterious
instances from a data set to obtain a tractable amount of in-
stances. The significance of the instance selection method is
multiple. It can reduce data storage requirements, improve
the generalization performance of the classification models,
and reduce the training time of the classification models.

For a classification task, the purpose of instance selec-
tion is to select a subset of instances so that a classifier
trained on the subset can obtain the same or better perfor-
mance than when whole instances are used. In recent years,
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the KNN-based instance selection, which is a kind of in-
stance selection method that is based on the k-nearest neigh-
bour rule, has received more attention (Garcia et al. 2012;
Cavalcanti and Soares 2020; Malhat et al. 2020). The ex-
isting KNN-based instance selection methods can be classi-
fied into three categories: condensation, edition, and hybrid
(Kim and Oommen 2003). The condensation methods fo-
cus on maintaining those instances located at the classifica-
tion boundary and removing the instances that are far away
from the boundary, among which condensed nearest neigh-
bour (Hart 1968) is the most classical algorithm. The edition
methods aim at cleaning the noisy labelled instances and
outlier instances. Edited Nearest Neighbors (Wilson 1972)
is a classical method in this category. The hybrid methods
select the most representative instances even though the in-
stances are at or far away from the boundary. Most of the
existing methods fall into this category, such as, decremen-
tal reduction optimization procedure (DROP) (Wilson and
Martinez 2000), iterative case filtering (ICF) (Brighton and
Mellish 2002), Adaptive threshold-based instance selection
(ATISA) (Cavalcanti, Ren, and Pereira 2013), ranking-based
instance selection (RIS) (Cavalcanti and Soares 2020), and
enhanced global density-based instance selection (EGDIS)
(Malhat et al. 2020). Among them, RIS and EGDIS obtain
excellent experimental results.

Although those instance selection methods have made
significant progress, some issues need to be further study.
The first issue is that these methods lack a theoretical foun-
dation. While these methods are convenient and intuitive,
there is no theoretical foundation supporting their core ideas
to the best of our knowledge. The second issue is that these
methods face the problem of low execution efficiency. Since
these methods are derived from the k-nearest neighbour rule,
they inevitably need to calculate the similarity among in-
stances. However, calculating and storing the similarity ma-
trix is a big overhead for large-scale instances. For example,
storing a 50, 000×50, 000 64-bit float matrix requires about
19G of memory, and storing a 500, 000× 500, 000 float ma-
trix requires about 1900G of memory.

In this paper, we propose an instance selection method
called the Bayesian decision-based instance selection (B-
DIS) method, supported by Bayesian decision theory and
percolation theory, and that can deal with instance selec-
tion problems on large-scale data. First, from the perspec-
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Figure 1: A framework of instance selection from the per-
spective of Bayesian decision theory.

tive of Bayesian decision theory, we define which instances
are reducible, irreducible, and deleterious, as exemplified in
Fig.1 where τ1 and τ2 are two parameters used to control
the number of boundary instances. Coincidentally, the core
ideas of the instance selection methods based on condensa-
tion, edition, and hybrid can be explained from this perspec-
tive. Then, based on the percolation theory (Meester and Roy
1996), we show that the reducible, irreducible, and deleteri-
ous instances can be found in batches by the local homo-
geneous cluster (LHC), which is a set of instances with the
same labels. Therefore, the first step of BDIS is to find L-
HCs in a given data set. To achieve this goal, inspired by
the approximate nearest neighbour algorithm1, we employ
an accelerated k-means (Johnson, Douze, and Jégou 2017)
to divide the data set into multiple LHCs. The second step of
BDIS is to select representative instances from these LHCs.
Specifically, we first select those LHCs where the number of
instances within LHC is between τ1 and τ2. Then, we select
the instance closest to the centre of each LHC as the repre-
sentative instance. BDIS obtains lower time and space com-
plexity than two state-of-the-art instance selection methods.
Experimental results on both synthetic and benchmark data
sets verify the efficiency and effectiveness of BDIS.

The contributions of this paper include:

• We define which instances are reducible, irreducible, and
deleterious from the perspective of Bayesian decision
theory. The core idea of the existing KNN-based instance
selection methods can be explained according to these
three types of instances.

• We define local homogeneous cluster (LHC) and estab-
lish the relationship between LHC and reducible, irre-
ducible, and deleterious instances based on percolation
theory.

• We propose a method that can construct LHCs and find
representative instances according to constructed LHCs
with low time and space complexity.

1https://github.com/spotify/annoy

Instance Selection Based on Bayesian Decision
Theory

Problem Setup
Suppose we are given a training data set Dtr :=
{(xi, yi)}n1

i=1 drawn i.i.d from an unknown distribution
p(x, y), where xi ∈ X ⊆ Rd is a training data and
yi ∈ Y = {1, 2, · · · ,m} is its label. The goal of the clas-
sification problem is to learn a classifier f(x) : Rd →
{1, 2, · · · ,m} that maps each unseen d-dimensional vec-
tor X into one of the m classes based on the training
dataset. The effectiveness of the classifier is verified via a
test dataset Dte := {(xi, yi)}n2

i=1, drawn i.i.d from p(x, y)
as well. Let DRtr denote a dataset after instance selection,
and fDtr (x) and fDRtr (x) represent two classifiers with the
same hyperparameter build upon Dtr and DRtr, respective-
ly. The purpose of instance selection is to select an opti-
mal subset D∗tr ⊆ Dtr to satisfy (i) D∗tr = argmax

DRtr⊆Dtr
|

EDte [fDRtr (x)]−EDte [fDtr (x)] | and (ii) ∀D̂tr = argmax
DRtr⊆Dtr

|

EDte [fDRtr (x)] − EDte [fDtr (x)] |, |D∗tr| ≤ |D̂tr| where |D|
represents the number of elements in the set D.

The Proposed Methodology
Based on the above problem setup, we can find that in-
stance selection aims to use the least training data to obtain
a classifier with the highest generalization performance. As
we all know, the generalization performance of any classi-
fier for a given classification task is limited by the Bayes
error rate (BER) (Fukunaga and Keinosuke 1972), which
is the error rate of the Bayes optimal classifier. Let fBDtr
represent the Bayes optimal classifier over Dtr, then we
have EDte [fDtr (x)] ≤ EDte [fD∗

tr
(x)] ≤ EDte [f

B
Dtr (x)].

Therefore, from the perspective of Bayesian decision the-
ory, the purpose of instance selection is to make the clas-
sification model built on the selected instances set closer to
the Bayesian optimal classifier by excluding some instances.
So which instances should be excluded and which should be
included? As far as we know, the existing studies have not
systematically explained this. To fill this gap, we analyze the
problem from the perspective of the Bayes posterior proba-
bility and specify which instances are reducible, irreducible,
and deleterious.

As we all know, the Bayes optimal classifier achieves the
minimal misclassification rate and has the form of a maxi-
mum a posterior classifier: fB(x) = argmax

1≤i≤m
P(Y = i |

X = x). From the maximum posterior probability perspec-
tive, we define which instances in Dtr must be reduced, and
call these instances as deleterious set,

Ddstr := {(x, y) ∈ Dtr | c = arg max
1≤j≤m

P(y = j | x), c 6= y}.
(1)

Ddstr contains deleterious instances that include noisy la-
beled instances and instances that are misclassified by the
Bayes optimal classifier, as shown in Fig.1. Existing re-
searches indicate that these instances can interfere with

6288



the construction of the classification model and reduce the
generalization performance of the classification model (Xia
et al. 2020; Zhang et al. 2020). Therefore, these deleterious
instances should be removed during the instance selection
process, which is the core idea of the edition based instance
selection method.

Next, we define which instances are irreducible in Eqs.(2).
Since the instances located at the classification boundary
and possessing ground truth labels play an essential role in
constructing the classifier (Heo et al. 2019), this part of the
instances should not be reduced as much as possible. The
methods of instance selection based on condensation are de-
signed based on this assumption.

Distr := {(x, y) ∈ Dtr |c = arg max
1≤j≤m

P(y = j | x), c = y,

0.5 < P(y = j | x) ≤ τ},
(2)

where the parameter τ is used to control the selection
amount of boundary instances. The larger τ is, the more
boundary instances are selected.

Remark 1. For a given data set, deleting the deleterious in-
stances and maintaining the irreducible instances are con-
ducive to construct a classification model with better gener-
alization performance.

Finally, we define the reducible instances Drstr , that is,
the instances far from the classification boundary. These in-
stances can be suitably reduced because they belong to the
corresponding class with high probability and have less im-
pact on the construction of the classification model (Ho and
Basu 2002). The formal definition of Drstr is as follows:

Drstr := {(x, y) ∈ Dtr |c = arg max
1≤j≤m

P(y = j | x), c = y,

P(y = j | x) ≥ τ}.
(3)

Based on the above analysis, we transform the problem of
instance selection into finding out which instances are irre-
ducible, reducible, and deleterious for a given data set. Un-
fortunately, the definitions of these three types of instances
are based on probabilities, making it difficult to obtain in
practical problems. To overcome this problem, inspired by
the percolation theory, we find a solution. Specifically, first-
ly we define local homogeneous cluster (LHC), a set of in-
stances with the same labels connected by nearest neighbors,
as exemplified in Fig.2. In Fig.2, a circle filled with different
color represent a instance of different class, the lattice filled
with same color represent a LHC. From the figure, we can
observe that there are seven LHCs. For example, the lattice
marked in orange is an LHC formed by 10 instances points.
Then, we establish the relationship between the probability
that instances in the LHC belong to the corresponding class
and the size of LHC; that is, the size of an LHC is propor-
tional to the probability that the instances in the LHC belong
to the corresponding class. The formal statement is shown
in Theorem 1. In this way, we can distinguish these three
types of instances without knowing the probability that the
instance belongs to the corresponding class.

Figure 2: LHCs in a square lattice of 8× 8.

Theorem 1. For a datasetDtr, supposeDH is a LHC in the
Dtr and the average maximum posterior probability of the
data within DH is pH, then we have

| DH |∝ pH. (4)

Before giving the proof of Theorem 1, we first provide the
following lemma.

Lemma 1. Consider a data set that generated by the prob-
ability density function f(x). Let U(x, δ) represent the δ-
neighbor of a data point x ∈ Rd, σ represents the proba-
bility density of U(x, δ), and r represents the distance of x
to its nearest neighbor data point. Then when d ≥ 2 the
relationship between r and σ is

r ∝ σ−1. (5)

The skeleton of the proof of Lemma 1 is shown below.

Proof. Assume that the number of data points in the U(x, δ)
is n, and the volume of U(x, δ) is v. Here, the point refers to
a hypersphere with a certain radius. Then, the density σ of it
can be given by

σ =
n

v
. (6)

Assume that the volume of each data point is ve, then the
v is given by:

v = nve. (7)

Combining Eqs. (6) and (7), we can obtain

σ =
1

ve
. (8)

It is reasonable to assume that rd ∝ ve then

r ∝ ve1/d ∝ σ−1. (9)

Based on the Lemma 1, we prove the Theorem 1 as fol-
lows.

Proof. Let p denote a parameter that determines the size
of the largest cluster in a system. In an infinite system the
largest cluster grows with increasing parameter p, and at a
critical value pc, an infinite cluster appears. This pc is called
percolation threshold. In addition, let ξ, called the correla-
tion length, represent the average distance of two data points
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(a) Circles (b) Moons

Figure 3: LHCs formed by BDIS on two synthetic instances
sets, Circles and Moons.

belonging to the same cluster. Then as p → pc, we have
power laws of correlation length

ξ ∝ |p− pc|−v, (10)

where v is a critical exponent that depends only on general
features of the topology and the local rule, and v > 0.

In addition, we have the power laws of average cluster
size

S(pc) ∝ |p− pc|−γ , (11)
where S(pc) represents the average cluster size over a sys-
tem, γ is another critical exponent and γ > 0.

Based on these lemmas in percolation theory, we have

ξ ∝ |p− pc|−v ⇒ |p− pc| ∝ ξ−
1
v , (12)

and
S(pc) ∝ |p− pc|−γ ∝ ξ

γ
v ∝ ξ. (13)

Furthermore, according to the definition of correlation
length and nearest distance r, we have

ξ ∝ r−1. (14)

Since r ∝ σ−1, we have ξ ∝ σ. Therefore, the relation-
ship between probability density σ and S(pc) is

S(pc) ∝ σ. (15)

From the above theorem, we can conclude: (i) The more
instances contained in an LHC, the greater the probability
that the instances in the LHC belong to the corresponding
class; (ii) The deleterious instances are contained in those
smaller LHCs; (iii) The reducible instances are contained in
the LHCs with the larger size. Therefore, we can determine
which instances can be deleted by the size of LHC.

Next, we propose a method called BDIS to select rep-
resentative instances for a given data set. The first step of
BDIS is to use an accelerated k-means algorithm to itera-
tively divide the data set into multiple LHCs, as shown in
Fig. 3, where a cluster of data points marked with same
colors represent a LHC. For k-means implementation, we
employ FAISS (Johnson, Douze, and Jégou 2017) to accel-
erate k-means clustering. The inspiration comes from the
approximate nearest neighbor algorithm. According to the
above analysis, we use two truncation thresholds (τ1, τ2,

Algorithm 1: BDIS

1: Input: Training set Dtr = {(x1, y1) . . . , (xn, yn)}.
2: Parameters: Truncation threshold τ1 and τ2.
3: Output: Reduced set,R.
4: Employ accelerated k-means algorithm to cluster Dtr

into two sub-clusters;
5: for each sub-cluster do
6: if the labels of data in the sub-cluster are same then
7: We consider the sub-cluster is a LHC and record

the data within it and its cluster center;
8: else
9: Iteratively divide the sub-cluster until it is com-

posed of one or more LHCs.
10: end if
11: end for
12: In each class of data, the LHCs with the number of in-

stances between τ1 and τ2 are selected, and the instances
closest to the center of these LHCs are added toR.

0 < τ1 < τ2) to remove the reducible and deleterious in-
stances. Specifically, for the LHCs formed in each class of
instances, we consider a LHC with less than τ1 instances in
the LHC as the LHC that must be reduced, and a LHC with
more than τ2 instances as the LHC that is reducible. In or-
der to further compress the data set, for those LHCs with
the number of instances between τ1 and τ2, we select the
instance closest to the center of these LHC as the represen-
tative instances. For specific selection details, one can see
Algorithm 1.

Time and Space Complexity Analysis
The complexity of BDIS is reflected in the stage of obtain-
ing LHCs. We first consider the worst case, that is, each L-
HC contains only one instance. The LHC construction pro-
cess, in this case, is similar to constructing a binary tree with
all leaf nodes containing only one instance; the time com-
plexity is T (n) = O(n2/ log10(n)), where n represent the
number of instances for a given data set. In the best case,
that is, when the BER is equal to 0, the time complexity is
T (n) = O(1). Assuming that the inherent BER for a classi-
fication task is α, then the highest time complexity of BDIS
is T (n) = O((nα)2/ log10(nα)). The space complexity of
the algorithm is mainly reflected in the stored data set, there-
fore its space complexity is O(n).

Experiments
To properly examine the performance of BDIS, we employ
the random sampling (RS), which is one of the most clas-
sic and commonly used instance selection methods, RIS,
and EGDIS as baseline methods. Specifically, for the RS
method, we compare BDIS with RS10 and RS20. The RS10
and RS20 represent the RS method with 10% and 20% sam-
pling rates, respectively. For RIS and EGDIS, we use the
parameters suggested by the authors. The comparisons are
carried out on multiple synthetic and 12 benchmark data set-
s which are available at the UCI Repository (Dua and Graff
2017). The details of the benchmark data sets are shown in
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ID Dataset #Instances #Attributes #Classes
1 Optical Recognition 5,620 64 10
2 Ringnorm 7,400 20 2
3 Landsat Satellite 6,435 36 7
4 Thyroid Disease 7,200 21 3
5 Banana 5,300 2 2
6 Letter Recognition 20,000 16 26
7 MAGIC Gamma Telescope 19,020 10 2
8 Pen-Based Recognition 10,992 16 10
9 Texture 5,500 40 11

10 Twonorm 7,400 20 2
11 Shuttle 58,000 9 7
12 Skin Segmentation 245,057 4 2

Table 1: Description of data sets.

Table 1. The synthetic data sets include Moons and Circles,
and their distribution is shown in Fig.4(a) and Fig.4(e). For
each synthetic data sets, there are two classes of instances,
which marked with different color. For each kind of synthet-
ic data set, we generate 6,000, 60,000, 600,000, 6,000,000
and 60,000,000 instances according to their distribution, re-
spectively. The experiments are conducted on an Intel i7-
7700 CPU@3.60HZ and 48G RAM.

Evaluation Metrics
Three metrics are used to evaluate the performance of the
BDIS, RS, RIS and EGDIS.

• Reduction rate (R): it measures the degree of instances
reduction of the instance selection algorithm, which is
defined as follows.

R = 1− Nre
Ntr

, (16)

where Ntr and Nre represent the number of instances in
training data set and the reduced training data set, respec-
tively.

• Classification accuracy (A): it measures the ability of a
classification algorithms to classify test instances correct-
ly using reduced training set.

A =
Ncc
Nte

, (17)

where Ncc and Nte represent the number of correctly
classified instances and test instances, respectively.

• Effectiveness (E): it measures the ability of an instance
selection algorithm to balance between the reduction rate
and the classification accuracy. It is computed as the
product of reduction rate and classification accuracy, as
given in following:

E = R×A. (18)

The classifiers employed here are three commonly used
classifiers, SVM, Random forests (RF) (Breiman 2001) and
k-nearest neighbor (KNN) (Cover and Hart 1967).

(a) Circles-60k (b) (0, 2) (c) (0, 7) (d) (6, 7)

(e) Moons-60k (f) (0, 2) (g) (0, 7) (h) (6, 7)

Figure 4: The influence of parameter on the BDIS. The num-
bers in brackets of subheadings represent the values of pa-
rameters k1 and k2.

Parameter Analysis
Before the comparison, we need to analyze the impact of
parameters τ1 and τ2 on the performance of BDIS. The
data sets used here are Circles and Moons with 60,000
instances, and we name these data sets Circles-60k and
Moons-60k. Inspired by the (Li and Maguire 2010), we set
τ1 = blog10(n)c + k1 and τ2 = blog10(n)c × k2, where
n is the number of instances for a data set, and k1 ∈ [1 −
blog10(n)c, n−blog10(n)c] and k2 ∈ [ 1

blog10(n)c ,
n

blog10(n)c ]

are integers. We adopt the control variates method to ana-
lyze the influence of k1 and k2 on BDIS. Specifically, we
first control k1 unchanged and change k2, and then control
k2 unchanged and change k1. The instances selected by B-
DIS on the Circles-60k under different parameters are shown
in Fig.4(b), Fig.4(c), and Fig.4(d). Comparing Fig.4(b) and
Fig.4(c), we can observe that the larger the parameter k2
is, the more non-boundary instances are selected. Compar-
ing Fig. 4(c) and Fig 4(d), we can observe that the larger
the parameter k1 is, the greater the class boundary margin
is. Similar experimental results appear on the Moons-60k,
and the experimental results are shown in Fig.4(f), Fig.4(g),
and Fig.4(h). From these results, we can find that when k1
is larger, the selected instances are farther away from the
boundary; when k2 is larger, the more instances that far away
from the boundary are selected. Besides, the smaller the dif-
ference between k1 and k2 is, the fewer instances are select-
ed. However, too few instances may reduce the generaliza-
tion performance of classifier. Therefore, in order to balance
the amount of instances and the generalization performance
of classifier, we empirically set k1 = 0 and k2 = 7 for sub-
sequent experiments.

Experiments on Synthetic Data Sets
We empirically find that when a data set contains more than
60,000 instances, the RIS and EGDIS require more memory
to run, so we compare the performance of the five method-
s on the Moons-6k and Circles-6k respectively. All experi-
mental results are obtained through 10-fold cross-validation.
The comparison results of different instance selection meth-
ods under A, R, and E are shown in Table 2 and Table 3
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(a) Circles-6k (b) EGDIS (c) RIS (d) RS10 (e) RS20 (f) BDIS

(g) Moons-6k (h) EGDIS (i) RIS (j) RS10 (k) RS20 (l) BDIS

Figure 5: Comparison of data distribution after instance selection.

Method
Moons-6k Circles-6k
A

R
A

R
SVM RF KNN SVM RF KNN

EGDIS 0.970 0.943 0.920 0.836 0.940 0.917 0.871 0.828
RIS 0.960 0.945 0.925 0.904 0.939 0.900 0.897 0.856

RS10 0.972 0.951 0.964 0.889 0.946 0.924 0.936 0.889
RS20 0.971 0.943 0.960 0.778 0.945 0.925 0.936 0.778
BDIS 0.969 0.947 0.963 0.975 0.948 0.924 0.944 0.957

Table 2: Comparisons of classification accuracy (A) and reduction
rate (R). The numbers in bold represent the highest A or R among
the five instance selection methods.

Method
Moons-6k Circles-6k

SVM RF KNN SVM RF KNN
EGDIS 0.811 0.789 0.769 0.778 0.759 0.721

RIS 0.868 0.854 0.836 0.803 0.770 0.767
RS10 0.862 0.842 0.856 0.841 0.821 0.832
RS20 0.756 0.739 0.750 0.735 0.720 0.728
BDIS 0.946 0.919 0.935 0.907 0.884 0.903

Table 3: Effectiveness (E) comparisons. The numbers in bold rep-
resent the highest E among the five instance selection methods.

respectively. From these tables, we can observe that BDIS
obtain relatively good experimental results. The instances s-
elected by the five methods on the Moons-6k and Circles-6k
are shown in Fig.5. From the figure, we can observe that the
instances selected by BDIS can reduce more redundant in-
stances.

Next, according to the distribution of Circles, we gen-
erated four datasets with 60,000, 600,000, 6,000,000, and
60,000,000 instances to test the performance of BDIS on
large scale instances set. Since RIS and EGDIS require more
memory, limited by computing resources, we only offer the
experimental results of RS20, RS10, and BDIS. The training

Size
SVM RF KNN

RS20 RS10 BDIS RS20 RS10 BDIS RS20 RS10 BDIS
60,000 1.445 0.601 0.134 0.062 0.037 0.019 0.167 0.163 0.176

600,000 135.5 50.61 2.796 0.611 0.284 0.077 1.445 1.423 1.325
6,000,000 15828 5377 54.06 11.38 4.395 0.772 16.57 15.02 13.62

60,000,000 OT OT 3843 161.4 77.28 8.427 202.1 171.5 152.0

Table 4: Comparison of training time (seconds) of classifiers on
reduced Circles data sets. The OT represents that the training time
of the classification model exceeds 48 hours.

Size
SVM RF KNN

RS20 RS10 BDIS RS20 RS10 BDIS RS20 RS10 BDIS
60,000 0.762 0.856 0.926 0.745 0.838 0.899 0.752 0.845 0.926

600,000 0.761 0.857 0.933 0.746 0.841 0.911 0.754 0.847 0.932
6,000,000 0.760 0.855 0.935 0.746 0.837 0.913 0.752 0.847 0.935

60,000,000 OT OT 0.937 0.744 0.837 0.917 0.756 0.848 0.937

Table 5: Effectiveness comparisons on different Circle data sets.

time of classifiers on the reduced data sets and the effective-
ness values of RS10, RS20, and BDIS are shown in Table
4 and 5, respectively. These results verify the effectiveness
of BDIS in processing large data sets. Using similar experi-
mental steps, we test the performance of BDIS on the Moons
data sets with different numbers of instances and obtain sim-
ilar experimental results.

Experiments on Benchmark Data Sets
For the top ten data sets in Table 1, we record the effective-
ness values of the five instance selection methods and con-
duct hypothesis tests on the experimental results, as shown
in Table 6. From the table, we can find that under the clas-
sification accuracy of RF and KNN, BDIS has a significant
advantage over EGDIS, RIS, and RS20. Under the classifi-
cation accuracy of SVM, although BDIS has no significant

6292



Data Sets ID SVM RF KNN
EGDIS RIS RS20 RS10 BDIS EGDIS RIS RS20 RS10 BDIS EGDIS RIS RS20 RS10 BDIS

1 0.084 0.088 0.080 0.101 0.091 0.643 0.482 0.631 0.691 0.691 0.809 0.831 0.774 0.857 0.877
2 0.347 0.304 0.399 0.450 0.430 0.347 0.304 0.711 0.802 0.758 0.660 0.514 0.522 0.557 0.581
3 0.189 0.182 0.197 0.213 0.203 0.673 0.591 0.670 0.747 0.754 0.683 0.634 0.695 0.764 0.791
4 0.760 0.710 0.742 0.833 0.816 0.808 0.721 0.748 0.840 0.823 0.679 0.679 0.745 0.833 0.822
5 0.688 0.639 0.722 0.809 0.823 0.650 0.611 0.692 0.773 0.783 0.637 0.616 0.707 0.790 0.817
6 0.081 0.033 0.084 0.063 0.061 0.370 0.326 0.425 0.455 0.481 0.659 0.678 0.696 0.713 0.752
7 0.257 0.380 0.520 0.585 0.587 0.477 0.473 0.616 0.694 0.689 0.464 0.422 0.624 0.696 0.722
8 0.085 0.099 0.083 0.099 0.097 0.706 0.760 0.693 0.773 0.809 0.811 0.908 0.786 0.873 0.921
9 0.831 0.828 0.783 0.865 0.910 0.674 0.566 0.646 0.704 0.715 0.812 0.833 0.770 0.843 0.900
10 0.465 0.356 0.400 0.450 0.472 0.820 0.655 0.743 0.822 0.860 0.869 0.642 0.768 0.864 0.910
11 0.714 OM 0.629 0.707 0.780 0.903 OM 0.795 0.893 0.951 0.903 OM 0.797 0.896 0.953
12 OM OM 0.684 0.752 0.793 OM OM 0.780 0.872 0.943 OM OM 0.792 0.895 0.958

Average value (1-10) 0.379 0.362 0.401 0.447 0.449 0.617 0.549 0.657 0.730 0.736 0.708 0.676 0.709 0.779 0.809
Friedman test (1-10) 0.0000007 0.0000134 0.0000050
Nemenyi test (1-10) 0.078 0.002 0.078 0.900 - 0.008 0.001 0.005 0.900 - 0.002 0.001 0.002 0.564 -

Table 6: Effectiveness (E) comparisons on 12 benchmark datasets. The bold font in lines 3 to 15 represent the method with the
highest E among the five methods. The values in the last row represent the p value of Nemenyi test between EGDIS, RIS, RS10
and RS20 and BDIS, respectively. The bold fonts in the last row represent p < 0.05. The OM means that the memory required
to run the corresponding algorithm exceeds 48G.

Training set
Before instance selection After instance selection
A Training time (s) A Training time (s)

shuttle1 0.837 525.841 0.837 0.001
shuttle2 0.837 524.441 0.837 0.002
shuttle3 0.837 532.422 0.837 0.001
shuttle4 0.837 526.449 0.837 0.002
shuttle5 0.837 523.803 0.837 0.002
shuttle6 0.837 527.755 0.837 0.001
shuttle7 0.836 525.315 0.836 0.001
shuttle8 0.837 524.552 0.836 0.001
shuttle9 0.837 531.081 0.836 0.001

shuttle10 0.837 532.175 0.837 0.002

Table 7: Comparison of training time and classification ac-
curacy (A ) of SVM classifier on different data sets before
and after instance selection.

difference with EGDIS, RS10 and RS20, it obtains the high-
est average E value. For the 11th and 12th data sets, due to
the limitation of computing resources, we only obtain partial
experimental results, as shown in the Table 6. From the table,
we can find that BDIS obtains the best experimental results.
From these results, we can find that BDIS is superior to the
compared algorithms.

To check whether BDIS can shorten the running time
of the classification model without losing the generaliza-
tion performance, we conduct the following experiments.
We choose SVM as the classification model and shuttle as
the experimental data set. For the shuttle data set, we divide
it into 10 disjoint subsets, and select one of them as test set
and the remaining nine as the training set in turn. In this way,
we obtain 10 training sets, shuttle1, shuttle2,..., shuttle10.
For each training set, we train SVM on the training set be-

fore and after instance selection, respectively, and record the
training time and classification accuracy on the correspond-
ing test set. The experimental results are shown in Table 7.
From the table, we can find that the classification accuracy
does not change significantly for each training set, but the
training time of SVM on the reduced data set is significant-
ly shortened. These experimental results further verify the
effectiveness of the BDIS algorithm.

Conclusions
In this paper, we defined which instances are reducible, irre-
ducible, and deleterious for a given data set from the per-
spective of Bayesian decision theory. Then, based on the
percolation theory, we established the relationship between
the three kinds of instances and LHC. Finally, we proposed
a method that can construct LHC and find representative in-
stances from the data set faster and less memory-consuming.
Besides, we found that the core idea of the instance selection
methods based on the k-nearest neighbor rule is to distin-
guish the reducible, irreducible, and deleterious instances.
In the experimental analysis, we compared BDIS with clas-
sical and state-of-the-art instance selection methods on syn-
thetic and benchmark sets. The experimental results verified
the effectiveness and efficiency of BDIS.
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