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Abstract

Unsupervised learning is often used to uncover clusters in
data. However, different kinds of noise may impede the dis-
covery of useful patterns from real-world time-series data. In
this work, we focus on mitigating the interference of inter-
val censoring in the task of clustering for disease phenotyp-
ing. We develop a deep generative, continuous-time model of
time-series data that clusters time-series while correcting for
censorship time. We provide conditions under which clusters
and the amount of delayed entry may be identified from data
under a noiseless model. On synthetic data, we demonstrate
accurate, stable, and interpretable results that outperform sev-
eral benchmarks. On real-world clinical datasets of heart fail-
ure and Parkinson’s disease patients, we study how interval
censoring can adversely affect the task of disease phenotyp-
ing. Our model corrects for this source of error and recovers
known clinical subtypes.

Introduction
Cluster analysis of time-series data is a task of interest across
a variety of scientific disciplines including biology (List-
garten et al. 2007), meteorology (Camargo et al. 2007), and
astrophysics (Rebbapragada et al. 2009). Automating the
discovery of latent patterns in real-world data can be chal-
lenging due to noise. We focus on mitigating errata in pattern
discovery from interval censoring (Miller Jr 2011).

Interval censoring arises when time-series data are only
observed within a known interval. The difference between
an observed time value and the true time value, known as
left-censorship, and the lack of a common outcome against
which to align, known as right-censorship, can lead common
techniques for clustering to erroneous conclusions about the
underlying patterns. To address this, practitioners must of-
ten manually align data to a meaningful start time in order to
find non-trivial groups via unsupervised clustering—a pro-
cess whose difficulty can range from expensive and time-
consuming in some problems to infeasible in others. In this
work, we develop a machine learning algorithm that clusters
time-series data while simultaneously correcting for inter-
val censoring. In doing so, we automate the time-consuming
process of manual data alignment and use our method to re-
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veal structure that would otherwise not be found by straight-
forward application of clustering analysis.

This paper is motivated by disease phenotyping in health-
care. Many diseases are biologically heterogeneous de-
spite a common diagnosis—for example autism (Doshi-
Velez, Ge, and Kohane 2014), heart failure (Shah et al.
2015), diabetes (Udler et al. 2018), and Parkinson’s dis-
ease (Fereshtehnejad et al. 2017). The variation in biomark-
ers (e.g., glucose or creatinine) across patients can stem from
different patient subtypes that manifest in distinct disease
trajectories. Scientists seek to understand this disease het-
erogeneity by identifying groups of people whose biomark-
ers behave similarly. For example, cardiologists use a mea-
surement called ejection fraction as a heuristic to separate
heart failure patients into two categories (Owan et al. 2006),
with at least one of the two subtypes believed to be hetero-
geneous (Shah et al. 2015). To better understand patient het-
erogeneity, cardiologists may turn to longitudinal, observa-
tional, and often irregularly-measured patient data for dis-
ease phenotype discovery.

Interval censoring in healthcare data presents a significant
challenge for disease phenotyping. Left-censorship in clin-
ical datasets can occur when patients have delayed entry,
meaning data are unavailable before a diagnosis or first hos-
pital visit. Factors including geographic proximity to a hos-
pital (Chan, Hart, and Goodman 2006), financial access to
care (Miller and Wherry 2017) or mistrust of the healthcare
system (Brandon, Isaac, and LaVeist 2005) can affect when
a patient seeks medical help and consequently the beginning
of data availability with respect to the underlying progres-
sion of their disease. Other datasets align patients by death
time, but right-censorship restricts sample size to patients
who have died. Since many factors affect mortality, other
causes of death may confound results. For heart failure, a
chronic disease that progresses over many years with a large
range of onset ages and survival outcomes, interval censor-
ing can confound attempts to analyse disease heterogeneity
using observational data.

For a simplified illustration of the problem, see Fig-
ure 1(a) which depicts the common reality of observational
health data whereas Figure 1(b) depicts the idealized latent
substructure we would like to identify. Existing subtyping
models applied to clinical data assume (potentially erro-
neously) that patients are aligned at entry into the dataset
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Figure 1: (a) Patient data can be interval-censored, meaning longitudinal data can be missing based on entry to the dataset, e.g.,
first diagnosis, and the data may lack a common outcome against which to align. Patients may enter the dataset at any stage of the
disease. (b) Interval censoring can make clustering patient time-series data challenging because data may be aligned incorrectly,
e.g., first diagnosis. We seek to understand disease heterogeneity by inferring subtypes after correcting for misalignment. (c)
Graphical model of SubLign.

or study. The problem with such an assumption is that the
disparity between true disease stage and observed observa-
tion time can result in unsupervised learning algorithms un-
covering the wrong, or perhaps less interesting, structure.
For example, a naive clustering algorithm might simply re-
turn clusters corresponding to the disease stage at entry into
the study, which may simply recapitulate some of the biases
mentioned earlier.

To that end, our paper makes the following contributions:
1. We introduce and formalize the problem of cluster recov-

ery from interval-censored time-series data.
2. We introduce a practical algorithm, SubLign, based on

variational learning of a deep generative model, which:
• Makes no assumption on the distribution of delayed

entry alignment values besides extrema.
• Operates on multivariate time-series with varying

lengths and missing values, both characteristics often
found in real-world datasets.

• Is unsupervised, meaning that neither subtype labels
nor alignment values are provided during training.

3. We prove an identifiability result showing that, in a noise-
less setting, both the degree of delayed entry from left-
censorship and the subtype identity are recoverable.

We show robust quantitative results on synthetic data where,
over multiple runs, our method outperforms baselines for
subtyping and patient alignment. On two real-world clini-
cal datasets—heart failure and Parkinson’s disease—we au-
tomatically recover known clinical subtypes without manual
alignment or expert knowledge.

Related Work
Learning alignment and clustering has been studied in fields
across computer vision, signal processing, and health. Ap-
proaches often make assumptions including few discrete
time steps (Young et al. 2018; Huopaniemi et al. 2014);
a single piecewise linear function (Young et al. 2018) or
Gaussian mixture model (Huopaniemi et al. 2014); signifi-
cantly more samples per object than number of objects (Mat-
tar, Hanson, and Learned-Miller 2012; Gaffney and Smyth

2005); very small windows of potential misalignment (Liu,
Tong, and Wheeler 2009; Listgarten et al. 2007); or known
lag time (Li et al. 2011). Methods that directly measure sim-
ilarity between time-series, e.g., dynamic time warping (Cu-
turi 2011) or methods that aggregate multiple imputation
methods (Faucheux et al. 2021) can also be used for clus-
tering time-series data. Our method aims to cluster interval-
censored multivariate time series without these constraints.

Clinicians and scientists learn disease subtypes to better
understand heterogeneity in disease progression in a process
known as disease phenotyping. Existing approaches often
rely on the assumption that the observed measurements are
aligned — and therefore not censored. Researchers then ap-
ply clustering techniques like hierarchical clustering of time
series (Doshi-Velez, Ge, and Kohane 2014), affinity cluster-
ing (Luo et al. 2020), or matrix factorization (Udler et al.
2018; Perros et al. 2017). Other models define disease sub-
types as stages of disease progression (Alaa and van der
Schaar 2019). For this work, we define disease subtypes as
distinct from disease stage and jointly learn both.

SubLign: Subtype & Align
There are two stages to SubLign. First, we learn a generative
model of the observed data which disentangles variation in
the observed data due to delayed entry from variation re-
lated to subtype identity. Second, we infer subtype represen-
tations and (optionally) cluster the representations to obtain
the explicit subtype identity for each time-series. Figure 1(c)
describes the graphical model, and Algorithm 1 depicts the
pseudocode for this procedure.

SubLign Generative Model Consider the follow-
ing setup. We observe N multivariate time-series
(one for each patient), each of length up to M :
[(x1,1, y1,1), . . . , (x1,M , y1,M )], . . . [(xN,1, yN,1), . . . ,
(xN,M , yN,M )]. yi,m ∈ RD is a vector of observations
for time-series i at time-stamp xi,m ∈ R+. We denote
collections of observations as Yi = {yi,1, . . . , yi,M} and
time-stamps as Xi = {xi,1, . . . , xi,M} for patient i.

Figure 1(c) depicts the graphical model corresponding
to the latent-variable generative model of continuous-time
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Algorithm 1: SubLign

1: Input: Observation times X ∈ RN×M , biomarkers
Y ∈ RN×M×D

2: Output: τk for each subtype and δ̂i for each patient
3: Step 1: Learning
4: repeat
5: Encode time-series: hi = RNN([Xi, Yi]) ∀i ∈

{1, . . . , N}
6: Compute variational distribution q(Zi|Xi, Yi) =

N (µ(hi;φ2),Σ(hi;φ3))∀i ∈ {1, . . . , N}
7: for patient i = 1 to N do
8: Run grid-search to find δ̂i =

arg maxq(δi) L(Yi|Xi; γ, φ, q(δi)) (Eq. 3)
9: end for

10: Update γ, φ via stochastic gradient ascent on
L(Y |X; γ, φ, δ̂)

11: until convergence
12: Step 2: Inference and Clustering
13: Infer Z = {zi|zi = µ(hi;φ2)} for Xi, Yi
14: Find K clusters using k-means on Z and compute clus-

ter centers µk
15: Infer parameters of subtype trajectories τk = g(µk)

multivariate data:

∀i = {1, . . . , N}, ∀m ∈ {1, . . . ,M},
∀d ∈ Di,m, δi ∼ Cat(D), zi ∼ N (0, I), Θ = g(zi; γ),

yi,m[d] = f(κ(xi,m + δi; Θ[d])), yi,m ∼ N (yi,m[d], I)

(1)

We drop indices denoting patient and dimension where
unnecessary. Di,m denotes the set (and |Di,m| denotes the
number) of observed biomarkers for patient i at their m-th
observation. To accommodate missing data, not all biomark-
ers are required to be measured at every observation. Each
delayed entry value δi ∈ R+ has a maximum alignment
deviation value δ+ over all time-series. We discretize the
closed interval [0, δ+] as D = [0, ε, 2ε, . . . , δ+] with hyper-
parameter ε and use a categorical distribution over D with
uniform probabilities over each element as our prior over δi.
Function g : RNz → RD×(P+1) has parameters γ and maps
from the latent variable to Θ ∈ RD×(P+1), a matrix of pa-
rameters for D polynomials, each of degree P . f is a known
link function that describes how observed values relate to
observed time-points.

Parameterization We discuss the specific parameteriza-
tions of Equation 1. In the context of our motivating applica-
tion of disease phenotyping, these functions represent com-
mon characteristics in the progression of patient biomarkers.

Link function and polynomials: For f and P , we study the
following choices: Sigmoid: P = 1 and f(x) = 1

1+exp(−x)
and Quadratic: P = 2 and f(x) = x. The sigmoid function
can represent bounded and monotonically increasing clinical
variables. The quadratic function represents cases where dis-
ease severity, as measured by biomarkers, decreases (likely
in response to therapy) and then increases (once therapy

fails), or vice versa. Other choices for P, f are permissi-
ble as long as they are differentiable with respect to the
model parameters. We allow for the possibility that individ-
ual biomarkers have different parameterizations.

Modeling polynomial parameters: We parameterize
g(zi; γ) using a two layer neural network with ReLU ac-
tivation functions with parameters γ. To be concrete, if
D = 1, P = 2, and f is the sigmoid function, then the
outputs of g are [β0(z), β1(z)] and y = 1

1+exp−(β0(z)x+β1(z)) .
Similarly, if D = 1, P = 1, and f is the quadratic func-
tion then the outputs of g are [a(z), b(z), c(z)] and y =
a(z)x2 + b(z)x+ c(z).

Step 1: Learning
We learn the parameters γ of the model in Equation 1
via maximum likelihood estimation. Since the model is a
non-linear latent variable model, we maximize a variational
lower bound on the conditional likelihood of data given the
time-stamps corresponding to observations.

log
M∏
m=1

∏
d∈Di,m

p(yi,m[d]|xi,m; γ) = log p(Yi|Xi; γ) (2)

≥ L(Yi|Xi; γ, φ)

= Eq(Zi|Xi,Yi;φ)
[

log
∑
δi

p(Yi|Xi, δi, Zi; γ)p(δi)+

+ log
p(Zi)

q(Zi|Xi, Yi;φ)

]
≥ L(Yi|Xi; γ, φ, q(δi))

= Eq(Zi|Xi,Yi;φ)
[
Eq(δi)

[
log p(Yi|Xi, δi, Zi; γ)

+ log
p(δi)

q(δi)

]
+ log

p(Zi)

q(Zi|Xi, Yi;φ)

]
(3)

The first lower bound uses a variational distribution for
Z parameterized via an inference network (Kingma and
Welling 2013; Rezende, Mohamed, and Wierstra 2014) with
parameters φ. The second lower bound is a variational dis-
tribution over δ. The function q(δi) parameterizes the space
of one-hot distributions in D, i.e., a categorical distribution
over discrete choices of δi.

Our learning algorithm alternates between two steps. We
first maximize the lower bound using subgradient ascent. To
do so, we solve: δ̂i = arg maxq(δi) L(Yi|Xi; γ, φ, q(δi)).
For our choice of variational distribution, this maximization
can be performed via a grid search. We then derive gradients
∇γ,φL(Yi|Xi; γ, φ, δ̂i) to update the generative model and
inference network via stochastic gradient ascent.

Step 2: Obtaining Learned Subtypes
After learning the model, we may re-use the inference net-
work to predict the latent variable zi = µ(hi;φ2) for each
patient in the training set. Combining zi across all time-
series gives us the set Z . When reasonable, we refer to
µ(hi;φ2) as µi.

Although latent variable zi encodes latent structure from
each time-series, we may be interested in explicit subtypes
for a given value of K. To obtain discrete subtypes, we can
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run clustering algorithms on Z to obtain K cluster cen-
ters {µ1, . . . , µK}. Because we use a Gaussian prior for our
biomarker values, measuring distances in the space of the la-
tent variable can be done with the Euclidean norm, making
the k-means a reasonable choice of clustering algorithm.

We compute {τ1, . . . , τK} where τk = g(µk) as the
progression-patterns corresponding to each of the discrete
subtypes of the disease. For example, if f ◦ κ is linear, then
we obtain K different slopes and biases, each of which de-
scribes how the time-series behaves in that subtype. In prac-
tice, K may be chosen based on domain knowledge; alter-
natively, qualitative results can be assessed for each version
of K, e.g., by plotting the corresponding f functions.

Remarks on SubLign
Role of the latent variable: The latent variable z plays an
important role in quantifying how each biomarker behaves.
Each time-series’s latent variable is used to predict the pa-
rameters ofD polynomial functions and f ◦κmaps from ob-
servation times onto the observed biomarkers. Time-series
whose representation space z are close hail from the same
subtype, and consequently manifest similar patterns in their
biomarkers. This variation in z results in variation in the pa-
rameters Θ and therefore in variation among the data as a
function of the time-points.

Note this latent representation can be used for other set-
tings beyond disease phenotyping, for example supervised
prediction tasks. For example, when P = 1 and f is the
identity (i.e., a linear function), some time-series might in-
crease (positive slope) versus others that decrease (nega-
tive slope). The latent representation z captures subtypes by
learning to predict the slope of the function that models vari-
ation among time-series.

As an illustration, in Figure 1(b) in the blue phenotype,
f is the sigmoid function. Depending on the latent space,
we could imagine a one-dimensional z where z < 0 repre-
sents the curve (and subtype) in blue and z ≥ 0 to represent
the curve in red. The value of δi indicates the degree of de-
layed entry associated with each time-series. The delayed
entry from interval censoring is corrected by applying the
scalar δi element-wise to Xi and then transforming it by f .

Choice of link function: Our current choice of link func-
tion f is motivated to mimic degenerative disorders wherein
patient biomarkers gradually increase over time (denoting
worse outcomes). There is precedence in prior work to re-
strict function forms that characterize how biomarkers be-
have to be monotonic (Pierson et al. 2019). However, we
emphasize that the model is not restricted to only sigmoid or
quadratic functions for the link function f used in the syn-
thetic and clinical experiments. Our work permits alternative
choices of f—assuming the choice is smooth and differen-
tiable with respect to model parameters—and allows indi-
vidual biomarkers to have different parameterizations.

Scalability: The runtime of SubLign is impacted by the
grid search over model parameter δi. The corresponding
lines 7-9 in Algorithm 1 have complexity O(NSF ) where
F is the complexity associated with a single forward pass
of the inference network and the generative model, N is the
number of examples, and S = δ+/ε is the number of time

steps. The model practitioners may therefore balance com-
putational resources with S. In our experiments, we found
comparable performance for S as low as 5.

Real-world clinical data: SubLign is motivated by, and
designed to capture, variation in clinical biomarkers while
taking into account the challenges of clinical data. Obser-
vational healthcare data are often irregularly spaced, and
contains missingness. The use of a continuous time model
allows us to naturally handle the former issue since we
only maximize the likelihood of data corresponding to time-
points where they are observed. When a single biomarker is
missing while others are observed, it may be marginalized
out (by ignoring the corresponding loss term).

Accommodating different kinds of censorship: Equa-
tion 1 naturally characterizes delayed entry arising from
left-censorship. SubLign can also accommodate right-
censorship by reversing the sequence of time-series and ap-
plying Algorithm 1 (resulting in our ability to infer the de-
gree of right censorship). When both left-censorship and
right-censorship are present, it corrects for left-censorship
explicitly (using δ) while right-censorship is implicitly ac-
counted for since we only maximize the likelihood of data
up to the point that we observe time-series.

Identifiability Under a Noiseless Model
While SubLign presents a viable, practical model for clus-
tering and aligning censored time-series data, it is worth
reflecting upon whether we can ever identify subtype and
alignment from observational data. In what follows, we
present theoretical conditions that show that there exists con-
ditions under which the problem we study is identifiable.

Identifiability We assume distinct time stamps for the M
observations in Xi. The generative process we assume for
Yi, conditional on Xi, is:

∀i = {1, . . . , N}, si ∼ Cat(K),

∀m ∈ {1, . . . ,M}, d ∈ Di,m,

yi,m[d] = f(κ(xi,m + δi; θ
P [si, d])) (4)

where si ∈ {1, . . . ,K} is the subtype for time-series i,
Di,m denotes the set of all observations at time-step m for
time-series i where ∀i,m, |Di,m| ≤ D, and δi is the de-
layed entry value. The link function f : R → R has no
parameters whereas κ : R → R is an unknown polyno-
mial function of degree P ∈ Z+. We denote the parameters
of κ, for each subtype and dimension (e.g., biomarker), as
θP ∈ RK×D×(P+1). We denote θP [si, d] as selecting the
(si, d)-th vector of size P + 1 from the tensor θP . Simi-
larly, θP [si] selects the si-th matrix of sizeX× (P +1). We
define θp as the p-th coefficient of any polynomial function
parameter set θ.

By construction, we have that si = si′ ⇐⇒ θP [si] =
θP [si′ ], i.e., for two subtypes, the values of each time-
series are described either by y = f(κ(x; θP [si])) or y =
f(κ(x; θP [si′ ])).

We begin with a set of assumptions for identifiability.
Assumption 1. f is invertible, and κ(x, θ) = θ0 +∑P
p=1 θpx

p describes a family of polynomial functions in
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x with parameter θ and degree P > 0. The parameters of
each subtype are unique.
Assumption 2. M ≥ P + 1, i.e., for each patient time-
series, there exists at least one of the D features where we
observe at least P + 1 values.
Assumption 3. For each subtype sk, there exists a time-
series i whose alignment δi = 0, meaning no delayed entry.

Theorem 1. Under assumptions 1, 2, 3 for the model in
Equation 4, we can identify the time-delays δ1, . . . , δN . We
can identify the polynomial coefficients θP up-to a permuta-
tion of its rows and columns and the identity of s1, . . . , sN
up-to a permutation over K choices.
Proof sketch. Consider the case where we have a single
biomarker for each patient. The proof is constructive; first
we transform the data using the inverse of f resulting in a
set of data drawn from polynomial equations. The polyno-
mial coefficients may be estimated from the observed data;
we can then find the roots of these polynomials and pick
the smallest root. These roots exactly quantify the degree
of delayed entry; i.e. they tell us how much each polyno-
mial has been shifted by. We can correct each time-series
for this shift, re-estimate polynomial coefficients from the
shifted-polynomials and cluster them to reveal the underly-
ing subtype identity for each time-series (and consequently
each patient).

Proof. The proof is constructive; i.e. we give an algorithm
for the identification of the parameters of the model in Equa-
tion 4. The algorithm for identification is presented in Algo-
rithm 2 and proceeds in three steps.

Step 1: The first step transforms the observed biomark-
ers by applying the inverse of function f , which exists by
Assumption 1. This leaves us with data as:

f−1(yi,m) = κ(xi,m + δi; θ
P
si) ∀i ∈ N,m ∈M

i.e. for all bio-markers, across all patients, we have data aris-
ing from different polynomial functions.

Step 2: Without loss of generality, the second step uses
the first biomarker to identify the values of δi for each pa-
tient.

a) First, we estimate the polynomial coefficients for each
patient separately; we are guaranteed exact recovery of
the coefficients by Assumption 2.

b) Next we find the roots for each polynomial. If they are
complex, consider their real part, and define ξi to be the
smallest root of the polynomial. At least one (real or
complex) root is guaranteed to exist by the Fundamen-
tal Theorem of Algebra for every non-constant polyno-
mial (Assumption 1). Note that the choice of using the
smallest root is arbitrary; what matters is that a consistent
choice of root is selected for each patient’s polynomials.

c) The goal of this step to learn a new polynomial for each
patient which is translated to ensure that the root selected
in step b) lies at x = 0.
To do so, we first shift the observational time-steps by ξi,
and we re-estimate the coefficients of each shifted poly-
nomial.

Algorithm 2: Procedure for the identification of model pa-
rameters

1: Input: Observation times X ∈ RN×M , biomarkers
Y ∈ RN×M×D, polynomial degree P , invertible func-
tion f

2: Output: θP , δ1, . . . , δN , s1, . . . , sN for each patient
3: Step 1: Transform the observed biomarkers; Q =
f−1(Y )

4: Step 2: Obtain time-shifts using a single biomarker;
5: a) For each patient i, estimate the parame-

ters θ̇1i of κ(x; θ̇1i) using a single biomarker
((xi,1, qi,1), . . . , (xi,M , qi,M ) via polynomial re-
gression,

6: b) Compute up to P roots of polynomial κ(x, θ̇1i) for
each patient i as Ri = {r1, . . . , rP } and set ξi =
min Real(Ri) where Real denotes the real part of (po-
tentially complex) roots.

7: c) Estimate θ̃1i for polynomials in a canonical position
using ((xi,1 − ξi, qi,1), . . . , (xi,M − ξi, qi,M ) via poly-
nomial regression,

8: d) Cluster θ̃ji across patients via K-means clustering to
yield cluster identities s1, . . . , sN

9: e) ∀k, ηk = min{ξi | i s.t. si = k} and ∀i, δi =
ξi − ηsi

10: Step 3: Estimate true polynomial coefficients using
shifted observation times;

11: for biomarker j = 1 to J do
12: For each patient, estimate the parameters θji of

κ(x; θ̂ji) using ((x1,1 − δi, q1,1[j]), . . . , (x1,M −
δi, q1,M [j]) via polynomial regression,

13: end for
14: Return θP = [θ1| . . . |θJ ], {δ1, . . . , δN}, {s1, . . . , sN}

We make use of the fact that if ξi is the smallest complex
root of a polynomial κ(x) then the polynomial κ(x +
ξi) has its smallest complex root at 0. We can recover
the parameters of this polynomial exactly by shifting our
observations and re-estimating the coefficients.
This operation recovers the coefficients of every patient’s
polynomial in its canonical position i.e. a translated poly-
nomial whose the smallest root (or its real component) is
at x = 0.
This step can be viewed as a de-biasing step which allows
us to re-estimate θ̃ without while ignoring the effect that
left-censorship has on parameter estimates.

d) We cluster the coefficients estimated in step c). By con-
struction, we know that si = si′ ⇐⇒ θi = θi′ which
guarantees that clustering recovers the true-underlying
subtype for each patient (up to a permutation over K
choices).

e) Finally we stratify patients by their subtype, and we de-
fine δi as the difference between their smallest root and
the smallest value of ξi among all other patients within
that subtype.
By Assumption 3, we know that for each subtype, there
exists a patient for whom δi = 0, this reference patient
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will also be the one whose polynomial has the smallest
root. We note here that without Assumption 3, we would
still have identification of δi up to a constant.
Therefore, by shifting each patient’s smallest root by
their reference patient’s smallest root, we can recover the
original time-shifts.

Step 3: Given the values of δ1, . . . , δN from Step 2, we can
now estimate the true values of the polynomial coefficients
exactly in the noiseless setting via polynomial regression.

Remarks: Theorem 1 describes conditions under which
delayed entry and the polynomial parameters of cluster
biomarker progression are identifiable. This encouraging re-
sult demonstrates scenarios where the parameters of the
model in Equation 4 can provably be identified.

On the assumptions for identification: It is possible to re-
lax Assumption 3 to only require the existence of a single
time-series from each subtype; this modification only al-
lows identifiability of δ1, . . . , δN up to a translation within
each subtype. The above result relies on the existence of at
least one biomarker for which there are sufficiently many
observations – this is a reasonable assumption in the context
of clinical data since there is often a canonical biomarker
tracked over time for each disease.

On the strategy for identification: We conjecture our anal-
ysis for identification of subtype and alignment is of in-
dependent interest for identifying causal effects in survival
analysis where an important challenge is how to handle con-
founding that jointly affects both survival time and censor-
ship. Related work in this field (Seaman et al. 2020; Choi
and O’Malley 2017) has focused on restricting the class of
models used to characterize the survival function. Our work
presents distinct parameteric assumptions towards this goal.

Evaluation Setup
Synthetic data. We generate two classes of synthetic
datasets from the sigmoid and quadratic parameterizations
in the ‘SubLign: Subtype & Align’ section. For the sig-
moid dataset, we generate data from K = 2 subtypes and
∀i,m, |Di,m| = 3 biomarker dimensions. For the quadratic
dataset, we generate data with K = 2 and ∀i,m, |Di,m| =
1. See appendix for the data generation process for the six
quadratic datasets.

In both synthetic settings, we sample N = 1000 pa-
tients with M = 4 observations, variance σ2 = 0.25, and
max disease stage T+ = 10. For each patient, we sample
subtype s ∼ Bern(0.5). The true disease stage is drawn
tm ∼ Unif(0, T+) for observation m ∈ {1, . . . ,M}. The
biomarker values are drawn ym ∼ N(λm, σ

2) where λm =∑
k∈{1,...,K} 1(si = k)fk(tm). For the sigmoid dataset, the

first subtype generating function across three dimensions is
f1(t) = [σ(−4 + t), σ(−1 + t), σ(−8 + 8t)] and the second
subtype generating function is f2(t) = [σ(−1 + t), σ(−8 +
8t), σ(−25+3.5t)]. The observed disease time xm is shifted
such that the first patient observation is at time 0. Therefore
xm = tm − ζ where ζ = minj∈{1,...,M} tj is the earliest
true disease time for the patient.

Real-world clinical data. We study two real-world clin-
ical datasets (Parkinson’s disease and heart failure) to as-
sess SubLign performance when data have realistic dynam-
ics and are missing over time. Our clinical datasets inher-
ently contain delayed entry due to external factors including
patient access to healthcare. We include preprocessing code
in the appendix.

Heart failure (HF): We use electronic health records from
a large health system in the United States, currently redacted
for double blind review. We identify patients who enter
the emergency department with a diagnosis of HF and ex-
tract echocardiogram values—measurements from an ultra-
sound of the heart—from the full patient history. We include
echocardiogram features that are present in more than 60%
of echo studies. Our dataset includesN = 1534 patients and
|Di,m| ≤ 12; ∀i,m features with M = 38 maximum obser-
vations per patient over a potential span of 10 years in the
dataset. We extract 27 baseline features including race, sex,
and comorbidities (e.g., renal failure) to validate subtypes
only and not for use in the model. The dataset values are lin-
early scaled such that values are between 0 and 1 with larger
values denoting more abnormality.

Parkinson’s disease (PD): We use publicly-available data
from the Parkinson’s Progression Markers Initiative (PPMI),
an observational clinical study, totalling Nt = 423 PD pa-
tients and Nc = 196 healthy controls where N = Nt +Nc.
We extract four biomarker measurements of autonomic, mo-
tor, non-motor, and cognitive ability from N = 619 total
participants with M = 17 maximum observations per pa-
tient. Our baseline data include 25 features including de-
mographic information and patient history used to validate
subtypes. For PD patients, the first recorded visit is within 2
years of the patient’s PD diagnosis. Measurements are scaled
between 0 and 1 with larger values corresponding to more
abnormal values. We use the sigmoid parameterization of
the SubLign model for both datasets because HF and PD are
chronic and incurable diseases.

Hyperparameters and Baselines
We find optimal hyperparameters via grid search. For both
synthetic and clinical experiments, we search over hyperpa-
rameters including dimensions of the latent space z (2, 5,
10), the number of hidden units in the RNN (50, 100, 200),
the number of hidden units in the multi-layer perceptron (50,
100, 200), the learning rate (0.001, 0.01, 0.1, 1.), regular-
ization parameter (0., 0.1, 1.), and regularization type (L1,
L2). We select the hyperparameter configuration with the
best validation loss, as measured by Equation 3. Our models
are implemented in Python 3.7 using PyTorch (Paszke et al.
2019) and are learned via Adam (Kingma and Ba 2014) on
a single NVIDIA k80 GPU for 1000 epochs. We set align-
ment extrema δ+ = 10 based on the maximum of the syn-
thetic dataset and the maxima of the HF and PD datasets. We
search over 50 time steps with ε = 0.1.

For all models, we run for 1000 epochs and use the model
with the best training loss over the 1000 epochs for eval-
uation. For the sigmoid dataset, the optimal hyperparame-
ters are latent space of dimension 5, 100 hidden units in the
RNN, 50 hidden units in the multi-layer perceptron, learning
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rate of 0.01, and no regularization.
For the Parkinson’s disease dataset, we searched on a

slightly smaller set of hyperparameters for SubLign and
found optimal hyperparameters of β = 0.01, no regular-
ization, 10 latent dimensions, 10 hidden units for the multi-
layer perceptron, 200 units for the recurrent neural network,
and learning rate of 0.1.

For the heart failure dataset, we searched on a slightly
smaller set of hyperparameters for SubLign and found op-
timal hyperparameters of β = 0.001, no regularization, 10
latent dimensions, 20 hidden units for the multi-layer per-
ceptron, 50 units for the recurrent neural network, and learn-
ing rate of 0.01.

We compare to seven different baselines. Our greedy
baseline, denoted as KMeans+Loss, first clusters the ob-
served values using k-means clustering. Then, using the in-
ferred labels s, we simultaneously learn θk for each subtype
and δi for each patient by minimizing:

arg min
θ,δ

N∑
i=1

M∑
j=1

D∑
d=1

K∑
k=1

1[si = k][yi,j,d−f(xi,j,d+δi; θk)]2

(5)
using Broyden–Fletcher–Goldfarb–Shanno. This naive clus-
tering based approach (in the space of the original data) at-
tempts to correct for shifts in time. We also compare to:
1. SubNoLign: a modified SubLign with no alignment

value. This model is comparable to Zhang et al. (2019),
which learns a deep patient representation while control-
ling for model architecture

2. SuStaIn (Young et al. 2018): a subtype and stage infer-
ence algorithm for disease progression,

3. BayLong: a Bayesian model of longitudinal clinical data
(Huopaniemi et al. 2014),

4. PAGA (Wolf et al. 2019): a state-of-the-art single-cell
trajectory pseudo-time method,

5. Clustering with dynamic time warping (DTW) using ker-
nel methods (Cuturi 2011) and soft-DTW (Cuturi and
Blondel 2017),

6. SPARTan: A tensor factorization based approach for phe-
notyping from time-series data (Perros et al. 2017)

We detail baseline implementations below.

SuStaIn. SuStaIn (Young et al. 2018) is a disease progres-
sion algorithm that recovers subtype and stage from cross-
sectional data. We transform our longitudinal data by drop-
ping patient affiliation across visits. We transform the data
by subtracting the mean for each feature and dividing by the
standard deviation for each feature. We assume the Z-scored
values have a max of 5. We run for 1,000,000 epochs for the
Markov Chain Monte Carlo sampling and 1,000 epochs for
optimization. We use an open source implementation by the
authors: https://github.com/ucl-pond/pySuStaIn

Bayesian approach. The Bayesian ap-
proach (Huopaniemi et al. 2014) assumes longitudinal
data, but there must be a small number of measured time
points. We assume that there are 10 observed time points
where observed data can begin as well as a window of 10

time points before the observed window where a patient’s
values can be aligned to. Because biomarker values are
scaled between 0 and 10, we assume that values change
between time points based on a Gaussian with σ = 2 and
that subtype means for each time point are drawn from
a Gaussian with σ = 5. We draw 4000 samples and use
the maximum a posteriori estimate to determine stage
and subtype for test patients. Because we could not find
an open-source option, we implemented the algorithm
ourselves based on the description in the paper.

PAGA. Partition-based graph abstraction, or PAGA, (Wolf
et al. 2019) assumes cross-sectional data, so we cre-
ate separate visits for each patient visit. For algo-
rithm parameters, we set resolution to 0.05, number
of neighbors to 15, and connectivity cutoff of 0.05.
We use an open source implementation by the authors:
https://github.com/dynverse/ti paga/blob
/master/run.py

Dynamic time warping. Dynamic time warping (DTW)
defines similarity between time series that can be com-
bined with clustering techniques. DTW methods include us-
ing soft-DTW (Cuturi and Blondel 2017) and kernel (Cu-
turi 2011) before using K-means with the chosen sim-
ilarity metric. We use open source implementations of
DTW algorithms to generate our baseline comparisons:
https://pypi.org/project/dtw-python/

Tensor factorization. Sparse tensor factorization has been
used for disease phenotyping. The decomposition of large
and sparse datasets using canonical polyadic decomposi-
tion can create an interpretable output for phenotyping. We
use the Matlab open source implementation of SPARTan:
https://github.com/kperros/SPARTan We found these base-
line results to yield poor clustering performance despite ag-
gressive hyperparameter tuning. We surmise this is because
transforming our data from continuous to discrete time re-
sulted in a very large and extremely sparse matrix factoriz-
ing which is a tricky optimization problem.

Evaluation
We evaluate models on 5 trials, each with a different ran-
domized data split and random seed. For each trial, we learn
on a training set (60%), find the best performance across
all hyperparameters on the validation set (20%), and report
the performance metrics on the held-out test set (20%). The
same data folds are used across all models for each trial.

We report the performance on the test set over three met-
rics. Adjusted Rand index (ARI) measures whether pairs of
samples are correctly assigned in the same or different sub-
types (Hubert and Arabie 1985).

The Swaps metric reports the number of swaps needed
to sort the predicted disease times into the true disease
stages, expressed as percentage of total possible swaps. For
true sorted alignment values a1, . . . , aN for N patients, we
define the swaps metric S of proposed alignment values
b1, . . . , bN as the number of swaps needed to sort the pre-
dicted disease times into the true disease stages, expressed
as percentage of total possible swaps.
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S =

∑
i,j;i<j 1(ai < bi, aj > bj)

N(N − 1)/2

The Pearson correlation coefficient expresses correlation
between the predicted and true disease stage. ARI measures
the clustering performance while the Swaps metric and the
Pearson correlation coefficient quantify how well the learn-
ing algorithm infers the alignment values.

Quantitative metrics on clinical datasets. Because real
world data often lack ground truth labels for subtype or
alignment, we create two semi-synthetic experiments with
clinical datasets. For HF, we evaluate SubLign’s ability to
infer relative disease stage by introducing additional cen-
soring into the test sets. Specifically, we train SubLign us-
ing 80% data (train and validation data) as usual. We then
modify the remaining data (20%) by removing the first year
of patient observations, creating distorted test set (X ′, Y ′),
and by removing the last year of patient observations, cre-
ating (X ′′, Y ′′). The same amounts of observations are re-
moved from each set to control for length of observations.
We infer alignment values using the trained SubLign model:
δ′ from (X ′, Y ′) and δ′′ from (X ′′, Y ′′). By construction,
δ′ > δ′′. We report the percentage of patients for which
SubLign is able to recover this relationship. For PD, we re-
port the held-out clustering performance for healthy control
patients and patients with PD. We use disease status (PD pa-
tient or healthy control) as labels and K = 2 subtypes.

Missing values. SubLign allows for missing biomarker
dimensions and missing patient visits to accommodate the
sparsity of clinical data. For missing visits, we adapt the
recognition network to handle variable sequence lengths. We
mask out missing observations so they have no contribution
to the learning stage, except for the recognition network in-
put. We linearly interpolate missing values for each patient
only for recognition network input. For baselines that cannot
handle missing data, we linearly interpolate missing values
for each patient.

Statistical significance. We evaluate held-out perfor-
mance over 5 trials. Each trial consists of randomized
60/20/20 training/validation/test data folds and a different
random seed. In order to compare models across 5 trials, we
report the means and standard deviations from the 5 trials.
When the reported performance intervals overlap, we com-
pute the statistical significance of the pairwise differences
using a t-test and a Benjamini-Hochberg correction of 0.05.

Evaluation and Analysis
Recovering Subtypes with Interval Censoring
SubLign is able to recover subtypes despite interval censor-
ing, outperforming all baselines. For sigmoid synthetic data
(Figure 2(a), ARI column), SubLign can recover subtypes
(mean ARI of 0.94) better than the KMeans+Loss baseline
(0.67) which assumes a greedy approach. Not correcting for
alignment time decreases the quality of inferred subtypes as
can be seen in SubNoLign (0.81).

Similarly, SubLign recovers known subtypes in the PD
dataset with statistically significantly higher ARI over base-
lines (see Figure 2(b)). When ARI performance intervals
overlap, we use a t-test on pairwise differences over trials
to compute statistical significance.

Some baselines appear to suffer because SubLign lever-
ages the longitudinal nature of patient data compared to the
cross-sectional assumptions of PAGA and SuStaIn. Other
baselines have strong priors, i.e., (Huopaniemi et al. 2014),
which may explain its poor performance. Dynamic time
warping methods appear to perform poorly for datasets with
few observations or high missingness rates. Lastly, the ten-
sor factorization method (Perros et al. 2017) fails, likely be-
cause transforming data from continuous to discrete time re-
sults in a very large and extremely sparse matrix factoriza-
tion that is a tricky optimization problem.

We include additional results in the appendix, includ-
ing visualizations of the SubLign subtypes compared to
baselines, model misspecification analysis, and experiments
varying the level of missingness.

Recovering Known Alignment Values
For the synthetic sigmoid data, SubLign outperforms base-
lines in inferring alignment values (Figure 2(a), Swaps and
Pearson columns). SubLign recovers alignment values bet-
ter according to the Swaps metric (mean value of 0.09)
and the Pearson metric (mean value of 0.85) compared to
the next best baselines of KMeans+Loss and SuStaIn. Note
that many baselines only recover subtypes and do not learn
patient alignment values. Although the real-world clinical
datasets do not contain true alignment values, we use the
previously described HF setup with an artificially censored
test set. We find that SubLign predicts known alignment re-
lationships in an altered dataset. When evaluated on the ma-
nipulated test data, SubLign recovers the constructed rela-
tionship of δ′ > δ′′ with a higher performance (71%± 2%)
over five trials compared to K-Means+Loss (57.8±4%) and
SuStaIn (53.8± 3%). See appendix for full results.

Clinical Insights from Correcting for Misalignment
We validate SubLign subtypes learned from the HF and PD
datasets using known clinical findings. The appendix in-
cludes a table of baseline features, which are not included
as input to SubLign, with statistically significant differences
in subtypes: 7 features (out of 26) for PD and 11 features
(out of 27) for HF.

Heart failure. Cardiologists classify patients into two
groups based on ejection fraction: HF with reduced ejection
fraction (systolic HF) and HF with preserved ejection frac-
tion (diastolic HF). However, in our HF dataset, over 30% of
patients correspond to neither group based on clinical diag-
nosis. When evaluating SubLign, we set K = 3, one more
than the number of known groups, to explore a new subtype
and to potentially better understand heterogeneity in the ex-
isting ejection fraction classifications (Shah et al. 2015).

Without ground truth subtype labels, we observe that Sub-
Lign finds systolic HF and diastolic HF as statistically sig-
nificant baseline features. Of the three subtypes, subtype C
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MODEL ARI ↑ SWAPS ↓ PEARSON ↑
SubLign 0.94 ± 0.02 0.09 ± 0.00 0.85 ± 0.04
SubNoLign 0.81 ± 0.21 – –
KMeans+Loss 0.67 ± 0.04 0.21 ± 0.03 0.49 ± 0.01
SuStaIn 0.66 ± 0.02 0.16 ± 0.00 0.30 ± 0.02
BayLong 0.19 ± 0.18 0.48 ± 0.00 0.01 ± 0.02
PAGA 0.32 ± 0.05 0.52 ± 0.07 0.04 ± 0.20
Soft-DTW 0.06 ± 0.01 – –
Kernel-DTW 0.06 ± 0.07 – –
SPARTan 0.22 ± 0.18 – –

(a)

MODEL ARI

SubLign 0.58 ± 0.12
SubNoLign 0.42 ± 0.14
KMeans+Loss 0.05 ± 0.04
SuStaIn 0.12 ± 0.11
BayLong 0.04 ± 0.17
PAGA 0.02 ± 0.02
Soft-DTW 0.46 ± 0.43
Kernel-DTW 0.21 ± 0.36
SPARTan 0.15 ± 0.10

(b)

Figure 2: Means and standard deviations over 5 trials for: (a) synthetic sigmoid dataset with 1000 patients, 3 dimensions, and
4 observations per patient, (b) 619 patients in the PPMI dataset including 423 Parkinson’s disease patients and 196 healthy
controls. Baseline methods include SuStaIn (Young et al. 2018), BayLong (Huopaniemi et al. 2014), PAGA (Wolf et al. 2019),
Soft-DTW (Cuturi 2011), Kernel-DTW (Dhillon, Guan, and Kulis 2004), and SPARTan (Perros et al. 2017).

corresponds to systolic HF, and subtype A and B correspond
to diastolic HF, mirroring known clinical heterogeneity in
diastolic HF (Shah et al. 2015). Of the two diastolic HF sub-
types, subtype A has a higher proportion of women while
subtype B has a higher rate of obese patients, both subgroups
with documented heterogeneity in diastolic HF (Duca et al.
2018; Tadic and Cuspidi 2019). In contrast, the subtypes
found by the KMeans+Loss baseline do not include known
systolic HF and diastolic HF as statistically significant fea-
tures. See appendix for full results.

Parkinson’s disease. Biomarkers used to track PD are
self-reported, which can be biased, subjective, and noisy.
From these biomarkers, SubLign discovers subtypes that
match known clinical findings on two cohorts: 619 com-
bined PD and healthy control patients, and 423 PD patients.

For PD and healthy control patients, we run SubLign with
K = 2 to uncover characteristics of the two known groups.
SubLign subtype A clearly corresponds to healthy controls
whereas subtype B designates PD patients. Statistically sig-
nificant baseline features include all components of the Uni-
versity of Pennsylvania Smell Identification Test (UPSIT),
which is a measure of smell dysfunction and highly linked
to PD (Haehner et al. 2009), and having a full sibling or bio-
logical dad with PD, which aligns with research suggesting
PD may be hereditary (Klein and Westenberger 2012).

For PD patients only, we set K = 3 in SubLign to ex-
plore and discover potential disease heterogeneity. Statisti-
cally significant baseline features include race and gender,
which parallel recent clinical findings about heterogeneity in
PD manifestation (Taylor, Cook, and Counsell 2007; Duca
et al. 2018) and indicate new potential areas for future work.
See appendix for tables of statistically significant baseline
features stratified by the discovered subtypes for HF and PD.

Discussion
We study the task of clustering interval-censored time-series
data. We present our method, SubLign, to learn latent rep-
resentations of disease progression that correct for temporal
misalignment in real-world observations and consider condi-

tions for identifiability of subtype and alignment values. Em-
pirically, our method outperforms seven baselines, and anal-
ysis of subtypes reveals clinically plausible findings. Bet-
ter modeling of disease heterogeneity through alignment can
help clinicians and scientists to better understand and predict
how chronic diseases with many subtypes may progress. We
hope that our model—in learning a continuous latent space
to model heterogeneity—may be applied to other domains
where subtypes and temporal alignment are entangled, for
example gene expression analysis (Bar-Joseph et al. 2002)
or cancer pathways (Wu, Gao, and Kasabov 2015).

Our model introduces directions for future work. Practi-
cally, SubLign assumes that δ and z are marginally inde-
pendent. Intuitively, this means that, across all subtypes of
a disease, the time at which the patient enters the data is
independent of any other factor. There are certainly cases
where this assumption may easily be violated, and there-
fore it remains an important area for further improvement
e.g., (Kariyawasan et al. 2007).

One area of interest is how to incorporate conditioning δ
on features that are predictive to its value (e.g., clinical his-
tory) or other complexities, such as differences in treatment
effect (Athey 2015). Our results for theoretical and noise-
less identification do not naturally extend to the noisy setting
since root finding without further assumptions can be sensi-
tive to noise in the coefficients of the polynomials. Alterna-
tive strategies for identification that generalize our result are
fertile ground for future work.

More broadly, this work contributes to developing clinical
models that are robust to real-world factors (Ghassemi et al.
2019), biases that might affect patient interactions with the
healthcare system (Chen et al. 2020), and the practicalities
of clinical care (Pollard et al. 2019).
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