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Abstract

Universal domain adaptation (UniDA) aims to transfer the
knowledge learned from a labeled source domain to an un-
labeled target domain without any constraints on the label
sets. However, domain shift and category shift make UniDA
extremely challenging, mainly attributed to the requirement
of identifying both shared “known” samples and private “un-
known” samples. Previous methods barely exploit the in-
trinsic manifold structure relationship between two domains
for feature alignment, and they rely on the softmax-based
scores with class competition nature to detect underlying “un-
known” samples. Therefore, in this paper, we propose a novel
evidenTial Neighborhood conTrastive learning framework
called TNT to address these issues. Specifically, TNT first
proposes a new domain alignment principle: semantically
consistent samples should be geometrically adjacent to each
other, whether within or across domains. From this criterion,
a cross domain multi-sample contrastive loss based on mutual
nearest neighbors is designed to achieve common category
matching and private category separation. Second, toward ac-
curate “unknown” sample detection, TNT introduces a class
competition-free uncertainty score from the perspective of ev-
idential deep learning. Instead of setting a single threshold,
TNT learns a category-aware heterogeneous threshold vector
to reject diverse “unknown” samples. Extensive experiments
on three benchmarks demonstrate that TNT significantly out-
performs previous state-of-the-art UniDA methods.

Introduction
Deep neural network is data-hungry since it performs im-
pressively on domains with abundant data labels, but it does
not generalize well on new unlabeled domains. Task-related
performance is significantly reduced owing to domain bias.
Domain adaptation (DA) aims to solve this issue by elimi-
nating feature discrepancy and transferring knowledge from
the label-rich source domain to the label-scarce target do-
main (Ganin and Lempitsky 2015). Suppose Ls and Lt are
the label sets in two domains, respectively. Traditional un-
supervised DA usually assumes Ls = Lt, i.e., closed DA
(CDA) (Tzeng et al. 2017). In complex real-world scenarios,
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Figure 1: (A) Probability simplex with confidence (c) and
uncertainty (u). The area of red indicates the uncertainty of
prediction. Competition nature can produce high c but high
u, or low c but low u. (B) Intra- and inter-domain mutual
nearest neighbor principle (k = 1) for feature alignment.

however, this assumption may not be easily satisfied. Com-
monly, we may encounter Lt ⊂ Ls, i.e., partial DA (PDA)
(Cao et al. 2018), or Ls ⊂ Lt, i.e., open-set DA (ODA)
(Panareda and Gall 2017), or Ls ∩ Lt ̸= ∅, Ls ∪ Lt ̸=
Ls or Lt, i.e., open partial DA (OPDA) (You et al. 2019).
These variants have attracted the attention of the community
in recent years and were resolved independently. However,
negative aspect tends to confound this evolutionary process.
Specifically, a method that is applicable to one variant may
not be applicable to another variant. More realistically, we
may not know in advance which of these variants will occur.

Universal DA (UniDA) was proposed to account for both
domain shift and category shift. It assumes that the two la-
bel spaces can be different and that their relationship is un-
known in advance. In UniDA, we need to classify target
samples into either one of the “known” labels or the “un-
known” label. Here, however, UniDA poses two technical
challenges. First, the removal of domain discrepancy should
be constrained on the common categories between two do-
mains, and we need to separate the respective private cate-
gories simultaneously. Second, in the absence of target label
supervision, estimating the label distribution on the target
domain and detecting potential target “unknown” samples is
another main technical difficulty.

For the first challenge, UAN (You et al. 2019) and CMU
(Fu et al. 2020) employ weighted adversarial network to dis-
cover shared label sets and promote common class adapta-
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tion. DANCE (Saito et al. 2020) uses a neighborhood clus-
tering objective to move each target sample either to a source
prototype or to its target neighbors. These methods hardly
explore the manifold structural relationship between the two
domains, and an explicit class-level feature alignment crite-
rion is urgently required. For the second challenge, existing
methods manually set a global threshold for softmax-based
confidence or entropy score to reject “unknown” samples.
However, softmax loss introduces competition among differ-
ent classes and can easily lead to over-confident predictions
(see Figure 1(A)), thus making softmax-based uncertainty
scores suboptimal for “unknown” sample detection. And as
the “unknown” samples in nature belong to distinct seman-
tic categories, their structural affinity with the source classes
makes it difficult for a global threshold to divide diverse “un-
known” samples.

In this paper, we address both of these challenges and pro-
pose an evidential neighborhood contrastive learning frame-
work called TNT for UniDA. First, to enable the model to
know “unknown”, we formulate it as a Bayesian uncertainty
estimation problem by introducing evidential deep learn-
ing (EDL) paradigm (Sensoy, Kaplan, and Kandemir 2018).
EDL uses Multinomial-Dirichlet hierarchical model to pre-
dict the distribution of class probabilities, as well as pro-
vide the associated uncertainty. Based on it, a logarithmic
evidence score, theoretically aligned with data likelihood, is
proposed for “unknown” sample detection. Our mathemati-
cal insights and empirical results show that this uncertainty
score is superior to the softmax-based score. To overcome
the overfitting risk of EDL in a closed set, we propose an
uncertainty versus confidence adversarial objective to cali-
brate the model prediction, which shapes the evidence sur-
face and regularizes the evidence collection process. Instead
of setting a global threshold, we learn a category-aware het-
erogeneous threshold vector to identify “unknown” samples
more effectively.

Second, to match the common categories and separate
respective private categories, we propose a novel domain
alignment principle: semantically consistent samples should
be geometrically adjacent to each other, whether within or
across domains (see Figure 1(B)). Based on this criterion,
we develop a neighborhood consensus contrastive learning
paradigm to uncover the intrinsic manifold structure of both
domains. Specifically, we first construct the intra- and inter-
domain mutual nearest neighbor (MNN) pairs, which can
be viewed as the positive pairs in the same category, oth-
erwise negative pairs. Then a multi-sample contrastive loss
is designed to integrate this knowledge of intra- and inter-
domain positive and negative relations. To drive the domain
alignment process, we minimize this contrastive loss to pull
similar samples within and across domains closer and push
dissimilar samples away to avoid negative label transfer.

Our contribution can be summarized as follows:

• We tackle the UniDA problem from a new perspective,
i.e., performing Bayesian evidential learning and uncer-
tainty estimation to support open-set knowledge transfer.
An evidence-based uncertainty score with theoretical in-
sight is introduced for “unknown” sample detection.

• We propose a novel feature alignment criterion for
UniDA, i.e., that mutual nearest neighbors inside and
across domains should be close to each other. By regard-
ing them as a bridge for data integration, a cross-domain
multi-sample contrastive loss is developed to remove do-
main bias and address category shift issues.

• We conduct extensive experiments on various UniDA
benchmarks, and empirical results show that TNT
outperforms previous state-of-the-art UniDA methods.
Deeper analyses validate the effectiveness of the pro-
posed uncertainty score and heterogeneous threshold.

Related Work
Universal Domain Adaptation
Universal DA is a challenging DA task, which assumes no
prior knowledge about the relationship between source and
target label spaces. You et al. (2019) proposed UAN to dis-
cover the shared classes between two domains by quantify-
ing sample-level transferability. Fu et al. (2020) aggregated
three complementary uncertainty measures, namely confi-
dence, entropy and consistency, for accurate detection of tar-
get private classes. Saito et al. (2020) proposed DANCE to
learn the target domain structure by neighborhood cluster-
ing, and used an entropy separation loss to achieve feature
alignment. Li et al. (2021) proposed DCC that exploited do-
main consensus knowledge to discover discriminative clus-
ters on both common and private samples. These methods
do not consider the intrinsic manifold structure relationship
between two domains, thus making them suboptimal for do-
main alignment. In this paper, we utilize intra- and inter-
domain MNN pairs to bridge two domains.

Deep Uncertainty Learning
Understanding and quantifying uncertainty in neural net-
work prediction is crucial for safe decision-making in high-
risk fields (Gawlikowski et al. 2021). In recent years, re-
searchers have shown an increased interest in uncertainty es-
timation in deep learning. Model-based and data-based un-
certainty are two common ways to describe the predictive
uncertainty of neural network (Choi et al. 2019; Bao, Yu,
and Kong 2021). To distinguish the common and private cat-
egories between two domains, predictive uncertainty learned
by deep neural networks can be a promising measure. Re-
cently, evidential deep learning was developed to quantify
classification uncertainty, which shows unprecedented suc-
cess in the detection of out-of-distribution queries (Sensoy,
Kaplan, and Kandemir 2018). In this paper, to the best of
our knowledge, we are the first to incorporate an evidential
learning module to differentiate “known” and potential “un-
known” samples in UniDA.

Contrastive Learning
Contrastive learning is a typical type of self-supervised
learning paradigm (He et al. 2020; Chen et al. 2020). It
learns representations by contrasting positive pairs against
negative pairs. Many state-of-the-art methods for represen-
tation learning tasks are based on the contrastive learning

6259



framework (Chen and He 2021). Among them are instance-
based (Grill et al. 2020), cluster-based (Caron et al. 2020),
and neighbor-based contrastive learning techniques (Zhong
et al. 2021). Although positive samples can come from aug-
mented views of each instance, between-instance similarity
conflicts with presumed instance distinction, impairing fea-
ture learning (Wang, Liu, and Yu 2021). In this article, we
propose to utilize mutual nearest neighbors as positive pairs
to achieve feature alignment between the two domains.

Method
Overview
In UniDA, we have a labeled source domain Ds =
{(xs

i , y
s
i )}

Ns
i=1 with Ls “known” categories, where Ds ∼ Ps

along with an unlabeled target domain Dt = {(xt
i)}

Nt
i=1

where Dt ∼ Pt, and Ps ̸= Pt. The target domain contains
some “known” categories and potential “unknown” cate-
gories, and we denote its label space as Lt. We aim to learn a
classification model and label the target samples with either
one of the Ls “known” labels or the “unknown” label.

As shown in Figure 2, our model consists of two basic
modules: (1) feature extractor g that maps input images into
the embedding representations z = g(x), and (2) eviden-
tial neural network head f which predicts the class-wise ev-
idence corresponding to Dirichlet distribution parameters.
The estimated evidence can further determine the predic-
tive probabilities and uncertainty of the input. Then we em-
ploy the distribution characteristic of total evidences for “un-
known” sample inference. To avoid model overfitting, we
design an uncertainty versus confidence adversarial mecha-
nism for prediction calibration. In training, we also propose
a cross-domain mutual nearest neighbor contrastive learning
module to drive the feature alignment process.

Deep Evidential Learning and Uncertainty
Estimation
Existing DA models utilize a linear projection layer with
a softmax operator on top of the deep neural network for
discrimination on target data. The eventual model can be
interpreted as a parameter regression framework of Multi-
nomial distribution. In particular, for a Ls-class classifi-
cation problem, assume discrete class probabilities p =
(p1, p2, ..., pLs

), as determined by network outputs; then the
likelihood function of a labeled sample (x, y) is

L(p|x) = Multinomial(y|p1, p2, ..., pLs) =

Ls∏
j=1

p
yj

j (1)

Minimizing the negative log-likelihood − logL(p|x) over
labeled samples with respect to network parameters is equiv-
alent to cross-entropy loss. It only gives the point estimation
of the Multinomial distribution over the categorical proba-
bilities. Therefore, the output cannot capture the variance of
predictive probabilities, i.e., second-order uncertainty. Be-
sides, since the output probabilities have been squashed by
the denominator of softmax, the network tends to produce
an over-confident prediction for the “unknown” data (Wen

et al. 2021). In ODA and OPDA settings, this phenomenon
is even more common and detrimental.

To overcome the above limitations, evidential deep learn-
ing (EDL) formulates a principled way to jointly accomplish
multi-class classification and uncertainty estimation by in-
troducing the Bayesian hierarchical model. EDL introduces
the Dirichlet distribution, a conjugate prior distribution of
the Multinomial distribution, to represent the density of class
probability assignment p. Specifically, assume that p fol-
lows a prior Dirichlet distribution with evidence parameter
α = (α1, α2, ..., αLs), αi > 1, ∀1 ≤ i ≤ Ls,

Dir(p|α) = 1

B(α)

Ls∏
k=1

pαk−1
k (2)

where B(α) is the Multinomial Beta function. Then training
loss of the EDL model is the negative log-marginal likeli-
hood, given by

L1 =

Ns∑
i=1

− log(

∫ Ls∏
j=1

p
ys
ij

ij

1

B(αs
i )

Ls∏
j=1

p
αs

ij−1

ij dpi) (3)

=

Ns∑
i=1

Ls∑
j=1

ysij(logS
s
i − logαs

ij) (4)

where S is the total evidence S =
∑Ls

k=1 αk. Here, α is
the non-negative network prediction output and can be ex-
pressed as α = f(g(x))+1. Based on the Dempster–Shafer
Theory of Evidence (Sentz and Ferson 2002), the discrimi-
native probability of k-th class is pk = αk

S , and the predic-
tion uncertainty u is inversely proportional to total evidence
S, determined as u = Ls

S . In the training phase, by min-
imizing the L1 objective, we can collect the evidence for
each known source category. Simultaneously, the obtained
total evidence S or uncertainty u enables us to distinguish
“known” from “unknown” samples in the inference process.

Discussion: Why is the total evidence score S more
suitable than the softmax-based score for discovering po-
tential target private classes? For ease of understanding,
we assume that the activation function used by network f to
predict α is an exponential function, and that the influence
of constant 1 is ignored. Then we have

logmax
i

p(yi|x) = logmax
i

αi

S
= − logS + logmax

i
αi

(5)

When we maximize logmaxi p(yi|x) on labeled data,
by minimizing the negative log-marginal likelihood L1,
maxi αi tends to be higher and S tends to be lower. At this
time, the prediction uncertainty u tends to be higher, which
is beyond our expectations. For “known” categories, the pre-
diction should be accurate and certain, while for “unknown”
categories, the prediction uncertainty should be high, i.e.,
low S (Krishnan and Tickoo 2020). More importantly, as
noted previously, the softmax-based score introduces com-
petition among different classes, which can easily produce
arbitrarily high score values, i.e., over-confident predictions.
In contrast to the competition nature of softmax normaliza-
tion, the total evidence score S is a statistic based on sum-
mation, free of any competition.
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Figure 2: Schematics of TNT. Overall evidential learning model consists of a backbone and an evidential head. The cross-
domain mutual nearest neighbor contrastive learning is proposed for domain alignment. The u-c adversarial mechanism is
introduced for “unknown” sample detection. Category diversity leads to threshold heterogeneity.

u-c Adversarial Mechanism for Uncertainty
Calibration
Uncertainty characterizes the risk of differentiating the tar-
get sample into “known” categories. A natural way to dis-
cover potential target private categories is to set a threshold
for the uncertainty measure. Samples with uncertainty larger
than this threshold have high probabilities of being recog-
nized as “unknown” label. However, minimizing L1 would
enforce the total evidence S of “known” category samples to
be compressed. Since uncertainty u is inversely proportional
to S, minimizing L1 would have the potential risk that the
uncertainty of the “known” category is large, and that the un-
certainty of the “unknown” category is small, further caus-
ing the overfitting of the model. Meanwhile, the uncertainty
gap between the “known” and “unknown” samples may not
be optimal for discovering the underlying private categories.

We define c = maxk pk as the prediction confidence. A
well-calibrated prediction model should take into account
both confidence and uncertainty. For “known” samples, con-
fidence c is high, while uncertainty u is low, and for “un-
known” samples, confidence c is low, while the uncertainty u
is high. To strengthen the inverse relationship between them,
we propose a u-c adversarial objective, defined as

L2 = Ls
2 + Lt

2 = −
Ns∑
i=1

csi log(1− us
i )

−
Nt∑
j=1

(ctj log(1− ut
j) + (1− ctj) log u

t
j) (6)

The first term aims to give low uncertainty (u→ 0) and high
confidence (c→ 1) on the labeled source domain, while the
second term tries to penalize the u-versus-c homogeneity on
the unlabeled target domain, forcing them to optimize in op-
posite directions. In this way, the model is encouraged to
learn a skewed and sharp Dirichlet simplex for “known” cat-
egories and provide an unskewed and flat Dirichlet simplex

for “unknown” samples. It can be seen that our u-c adver-
sarial mechanism does not rely on additional validation set
during training. Thus it provides better flexibility to calibrate
the prediction uncertainty.

So far, we have not discussed how to determine a thresh-
old δ to reject potential target private samples. Most pre-
vious methods use a validation set to set a single global
threshold. Here we propose a category-aware threshold se-
lection method based on logarithmic total evidence (logS)
distribution. The motivation behind it is that the diversity
of “known” categories determines the heterogeneity of the
threshold. Assume that the “unknown” threshold vector is
δ̂ ∈ RLs ; then we label the target sample i by

yti =

{
j, if logSt

i ≥ δ̂j , j = argmax1≤k≤Ls
αt
ik

unknown, if logSt
i < δ̂j , j = argmax1≤k≤Ls

αt
ik

(7)

In particular, we first collect the logarithm total evidence
score of the samples under each source category and record
them as Ωk = {logSs

i : ysi = k}, 1 ≤ k ≤ Ls. Then we
fit a Gaussian distribution on the Ωk to obtain the mean esti-
mation υ̂k and standard deviation estimation σ̂k. According
to the “three-sigma” rule, we set δ̂k = υ̂k − 2 × σ̂k, which
can contain more than 95% source samples in each category
and ignore minor outliers. Our threshold decision approach
is data-based and learned from the source domain, which
avoids tricky hyperparameter selection.

Mutual Nearest Neighbor Contrastive Learning for
Feature Alignment
The interference of domain bias makes it difficult for a clas-
sifier trained on the source domain to obtain good general-
ization performance on the target domain. Therefore, elim-
inating domain discrepancy and learning domain invariant
representation forms the basis for improving the generaliza-
tion of the DA model. However, this goal is more difficult
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Office (10/10/11) OfficeHome (10/5/50) VisDA (6/3/3)
Methods Type A2W D2W W2D A2D D2A W2A Avg A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg S2R

RTN C 50.2 54.7 55.2 50.2 47.7 49.3 51.2 38.4 44.7 45.7 42.6 44.1 45.5 42.6 36.8 45.5 44.6 39.8 44.5 42.9 26.0
IWAN P 50.1 54.1 55.4 50.6 49.7 49.8 51.6 40.5 47.0 47.8 45.0 45.1 47.6 45.8 41.4 47.6 46.3 42.5 46.5 45.3 27.6
OSBP O 50.2 55.5 57.2 51.1 49.8 50.2 52.3 39.6 45.1 46.2 45.7 45.2 46.8 45.3 40.5 45.8 45.1 41.6 46.9 44.5 27.3
UAN U 58.6 70.6 71.4 59.7 60.1 60.3 63.5 51.6 51.7 54.3 61.7 57.6 61.9 50.4 47.6 61.5 62.9 52.6 65.2 56.6 30.5
CMU U 67.3 79.3 80.4 68.1 71.4 72.2 73.1 56.0 56.9 59.2 67.0 64.3 67.8 54.7 51.1 66.4 68.2 57.9 69.7 61.6 34.6

DANCE U 75.8 90.9 87.1 79.6 82.9 77.6 82.3 61.0 60.4 64.9 65.7 58.8 61.8 73.1 61.2 66.6 67.7 62.4 63.7 63.9 42.8
DCC U 78.5 79.3 88.6 88.5 70.2 75.9 80.2 58.0 54.1 58.0 74.6 70.6 77.5 64.3 73.6 74.9 81.0 75.1 80.4 70.2 43.0
TNT U 80.4 92.0 91.2 85.7 83.8 79.1 85.4 61.9 74.6 80.2 73.5 71.4 79.6 74.2 69.5 82.7 77.3 70.1 81.2 74.7 55.3

Table 1: H-score comparison between various methods in OPDA setting. Some results are referred to previous work (Li et al.
2021).

for UniDA, because we need to match common categories
between the two domains, as well as separate the respective
private categories. Alignment at the global domain level may
reduce the feature margin between potential private classes
and common classes, thereby compromising discrimination
on the target domain. The dilemma of alignment at the class
level is the category definition on the target domain together
with the category relationship between the two domains. Ge-
ometric nearest neighbors are commonly used to describe
similar patterns in manifold learning, so here we introduce a
novel DA inductive bias: data points that are neighbors with
each other are the mainstay of improving the compactness of
each category in the domain, as well as the bridge of com-
mon category matching. On this basis, we propose a multi-
sample contrastive learning paradigm that unites neighbor-
hood consensus intra- and inter-domains.

Specifically, assuming that all embedding vectors
{zsi }

Ns
i=1 ∪ {ztj}

Nt
j=1 are l2 normalized, we first denote Ns

k(i)

and N t
k(i) to represent the k nearest neighbor set measured

by cosine distance of sample i in the source domain and
target domain, respectively. If i ∈ Ds, its Ns

k(i) can be
replaced with those samples shared with consistent cate-
gory label. Then the mutual nearest neighbor set Ms

k(i) and
M t

k(i) of sample i in the two domains can be defined as

Ms
k(i) =

{
{j ∈ Ds : yi = yj}, if i ∈ Ds

{j ∈ Ds : i ∈ N t
k(j) ∩ j ∈ Ns

k(i)}, if i ∈ Dt

(8)

M t
k(i) =

{
{l ∈ Dt : i ∈ Ns

k(l) ∩ l ∈ N t
k(i)}, if i ∈ Ds

{l ∈ Dt : i ∈ N t
k(l) ∩ l ∈ N t

k(i)}, if i ∈ Dt

(9)

Here we aim to pull mutual nearest neighbor pairs across
the source and target domains closer to each other, while
pushing away those non-geometrically close samples. In-
spired by InfoNCE loss (Hjelm et al. 2018), we propose a
novel cross-domain multi-sample contrastive learning objec-

tive function, given by

Li
c =



if i ∈ Ds,

− log

∑
j∈Ms

k
(i) exp(z

s
i z

s
j/τ)+

∑
l∈Mt

k
(i) exp(z

s
i z

t
l/τ)∑Ns

m=1 exp(zs
i z

s
m/τ)+

∑Nt
n=1 exp(zs

i z
t
n/τ)

;

if i ∈ Dt,

− log

∑
j∈Ms

k
(i) exp(z

t
iz

s
j/τ)+

∑
l∈Mt

k
(i) exp(z

t
iz

t
l/τ)∑Ns

m=1 exp(zt
iz

s
m/τ)+

∑Nt
n=1 exp(zt

iz
t
n/τ)

.

(10)

where τ is the temperature parameter. In training, we split
source and target samples into different mini-batches and
forward them separately. Let Bs and Bt denote the source
and target batches respectively, then the overall training con-
trastive loss is computed as the sum across all the source
samples from Bs and target samples from Bt,

L3 =
∑
i∈Bs

Li
c +

∑
j∈Bt

Lj
c (11)

As defined above, the neighbor identification procedures and
the loss function implicitly cover computations involving all
the embedded features of two domains, which soon become
intractable for large datasets. To address this issue, we em-
ploy a hybrid memory bank Z̄ = {z̄s1, ..., z̄sNs

, z̄t1, ..., z̄
t
Nt
}

to maintain the running average of all source and target fea-
tures. We initialize the memory bank with random unit vec-
tors and update its values by mixing z̄i and zi during training
as follows, where γ is a mixing parameter,

z̄i ← γz̄i + (1− γ)zi (12)

Overall objective. The model is jointly optimized
with three terms, i.e., evidential deep learning loss L1, un-
certainty calibration loss L2 and contrastive feature align-
ment loss L3,

L = L1 + L2 + λL3 (13)

where λ is set as 0.1 to balance each loss component.

Experiment
Setup
Dataset. We conduct experiments on three benchmark
datasets. Office (Saenko et al. 2010) consists of about 4700
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Office (10/0/11) OfficeHome (25/0/40) VisDA (6/0/6)
Methods Type A2W A2D D2W W2D D2A W2A Avg A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg S2R

STA O 75.9 75.0 69.8 75.2 73.2 66.1 72.5 55.8 54.0 68.3 57.4 60.4 66.8 61.9 53.2 69.5 67.1 54.5 64.5 61.1 -
OSBP O 82.7 82.4 97.2 91.1 75.1 73.7 83.7 55.1 65.2 72.9 64.3 64.7 70.6 63.2 53.2 73.9 66.7 54.5 72.3 64.7 52.3
ROS O 82.1 82.4 96.0 99.7 77.9 77.2 85.9 60.1 69.3 76.5 58.9 65.2 68.6 60.6 56.3 74.4 68.8 60.4 75.7 66.2 -
UAN U 46.8 38.9 68.8 53.0 68.0 54.9 55.1 0.0 0.0 0.2 0.0 0.2 0.2 0.0 0.0 0.2 0.2 0.0 0.1 0.1 51.9
CMU U - - - - - - - - - - - - - - - - - - - - 54.2

DANCE U 78.8 84.9 78.8 88.9 79.1 68.3 79.8 61.9 61.3 63.7 64.2 58.6 62.6 67.4 61.0 65.5 65.9 61.3 64.2 63.0 67.5
DCC U 54.8 58.3 89.4 80.9 67.2 85.3 72.6 56.1 67.5 66.7 49.6 66.5 64.0 55.8 53.0 70.5 61.6 57.2 71.9 61.7 59.6
TNT U 82.3 85.8 91.2 96.2 80.7 81.5 86.3 63.4 67.9 74.9 65.7 67.1 68.3 64.5 58.1 73.2 67.8 61.9 74.5 67.3 71.6

Table 2: H-score comparison between various methods in ODA setting. Some results are referred to previous work (Li et al.
2021).

Office (10/21/0) OfficeHome (25/40/0) VisDA (6/6/0)
Methods Type A2W A2D D2W W2D D2A W2A Avg A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg S2R

PADA P 82.2 86.5 92.7 99.3 95.4 100.0 92.7 52.0 67.0 78.7 52.2 53.8 59.1 52.6 43.2 78.8 73.7 56.6 77.1 62.1 -
ETN P 94.5 95.0 100.0 100.0 96.2 94.6 96.7 59.2 77.0 79.5 62.9 65.7 75.0 68.3 55.4 84.4 75.7 57.7 84.5 70.5 59.8

BA3US P 98.9 99.4 100.0 98.7 94.8 95.0 97.8 60.6 83.2 88.4 71.8 72.8 83.4 75.5 61.6 86.5 79.3 62.8 86.1 76.0 54.9
UAN U 76.8 79.7 93.4 98.3 82.7 83.7 85.8 24.5 35.0 41.5 34.7 32.3 32.7 32.7 21.1 43.0 39.7 26.6 46.0 34.2 39.7
CMU U 84.2 84.1 97.2 98.8 69.2 66.8 83.4 50.9 74.2 78.4 62.2 64.1 72.5 63.5 47.9 78.3 72.4 54.7 78.9 66.5 65.5

DANCE U 71.2 77.1 94.6 96.8 83.7 92.6 86.0 53.6 73.2 84.9 70.8 67.3 82.6 70.0 50.9 84.8 77.0 55.9 81.8 71.1 73.7
DCC U 81.3 87.3 100.0 100.0 95.4 95.5 93.3 54.2 47.5 57.5 83.8 71.6 86.2 63.7 65.0 75.2 85.5 78.2 82.6 70.9 72.4
TNT U 83.4 88.2 98.5 98.6 92.7 93.9 92.5 55.1 75.3 84.6 72.9 70.0 82.5 71.4 58.7 83.3 79.1 62.4 83.2 73.2 75.2

Table 3: Accuracy comparison between various methods in PDA setting. Some results are referred to previous works (Saito
et al. 2020; Li et al. 2021).

images in 31 categories from three domains: Amazon (A),
DSLR (D), and Webcam (W). OfficeHome (Venkateswara
et al. 2017) is a larger dataset with 15500 images from 65
categories in four domains: Artistic images (A), Clip-Art
images (C), Product images (P), and Real-World images
(R). VisDA (Peng et al. 2017) is a large-scale challenging
dataset with 12 categories, with source domain containing
about 150K synthetic images (S) and target domain contain-
ing 50K real world images (R). Let |Ls ∩ Lt|, |Ls − Lt|
and |Lt − Ls| denote the number of common categories,
source private categories and target private categories, re-
spectively. Following existing studies, we show the category
split (|Ls∩Lt|/||Ls−Lt||/|Lt−Ls|) of each experimental
setting in a corresponding result table. The split details can
be seen in the supplemental material.

Evaluation protocols. We use the same evaluation metrics
as those in the previous study (Fu et al. 2020). In CDA and
PDA settings, we calculate the classification accuracy over
all target samples. In ODA and OPDA settings, target pri-
vate samples are grouped into a single “unknown” class. As
such, the trade-off between the accuracy of “known” and
“unknown” classes is important in evaluating performance.
Thus, we use the H-score, i.e. the harmonic mean of the
accuracy on common classes and accuracy on “unknown”
class, to evaluate each method. The H-score metric is high
only when both the “known” and “unknown” accuracies are
high. For all experiments, the averaged results of three runs

are reported. Additionally, we assume no prior information
about category shift in any of the above DA settings.
Implementation details. Our implementation is based on
PyTorch and we conduct all experiments on one Tesla V100
GPU. The network backbone is ResNet50 (He et al. 2016)
pretrained on ImageNet (Deng et al. 2009), and the eviden-
tial head consists of two fully-connected layers. In the train-
ing phase, we choose the exp function as the evidence func-
tion, because we empirically found it to be numerically more
stable when training the evidential loss L1. Following previ-
ous work (Saito et al. 2020), the batch size is set to 36 and the
temperature parameter τ is set as 0.05. The memory bank is
updated with momentum γ = 0.5 and the nearest neighbor
number k is set to 30 for Office and OfficeHome and 50 for
VisDA as default. We train our model for 10000 iterations
with Nestrov momentum SGD. The initial learning rate is
set to 0.001, which is decayed with the same schedule as in
previous studies (Long et al. 2018; Saito et al. 2020).

Results Comparison
Comparison baselines. We compare TNT with previous
state-of-the-arts in four possible scenarios of UniDA, i.e.,
CDA (RTN (Long et al. 2016), CDAN (Long et al. 2018),
MDD (Li et al. 2020), SRDC (Tang, Chen, and Jia 2020)),
PDA (PADA (Cao et al. 2018), IWAN (Zhang et al. 2018),
ETN (Cao et al. 2019), BA3US (Liang et al. 2020)), ODA
(OSBP (Saito et al. 2018), STA (Liu et al. 2019), ROS
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Figure 3: Histogram of three uncertainty scores on “D2W” of Office in ODA setting. Blue represents the “unknown” and red
represents the “known”. The AUC value of each score is also given.
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Figure 4: (a) Performance comparison between global and heterogeneous threshold on Office in ODA and OPDA setting. The
four shapes represent “Single (ODA)”, “Heterogeneous (ODA)”, “Single (OPDA)”, and “Heterogeneous (OPDA)” from left to
right. (b, c) Case studies for loss weight and nearest neighbor number.

(Bucci, Loghmani, and Tommasi 2020)) and OPDA (UAN
(You et al. 2019), CMU (Fu et al. 2020), DANCE (Saito
et al. 2020), DCC (Li et al. 2021)). For all cases, each UniDA
method is tested without knowing the prior of category shift,
and those baselines tailed for each setting are conducted by
taking this prior into consideration. We use “C”, “P”, “O”
and “U” to denote the methods specifically designed for
CDA, PDA, ODA and UniDA accordingly. Due to a limited
space, we put some results in supplementary.

ODA and OPDA settings. From the results in Table 1, TNT
achieves a new state-of-the-art on three datasets in the most
challenging OPDA setting. With respect to H-score, TNT
outperforms DANCE on Office by 3% and DCC on Office-
Home by 4%. On the large-scale VisDA dataset, TNT gives
more than 10% improvement compared to all other meth-
ods in terms of H-score. Collectively, this evidence shows
that TNT gains a better trade-off between common cate-
gories classification and private samples identification. For
the ODA setting, the H-score comparison results are pre-
sented in Table 2. TNT consistently performs better than
all UniDA baselines on three benchmarks, with +4% H-
score improvement. Even compared with ROS, a previous
state-of-the-art method tailed for ODA setting, TNT is also
slightly superior on Office and OfficeHome datasets. Under
these two scenarios with “unknown” samples, our method
shows a stronger capability on the separation of common
and private categories, which benefits from the MNN con-

trastive feature alignment and uncertainty calibration.
CDA and PDA settings. In the PDA setting, the results
in Table 3 tell us that TNT outperforms all other base-
lines including those tailored for PDA on VisDA. For Of-
fice and OfficeHome datasets, TNT also gives comparable
results to BA3US, which is one of the state-of-the-art meth-
ods in PDA. The results in the CDA setting show that TNT
outperforms other state-of-the-art UniDA methods on three
datasets (see supplementary). Even compared to those meth-
ods specialized in the CDA setting, TNT achieves compara-
ble performance to some of them, such as only inferior to
SRDC on Office and OfficeHome and to MDD on VisDA.
However, such methods customized for these two settings
cannot adapt to situations where “unknown” samples exist,
thereby limiting their application in real-world scenarios.
Total evidence score works better than softmax-based
score in “known” and “unknown” separation. We be-
gin by assessing the improvement of total evidence score
over softmax-based scores. Figure 3 compares the histogram
distributions of total evidence score, softmax-based con-
fidence score and softmax-based entropy score. The evi-
dence scores naturally form smooth bimodal distribution to
separate “known” and “unknown” samples clearly. In con-
trast, confidence score and entropy score fail to distinguish
them obviously, because many “unknown” samples also give
high confidence and low entropy. To gain further quantita-
tive insights, we calculate the AUC value which measures
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Figure 5: Feature visualization on “W2D” in Office. Blue
plots are “unknown” samples, others are “known” samples.
The left subfigure depicts the ground-truth labels, and the
right one depicts the predicted labels given by TNT.

how well “known” and “unknown” samples are separated.
The performance of total evidence score consistently out-
performs the confidence score and entropy score by a large
margin. Overall our experiment shows that the proposed to-
tal evidence score enables more effective “unknown” sample
detection and as a result, is a promising anomaly measure.
The heterogeneous threshold is superior to the single
global threshold. We analyze the impact of the category-
aware heterogeneous threshold on the identification of “un-
known” samples. The ODA and OPDA settings on Office
were used for this experiment. We report the “unknown”
sample detection accuracy in Figure 4(a), where a single
global threshold is obtained by using the mean and standard
deviation of all source data. Whether ODA or OPDA, we can
see that the accuracies under the heterogeneous threshold
are higher than the results under the single global threshold,
fully confirming the need to consider threshold heterogene-
ity caused by the diversity of categories.
Feature visualization. We use t-SNE to visualize the
learned target features with corresponding ground-truth la-
bels and our predicted labels in Figure 5, under the ODA set-
ting. Most target features between “known” common cate-
gories and “unknown” private categories are well separated,
and those samples in the same class are grouped together.
This mainly results from our feature alignment strategy, i.e.,
mutual nearest neighbor contrastive learning.

Ablation Study
Effect of L2, L3. To evaluate the contribution of L2 and
L3, we train the model with L1 and each component alone.
In this analysis, we use the VisDA dataset on four DA set-
tings and present the results in Table 4. It can be seen that
removing either L2 or L3 would serve to degrade the perfor-
mance. The effect of L3 is more significant, since L3 aims
to remove the domain discrepancy and achieve common cat-
egory matching and private category separation. Without L2

for prediction calibration, the classification boundary would
be fuzzy, thereby harming accuracy.
Hyperparameter sensitivity. To show the sensitivity of
TNT to the loss weight λ, we conducted control experiments
on Office under the OPDA setting, and the results are pre-
sented in Figure 4(b). Within a wide range of λ ∈ [0.01, 1.0],

VisDA CDA PDA ODA OPDA
TNT w/o L2 69.5 72.6 66.8 50.4
TNT w/o L3 64.7 65.1 63.5 46.9
TNT (full) 72.3 75.2 71.6 55.3

Table 4: Ablation study on VisDA dataset in four settings.

the performance changes very little, showing that TNT is ro-
bust to the selection of λ. We also analyze the behavior of
TNT when changing the nearest neighbor number k on Of-
ficeHome in the OPDA setting. As shown in Figure 4(c),
the H-score only varies slightly with k ∈ [10, 50], validating
that TNT is stable to the choices of k.

Conclusion
In this paper, we introduce a novel UniDA framework called
TNT from the perspective of evidential deep learning and
contrastive learning. It consists of two effective modules:
contrastive feature alignment based on intra- and inter-
domain mutual nearest neighbor pairs, an evidence-based
uncertainty score together with a category-aware heteroge-
neous threshold vector for “unknown” sample detection. A
thorough evaluation on three benchmarks shows the superior
performance of TNT, compared to previous state-of-the-arts.
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