
Locally Private k-Means Clustering with Constant Multiplicative Approximation
and Near-Optimal Additive Error

Anamay Chaturvedi, Matthew Jones, Huy Lê Nguyễn
Khoury College of Computer Sciences, Northeastern University

chaturvedi.a@northeastern.edu, jones.m@northeastern.edu, nguyen.hu@northeastern.edu

Abstract

Given a data set of size n in d′-dimensional Euclidean space,
the k-means problem asks for a set of k points (called cen-
ters) such that the sum of the `22-distances between the data
points and the set of centers is minimized. Previous work on
this problem in the local differential privacy setting shows
how to achieve multiplicative approximation factors arbi-
trarily close to optimal, but suffers high additive error. The
additive error has also been seen to be an issue in imple-
mentations of differentially private k-means clustering algo-
rithms in both the central and local settings. In this work,
we introduce a new locally private k-means clustering algo-
rithm that achieves near-optimal additive error whilst retain-
ing constant multiplicative approximation factors and round
complexity. Concretely, given any c >

√
2, our algorithm

achieves O(k1+Õ(1/(c2−2))
√
d′n log d′poly log n) additive

error with an O(c2) multiplicative approximation factor.

Introduction
Given a set D′ of n points in a d′-dimensional ball with unit
diameter in Euclidean space, the k-means clustering prob-
lem asks for a set of k points S such that the sum of `22-
distances from each data point to the closest respective point
in S, which we denote fD′(S), is minimized. Although k-
means clustering in the non-private setting is well-studied,
over the past few years there have been several developments
in the differentially private (DP) setting. Differential privacy
(Dwork et al. 2006) provides a framework to characterize
the loss in privacy which occurs when sensitive data is pro-
cessed and the output of this computation is revealed pub-
licly. Although there are different ways to define and capture
this loss in privacy, broadly speaking these characterizations
tend to be either central or local in nature. The definition of
central DP is formalized as follows:

Definition 1 (Differential privacy (DP), (Dwork et al.
2006)). Two datasets D1, D2 ∈ Xn are neighboring if they
differ in at most one record. An algorithm A : Xn → Y is
said to be ε-differentially private (DP) if for any S ⊂ Y and

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

0An extended version of this paper with all proofs and missing
details may be found at (Chaturvedi, Jones, and Nguyen 2021).

any two neighboring datasets D1, D2 ∈ Xn,

P (A(D1) ∈ S) ≤ exp(ε)P (A(D2) ∈ S).

Informally, differential privacy asks for a guarantee that
the likelihood of any possible output does not change too
much by adding to or dropping from our data set any sin-
gle value from the data universe. In practice, this guarantee
is fulfilled by adding carefully calibrated noise to quanti-
ties that are information-theoretically sensitive to the private
data, and the goal is to achieve relatively low error under
these privacy constraints. Perfect answers to a problem typ-
ically violate privacy; as a consequence, the constraints of
privacy usually enforce harsher lower bounds on accuracy
or utility than those imposed by the limits of time or sample
efficient computation.

In local differential privacy (LDP) the constraints are even
more severe; the entity solving the algorithmic problem only
gets access to noisy, privatized data. Formally,

Definition 2 (Local differential privacy (LDP), (Ka-
siviswanathan et al. 2011)). Consider a protocol which
queries some functions of individual records in a distributed
private dataset over r rounds of interaction, and let the re-
sponse to the queries for the private datum p be A(p) =
(A1(p), . . . , Ar(p)), where Ai(p) is the response in the ith
round. We say that this protocol is ε-locally differentially
private (LDP) if the algorithm that outputs privatized re-
sponses for any agent, i.e. p 7→ A(p), is ε-DP.

This constraint forces strong lower bounds for locally pri-
vate protocols; a lower bound of Ω((k +

√
n)/ε) is known

for the additive error of any ε-LDP interactive constant-
factor multiplicative approximation algorithm for the k-
means clustering problem that operates in a constant num-
ber of rounds (Stemmer 2020; Nguyen, Chaturvedi, and
Xu 2021). Despite the lower bounds known for this and
other problems, local differential privacy is often utilized
in practice (Erlingsson, Pihur, and Korolova 2014; Thakurta
et al. 2017). Making progress for LDP k-means clustering,
a fundamental subroutine for many big-data applications, is
hence of real-world interest as well.

Recent work on LDP k-means It was observed by Feld-
man et al. that there is a general algorithm that solves the
private k-means problem given access to a private solution

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6167

for the 1-cluster problem. Nissim and Stemmer gave a so-
lution for the private 1-cluster problem and consequently
the first LDP algorithm for the k-means problem with prov-
able guarantees, achieving a multiplicative approximation of
O(k) and an additive error term of Õ(n2/3+a · d1/3 ·

√
k).

The exponent of n in the additive error holds for arbitrarily
small a at the cost of looser multiplicative approximation
guarantees, a trade-off which appears in most later work
as well. This artifact is the consequence of using local-
ity sensitive hashing (LSH) families to detect accumulation
of data. Stemmer and Kaplan gave the first constant fac-
tor multiplicative approximation algorithm for this problem
within an additive error of Õ(n2/3+a ·d1/3 ·k2). They refine
the approach of the previous work by specifically targeting
the k-means problem instead of the 1-cluster problem, but
they also use LSH functions. The additive error was further
brought down by Stemmer to Õ(n1/2+a ·k ·max{

√
d,
√
k}),

in which work a lower bound of Ω(
√
n) was also proved, as

mentioned before. Most recently Chang et al. introduced a
one-round protocol for LDP k-means in the (ε, 0) setting.
They get a multiplicative approximation of η(1 + α) where
η is the multiplicative approximation guarantee of any given
non-private k-means algorithm and an additive error term of
kOα(1) ·

√
nd′ · poly log(n)/ε. We see that the trade-off be-

tween the additive and multiplicative approximations in this
algorithm has been shifted from n to k. However, the depen-
dence of the Oα(1) exponent of k on α is at least Ω(1/α)2

and can make the additive error prohibitively large depend-
ing on the regime of interest.

In the non-private setting, the performance of k-means
clustering algorithms is usually not very sensitive to the
multiplicative approximation guarantee, unless the data set
is chosen in a pathological fashion. On the other hand, the
additive error always presents as stated due to the artificial
error introduced by the algorithm to protect privacy. Exper-
imental work (Balcan et al. 2017; Nguyen, Chaturvedi, and
Xu 2021; Chang et al. 2021) on k-means clustering in the
related central model of DP shows that the performance of
private clustering algorithms seems to be far more sensitive
to the additive error, which is bound to exist owing to the
lower bound mentioned before. These observations lead to
the following question:

Does there exist an LDP k-means clustering algorithm
with constant multiplicative approximation such that the
additive error scales well in n and k simultaneously?

Technical contributions: In this work, we derive an algo-
rithm for private LDP k-means where we return to a LSH-
based approach but go beyond the previous line of work by
moving the trade-off in the additive error from the exponent
of n to k (as in Chang et al.). However, motivated by the em-
pirical evidence, our goal is to reduce the additive error to
near-optimal at the cost of looser multiplicative approxima-
tion instead of the other way around; we succeed in this goal
by driving down the exponent of k to 1 + O(1/(c2 − 2)),
where c is an LSH parameter that can be set to any value
≥
√

2. This shows for the first time that it is possible to have
constant factor multiplicative approximation k-means clus-
tering algorithms in the LDP setting with additive error that

Work Mult. App. Add. Error
2018 O(k) Õ(n2/3+a · d′1/3 ·

√
k)

2018 O(1) Õ(n2/3+a · d′1/3 · k2)

2020 O(1) Õ(n1/2+a · k ·max{
√
d′,
√
k})

2021 (1 + α)η Õ(n1/2 · d′1/2 · kÕ(1/α2))

LMA (1 + α)η Õ(n1/2 · d′1/2 · kÕ(1/α2))

LAE O(c2)O(c2)O(c2) Õ(n1/2 · d′1/2 · k1+O(1/(c2−2)))Õ(n1/2 · d′1/2 · k1+O(1/(c2−2)))Õ(n1/2 · d′1/2 · k1+O(1/(c2−2)))

Table 1: Comparison with recent LDP algorithms for k-
means. LMA and LAE are introduced in this paper, and LAE
is our main contribution. The data domain is a unit diame-
ter ball. The Õ notation suppresses privacy parameters and
logarithmic terms, where the additive errors all have a 1/ε
factor. The a summand in the exponents of the first three al-
gorithms is an arbitrarily small constant, but the constant in
the respective Mult. App. terms depends on a. η is the low-
est approximation factor that we can achieve for non-private
k-means. The value c can be set to any real number greater
than
√

2. From top to bottom, the previous works appearing
in this table are (Nissim and Stemmer 2018; Stemmer and
Kaplan 2018; Stemmer 2020; Chang et al. 2021).

has a truly square-root dependence on the data set size and
the ambient dimension and arbitrarily close to linear depen-
dence on the number of cluster centers. Formally, our main
result is:

Theorem 3. For ε < 1, Low Additive Error LDP k-Means
(LAE) is an ε-locally differentially private algorithm for the
k-means clustering problem that after four rounds of inter-
action outputs a set S′ of size k such that with constant prob-
ability the clustering cost fD′(S′) equals O(c2 OPT ′) +

O

(√
d′n log d′

ε

)(
k poly log n

)1+O
(

1
c2−2

)
.

We also introduce a second algorithm that achieves a sim-
ilar cost guarantee to that of (Chang et al. 2021). This is
of theoretical interest as a natural stopping point of previous
methods, but being peripheral to our main improvement over
previous work, we describe it only briefly in this paper and
relegate most of the details to the extended version.

Theorem 4. For ε < 1, Low Multiplicative Approximation
LDP k-Means (LMA) is an ε-locally differentially private al-
gorithm for the k-means clustering problem that after one
round of interaction outputs a set S′ of size k such that
the clustering cost fD′(S′) equals (1 + O(α))ηOPT ′ +
1
εk
Õ(1/α2)

√
d′n log d′ poly log n. where η is the best ap-

proximation factor of a non-private algorithm.

Although we will sketch the main ideas of and pro-
vide complete pseudocode for LAE, and give a high level
overview of the ideas behind LMA, due to space constraints
we refer the reader to the extended version for all complete
proofs and any missing details.

Outline of private clustering algorithms: Many works
in locally (and centrally) private clustering proceed via the
following sequence of steps.

6168

Step 1: We reduce dimensions of the d′-dimensional data
set D′ via the Johnson Lindenstrauss (JL) transform to d
dimensions and get a lower-dimensional proxy data set D.
It is a well-known fact that with as few as d = O(log n)
dimensions, we can preserve the pair-wise squared `2 dis-
tances between the points of the data set and consequently
show that the k-means clustering cost function ofD (as well
as the optimal cost OPT) is close to that ofD′ (and OPT ′,
respectively). Reducing dimensions and approximately pre-
serving the diameter of the domain reduces the sensitivity of
the queries made to compute the cluster sets and allows us
to add less noise in the main course of the computation. We
now work entirely with D in the dimension reduced space
B(0, 1) ⊂ Rd until we have privately identified cluster sets
and are ready to estimate the cluster centers in the original
space.

Step 2: A large number of possible candidate k-means
centers S (more than the k permitted in the final solution)
are privately generated. We permit the clustering cost of D
with respect to S be a multiplicative approximation to the
optimal clustering cost; such a candidate set is called a bi-
criteria solution for the k-means problem as we have relaxed
two constraints of the original problem.

Step 3: We exploit the idea that if the clustering cost with
respect to this set of candidate centers S is close to the opti-
mal k-means cost, then we can construct a proxy data setD∗
using S whose k-means clustering function is close to that
of the original data set D. At a high level, the idea is that if
we move each data point to the closest center in the set S;
the sum of the `22 distances moved over all points is about the
optimal clustering cost by the construction of S. Therefore,
essentially by applications of the triangle inequality, the val-
ues of the k-means clustering functions of D and D∗ are
at most O(OPT) apart when evaluated on any candidate
k-means solution. Since D∗ is privately generated, we can
directly apply the non-private k-means clustering algorithm
of our choice and generate k centers in the low dimensional
space which work well for D. Now we appeal to LDP pri-
vate averaging to privately recover the mean of each cluster
in the original space, and we are done.

It was observed by Stemmer that the one of the main
road-blocks in computing solutions with low additive error
is generating a relatively small bi-criteria S solution to the k-
means problem in the second step. It was essentially shown
in (Stemmer 2020) that a set S of candidate centers with re-
spect to which the clustering cost is at most Õ(kp

√
n logq n)

will lead to additive error Õ(max{
√
|S|n, kp

√
n logq n})

down the line (omitting the dependence on dimension). In
order to avoid an exponent of 1/2 + a on n as in the pre-
vious works which generate S by detecting data accumula-
tion via LSH functions, it is necessary to find a bi-criteria
solution with O(poly k poly log n) candidate centers with
O(poly k

√
n poly log n) additive error. Both our algorithms

achieve their improvements by generating such a small size
bi-criteria solution for the k-means problem.

LDP k-means with arbitrarily tight multiplicative ap-
proximation: We briefly describe how we get near opti-
mal multiplicative approximation in LMA as a warm-up to

the discussion for LAE. In the outline for private clustering
described above, one natural way to generate candidate cen-
ters set S privately in the lower dimension space is to start
with a d-dimensional grid-based discretization of the unit
ball and compute private scores for each grid point based on
how many points lie close to it; we then pick some of the
most highly ranked points to construct S. We appeal to re-
cent advances in dimension reduction for k-means clustering
(Makarychev, Makarychev, and Razenshteyn 2019) which
show that Johnson-Lindenstrauss (JL) style dimension re-
duction to Õ(log k/α2) many dimensions preserves the k-
means cost of every clustering of a data set within a multi-
plicative approximation of (1 ± α); moving from O(log n)
toO(log k) dimensions allows us to move the trade-off from
the exponent of n to the exponent of k in the additive error.

At a high level, this approach can be analyzed as fol-
lows. Suppose we fix some optimal k means solution SOPT

and decompose the domain in concentric shells depending
on the distance from some fixed k cluster centers. By set-
ting geometric thresholds of 1, 1/2, 1/4, and so on, the
lth shell B(SOPT , 1/2

l−1)−B(SOPT , 1/2
l) has the prop-

erty that every data point in it has an optimal clustering
cost of O(1/(2l)2) units. To cluster the data points that oc-
cur in the lth shell, if we consider a grid with side-length
α/(2l

√
d) then we have the guarantee that the closest grid

point for every data point is at a distance α times its op-
timal clustering distance. In principle, the entire dataset D
could lie in the lth shell, but we are able to show that picking
kÕ(1/α2) poly log n centers from this grid suffices to ensure
that most points in the lth shell are within an O(α/(2l)2)
distance of some candidate center. As the grid scales vary
geometrically, it turns out only log n grids are needed in
all and the size of the set of candidate centers generated
is kÕ(1/α2) poly log n. In sum, this allows us to show that
the net movement of points from the data set to the bi-
criteria solution is in factO(αOPT), allowing us to achieve
a 1 + O(α) inflation in the multiplicative approximation as
opposed to an O(1) inflation.

Challenges in reducing the additive error: Many previ-
ous works with tight bounds on the exponents of n and k
in the additive error proceed by using LSH functions to dis-
cretize the response. We recall that LSH functions with pa-
rameters (r, cr, p, q) with c > 1 and p > q are hash func-
tions with the property that for any pair of points in the input
domain within a distance of r units, the probability of col-
liding is at least p, and for any pair of points that are at least
a distance of cr units apart the probability of colliding is at
most q. At a high level, the idea behind using LSH func-
tions for clustering is to allocate candidate cluster centers
by computing point averages of heavy hash buckets for LSH
functions at geometrically varying scales (similar to how we
use geometrically varying grid unit lengths for tight multi-
plicative approximation. Just as allocating points from the
lth grid worked well to cluster the lth shell, using LSH func-
tions with scale r = 1/2l allows us to capture points which
lie in the lth shell with respect to any fixed k-means solution.

The reason for the trade-off between the multiplicative
approximation and the additive error in these algorithms is

6169

that the (near-optimal) constructions of LSH functions have
a trade-off between c, the ratio of the near and far thresh-
olds, and the ratio between the collision probabilities p and q
which determines how many false positives we have to deal
with when estimating bucket averages. We will see how to
surpass these challenges by using LSH functions in a novel
combination with a dyadic tree-based approach following
Braverman et al.

Preliminaries
We recall here some of the main technical tools which we
appeal to in the construction of our main algorithm.
Theorem 5 ((Duchi, Jordan, and Wainwright 2013)). There
is an ε-LDP mechanism for ε ≤ 1 to privately release a
vector v such that if Z is the value returned then E[Z] =

v. Further, ‖Z‖2 ≤ B0r
√
d/ε for some universal constant

B0 <∞.
Since the output of the algorithm given by Theorem 5 is a

vector of bounded length, we can apply standard concentra-
tion bounds to get an ε-LDP mechanism for locally privately
computing the mean of n independent private d-dimensional
vectors.
Corollary 6 (LDP mean estimation). For private vec-
tors v1, . . . , vn ∈ Rd and their respective privatized re-
leases Z1, . . . , Zn, we have that with probability 1 − β,
‖
∑n
i=1 Zi −

∑n
i=1 vi‖ = O

(
r
ε

√
dn log d

β

)
.

For more details about privately releasing and averaging
vectors, please see the extended version. We now formally
describe LSH functions which are the core technical tool of
our main algorithm:
Definition 7 (Locality sensitive hashing (LSH)). We say
that a family of hash functionsH : Rd → B for a finite set of
bucketsB is locality-sensitive with parameters (p, q, r, cr) if
for every x, y ∈ Rd for some 1 ≥ p > q ≥ 0, r > 0 and
c > 1

P (H(x) = H(y))

{
≥ p if d(x, y) ≤ r
≤ q if d(x, y) ≥ cr.

In this work we use a near-optimal LSH family construc-
tion from (Andoni and Indyk 2006).
Theorem 8. For every sufficiently large d and n there exists
a family H of hash functions defined on Rd such that for a
dataset of size n,
1. A function from this family can be sampled, stored and

computed in time tO(t) log n + O(dt), where t is a free
positive parameter of our choosing.

2. The collision probability for two points u, v ∈ Rd de-
pends only on the `2 distance between them, which we
henceforth denote by p(‖u− v‖).

3. The following inequalities hold:

p(1) ≥ A

2
√
t

1

(1 + ε+ 8ε2)t/2

∀c > 1, p(c) ≤ 2

(1 + c2ε)t/2

where A is an absolute constant < 1, and ε = Θ(t−1/2).
One can choose ε = 1

4
√
t
.

4. The number of buckets NB an LSH function with param-
eter t uses is tO(t) log n.

In the locally private setting, to ε-privately release a point
directly requires adding a noise vector with length propor-
tional to 1/ε to their private data, making it impossible to pri-
vately derive fine-grained information. To deal with this, we
will estimate the data set distribution indirectly. One way of
accomplishing this is to discretize the agents’ response. Al-
though the privatized individual responses are highly noisy,
the finite range of values on a discretized response allows the
slight bias towards values which are heavy-hitters to cause
their counts to accumulate and be distinguishable from the
counts of false positives. We will appeal to prior work on
locally private succinct histogram recovery to recover such
heavy- hitting values with minimal loss of privacy.

Lemma 9 (Algorithm Bitstogram, (Bassily et al. 2020)).
Let V be a finite domain of values, let f : D′ → V , and let
n(v) denote the frequency with which v occurs in f(D′). Let
ε ≤ 1. Algorithm Bitstogram(f, ε, β) interacts with the set
of n users in 1 round and satisfies ε-LDP. Further, it returns
a list L = ((vi, ai))i of value-frequency pairs (i.e. elements
of V ×R) with length Õ(

√
n) such that with probability 1−β

the following statements hold:

1. For every (v, a) ∈ L, ‖a − f(v)‖ ≤ E where E =

O
(

1
ε

√
n log(n/β)

)
.

2. For every v ∈ V such that f(v) ≥ M , v ∈ L, where

M = O
(

1
ε

√
n log |V |/β log(1/β)

)
.

We overload notation to treat the list returned by Bitstogram
returns as either a set of (heavy-hitter, frequency) pairs or a
function which may be queried on a value to return either the
corresponding frequency if it is a heavy hitter or a value of 0
otherwise. A subscript of M denotes the upper bound on the
maximum frequency omitted. We see that whenever |V | =
Ω(n), we have that M = Ω(E) and Bitstogram promises a
uniform error bound of M when estimating the frequency of
any element in the co-domain for an appropriate choice of
constants.

We introduce an extension of the Bitstogram algorithm
called HeavySumsOracle that allows us to query the sums
of some vector valued function over the set of elements
that map to a given heavy-hitter value. For a given value-
mapping function f : X → V and a vector-valued func-
tion g : X → Rd, the sum estimation oracle privately re-
turns for every heavy hitter v ∈ V the sum of all agents
that map to x, i.e.

∑
p:f(p)=x p. We recall that Bitstogram is

a modular algorithm with two subroutines; a frequency or-
acle that privately estimates the frequency of any value in
the data universe, and a succinct histogram construction that
constructs the heavy hitters in a bit-wise manner by making
relatively few calls to the frequency oracle. The construc-
tion of HeavySumsOracle essentially mimics the frequency
oracle ExplicitHist from (Bassily et al. 2020) and can be
run in parallel with Bitstogram, allowing us to reduce the

6170

round complexity of our protocols. It is similar to the Bucke-
tized Vector Summation Oracle construction of (Chang et al.
2021). The pseudocode of HeavySumsOracle and the proof
of Lemma 10 may be found in the extended version.

Lemma 10 (HeavySumsOracle). Let f : X → V , g :
X → B(0,∆/2) ⊂ Rd′ and ∆ > 0 be some publicly
known functions and parameters, and let D′ ⊂ X be a
distributed dataset over n users. Let the private parameter
ε ≤ 1. With probability at least 1 − β, for every v ∈ V
that occurs in f(D′), if S(v) is the value returned by the
HeavySumsOracle then∥∥∥∥∥∥S(v)−

∑
f(y)=v

g(y)

∥∥∥∥∥∥ ≤ O
(

∆

ε

√
d′n log

d′

β

)
.

Further, HeavySumsOracle is ε-LDP.

Low Additive Error LDP k-Means
As described in the outline of private clustering algorithms
and the following description, the main challenge that we
resolve is in the second step of the private clustering out-
line, where we privately generate a bicriteria solution that
has O(OPT) clustering cost with small additive error and
only O(k1+O(1/(c2−2)) many candidate centers.

Instead of applying LSH functions directly on the whole
domain, we derive a more accurate measure of the data
distribution by first appealing to the following construction
from (Braverman et al. 2017). In the domain [0, 1)d, a dyadic
2d-ary tree of cells is constructed, where each rectangular
cell is recursively subdivided into 2d child cells by bisecting
the cell along each axis. The cell at the top of the hierarchy
with side-length one unit is the whole domain, and the side
length of each level l cell is tl = 2−l units. L = log n levels
of the grid suffice to discretize the domain to a sufficiently
fine degree. This construction follows the dimension reduc-
tion step ensuring d = O(log n). The authors observe that
if we randomly shift this hierarchy of cells, then in expec-
tation there are O(1) many cells with side-length tl within
an `2 distance of tl/d units of any fixed point; we use this
observation multiple times in the sequel.

Guessing the optimal cost: Suppose we knew the opti-
mal cost OPT , and let SOPT be some arbitrary k-means
solution. Data points in cells further than tl/d units away
from SOPT must have a clustering cost of at least t2l /d

2,
but the sum of their costs cannot exceed the total cost OPT .
There are hence at most OPT d2/t2l many such points. Trac-
ing a similar argument with cells, we derive a threshold
Tl ' OPT /(t2l k poly log n) (dropping some terms) such
that there cannot be more than O(k log n) many cells that
have more than Tl points further than tl/d units from SOPT

(across all L levels). By the random shift observation there
are unconditionally at most O(1) · |SOPT | ·L = O(k log n)
many cells closer than tl/d to SOPT so we get that re-
gardless of where they lie in the domain there are at most
O(k log n) heavy cells in any level, i.e. cells that beat the
threshold Tl for their level. Any cell which is not heavy is
called light.

Assuming OPT is known, this allows us to identify re-
gions of the domain at different scales where data accumu-
lates beyond these thresholds. We guess values for OPT
varying in factors of 2 from k

√
n (the targeted additive er-

ror) to n (trivially achieved clustering cost) and allocate can-
didate centers for all guesses. To allocate candidate centers
for any level we use LSH functions as discussed in the intro-
duction, but we only invite responses from points in medium
cells, the light children of heavy cells.

Allocating candidate centers: LSH functions with pa-
rameters (p, q, r, cr) promise that any two points in the do-
main within a distance of r units collide with probability
at least p and points further than cr units with collide with
probability at most q where q < p. The key idea is that any
optimal cluster with radius r will end up populating one of
the LSH functions buckets, and that the average of all points
hashing to this bucket (contaminated with a few points from
outside the cluster) should lie within a distance of at most
O(cr) units from the cluster. However, doing this naively
would lead to a similar bound with a n1/2+a term as previ-
ous work; we now discuss some ideas behind our improve-
ment.

The n1/2+a barrier: Fixing a point x in an opti-
mal cluster C and a (p, q, r, cr)-LSH function, one can
show that with probability p/4 the distance between
x and the average over all points colliding with x
is at most cr · |{points from C colliding with x}| + ∆ ·
|{points further than cr units from x}|, where ∆ is the di-
ameter of the domain of an LSH function. Rearranging terms
one can show that in order for this to be at most O(cr) (the
desired distance for candidate center allocation), one needs
the ratio of collision probabilities p/q to beat the product of
∆/r and |Dl|/|C|, whereDl is all points lying in the domain
of the LSH function applied on level l medium cells. Tuning
p/q to beat a term B causes p and consequently the success
probability to scale with B−1/Θ(c). In previous work, the
term that p/q had to beat scaled as a polynomial in n; driving
up the success probability by running 1/pmany independent
copies of this scheme is what lead prior work to incur a small
na factor in the number of candidate centers allocated. The
decomposition of the data set across different levels with de-
creasing side-lengths and increasing thresholds allows us to
bound both ∆/r and |Dl|/|C| by k poly log n, which is how
we manage to avoid tuning the collision probabilities too ag-
gressively and avoid the na factor as before, substituting it
instead with a k1/O(c2−2) poly log n factor.

Reducing the exponent of k: If we apply LSH functions
on heavy cells in a cell-wise manner, we must account for
the fact that optimal clusters can be partitioned arbitrarily
by the cells in each level, leading to many cluster sections.
One can have all k clusters intersecting with the O(k log n)
heavy cells in any one level, which would require an alloca-
tion of Õ(k2) many centers to serve the Õ(k2) many cluster
sections. In order to reduce the exponent of k in the num-
ber of cluster centers allocated, we make three algorithmic
choices.

6171

Algorithm 1: Step 1 - Initialization and first interaction

1: γ ← uniformly random vector in [−1/2, 1/2]d

2: T : Rd′ → Rd dimension reduction for d =
O(log(k/αβ)/α2)

3: S : Rd → Rd scaling by a factor 1
2(1+α)

4: P : Rd → B(0, 1/2) projection to B(0, 1/2) followed
by translation by γ

5: Q = P ◦ S ◦ T : Rd′ → B(0, 1) ⊂ Rd
6: L = lg n
7: for l ∈ [L] do in parallel
8: CHl ← Bitstogram(Cl ◦Q(·), εCH, β/L) .

Cell-wise Histogram of points
9: end for

10: F = log2
n√
nk

. Exponent of 2 in guess for OPT

11: for f ∈ [F] do
12: {Hfi ,L

f
i ,M

f
i : i ∈ [L]} ←

HeavyCellMarker({CHl : l ∈ [L]} . guess for
OPT = k

√
n · 2f)

13: end for

Firstly, we allocate a candidate center at the center of ev-
ery heavy cell (i.e. at most O(k log n) · L = O(k log2 n)
more candidate centers). This guarantees that every point in
the heavy cells in level l has a candidate center at a distance
of tl
√
d. Secondly, we go up 1.5 lg d levels and apply LSH

functions to the ancestors of the level l + 1 medium cells
which have side length d3/2tl. Since tl = 2−l, the conse-
quence of these two modifications is that we only need to
allocate cluster centers within a distance of 2−l

√
d units of

any point of Dl, and that since there are only O(1) many
cells with side-length 2−ld3/2 within a distance of 2−l

√
d

units of an optimal center (again by the random shift obser-
vation), there are only O(k) many cluster sections we must
account for.

Thirdly, in order to avoid dealing with the worst caseO(k)
many cluster sections for every heavy cell when calling the
LSH subroutine on heavy cells separately, we construct a
synthetic space out of the union of all heavy cells in a level
and apply the LSH functions on this entire space. We will be
able to naturally extend the `2 to work across cells, ensure
that the cells are far enough apart in this distance measure so
that bucket averages that land up “between" cells end up in
the correct cell after projection, and that the diameter of this
synthetic space is still small enough to keep the improve-
ments we have derived so far.

We now give the pseudocode for this algorithm in four
pieces and walk through a sample run. Note that division of
the algorithm in the steps coincides with the outline as given
in the introduction; step 1 deals largely with the dimension
reduction (but also tags cells as heavy, medium or light),
steps 2a and 2b deal with the candidate center allocation,
and step 3 runs the non-private k-means on the proxy data
set and returns candidate centers in the original space.

Step 1 - Initialization and first interaction: We use pub-
lic randomness to generate the dimension reduction map T

Algorithm 2: Step 2a - Construction of synthetic space

M = 1 + log2 d
3/2
√
L = O(log log n) . Number of

LSH scales
rl,m = 2mtl

d
√
L

for m ∈ [M] . LSH scales

R = O
(

log kL2/β
p(1)

)
. Number of repetitions for LSH

λl = (14c+ 5)tl
√
d

V := {vC ∈ RO(d) : C ∈ Anc∗(Hl)} where vC are
all nearly orthogonal unit vectors, i.e. ‖vi − vj‖ ≥ 1i6=j

Λfl (·) := p 7→


(λlvAnc∗(C(p)), p− o(Cl(p)))
if p ∈ ∪C∈Anc∗(Hf)C

0 otherwise
.

Mapping to LSH domain

Hl,r,m,f (p) =


(p(1), p(c), rl,m, crl,m)-sensitive
Hash function on the space Λfl
if Cl(p) ∈Ml

⊥ otherwise

for f ∈ [F], l ∈ [L],m ∈ [M], r ∈ [R] do in parallel
BHl,m,r,f ← Bitstogram(Hf

l,m,r, β, εBH) .
Bucket-wise Histogram of points

BSOl,m,r,f ←
HeavySumsOracle(Hl,m,r,f ,Λl, β, εBSO) . Bucket Sum
Oracle
end for

and compose it with scaling and projection; this mapping
is passed in L calls to Bitstogram in parallel to receive es-
timates of how many points lie in each cell in the dimen-
sion reduced space via histograms CHl. We have geometri-
cally varying guesses for OPT k

√
n2f for f ∈ [F] where

F = log2(n/
√
nk). Each guess generates a marking of

cells {Hfl ,L
f
l ,M

f
l } as being, heavy, light, or medium (the

HeavyCellMarker algorithm which generates this marking is
described in the extended version).

Step 2a - Construction of synthetic space: M is the
number of LSH scales used in any one level l, and R the
number of independent repetitions of the hashing subroutine
to boost the success probability. We compute a set of nearly
orthogonal vectors indexed by the cells in Anc∗(Hl); since
|Anc∗(Hl)| = O(k log n), we only need O(log(k log n)) =
O(log n) many dimensions at most. We define a mapping
Λfl : Rd → RO(log n) × Rd where the co-domain is a syn-
thetic space mimicking the union of all heavy cells in level
l. Essentially, for points p such that Anc∗(Cl(p)) is a heavy
cell, the image is a 2-tuple of an indicator vector indicat-
ing which heavy ancestor cell p lies in, and the p’s position
with respect to the center of its ancestor cell. The mapping
Hl,m,r,f computes the output of the hash function for points
in medium cells. The counts of the heavy buckets of these
hash functions are recovered through Bitstogram via the
bucket histogram BHl,m,r,f and the sums of all points map-
ping to heavy buckets are recovered via HeavySumsOracle

6172

Algorithm 3: Step 2b - Candidate center allocation

S ← ∅
for f ∈ [F] do

SH,f ← {o(C) : ∃iC ∈ Hi}
Tl,f = p(1)

2 ·max
(
βOPT
t2l kL

2d
, 4BHM
p(1) ,

O

(
cG
√
n poly log n/β

εBSO

))
. Bucket threshold

Sl,f ← ∅
for l ∈ [L], m ∈ [M], r ∈ [R] do

for (b, n̂b) ∈ BHl such that n̂b ≥ Tl,f do
b̂← BSOl,m,r(b)

BHl,m,r(b)

Πl(b̂)← project b̂ to Λfl
Sl,f ← Sl,f ∪ {b̂}

end for
end for
Sf ← SH,f ∪

⋃L
l=1 Sl,f

S ← S ∪ Sf
end for

and stored in the bucket sum oracle BSOl,m,r,f .

Step 2b - Candidate center allocation: For every guess
for OPT (parameterized by f) we allocate a candidate cen-
ter Πl(b̂) for every heavy bucket b whose count n̂b crosses
the threshold Tl,f . The center is allocated at the bucket point
average estimate BSOl,m,r,f (b)/BHl,m,r,f (b) = n̂b. This
average is projected to the embedding of heavy cells in Λl to
get the point Πl(b̂), which is naturally identified with a point
in the original data domain; these projections are collected
to form the set of candidate centers Sl,f We allocate a can-
didate center at the center of every heavy cell to get SH,f .
The centers allocated for the guess for OPT parameterized
by f are stored in Sf . The total bi-criteria solution then is
simply S = ∪f∈[F]Sf .

Step 3 - Proxy data set construction and CenterRecovery:
We release the privately derived set of candidate centers, i.e.
the bicriteria clustering solution S and get the candidate cen-
ter histogram CCH that for each s ∈ S returns a privatized
count of the number of points for which s is the closest can-
didate center. The proxy data set D∗ is then simply each
point s ∈ S repeated with multiplicity CCH(s). We now
apply any non-private k-means algorithm to D∗ and derive
cluster centers S∗ = {s∗1. . . . , s∗k}. Note that this implicitly
defines a clustering of the original dataset D′ where a point
p ∈ D′ lies in cluster i if arg minj‖Q(p) − s∗j‖2 = i. To
compute the cluster centers in the original space, we invite
agents to release their original locations privatized via Theo-
rem 5 (the response v̂(p)), and in the same round of interac-
tion derive SH, the cluster centers histogram, which estimate
the number of data points that lie in the ith cluster via a call
to Bitstogram. We then divide the sum of noisy vectors by
the noisy count for each cluster to compute an estimate for
the true cluster centers, which is our final output.

Algorithm 4: Step 3 - Proxy data set construction and center
recovery

Input: Bicriteria k-means relaxation S for k-means clus-
tering under dimension reducing transformation M , the
transformation M : Rd′ → Rd
s(p) := p 7→ arg mins∈S‖p− s‖2
CCH = Bitstogram(s(·), β, εSH) . Candidate center
histogram
D∗ ← {s ∈ S with multiplicity SH(s)}
S∗ = {s∗1, . . . , s∗k} ← Standard k −Means
s∗(p) := p 7→ arg mins∗∈S∗‖M(p)− s∗‖2
do in parallel

Agents reveals v̂(p) for p ∈ D′ via Theorem 5
SH = Bitstogram(s∗(·), β, εSH) . Cluster centers

histogram
end parallel
v̂ =

∑
p∈D′ v̂(p)

ŝ∗ =
∑
p∈D′ ŝ

∗(p)
for j = 1, . . . , k do

µ̂j =
v̂j

SH(s∗j)

end for
Output: S′ = {µ̂1, . . . , µ̂k}

Acknowledgements
All the authors were supported by the National Science
Foundation under NSF grants AF 1909314 and CAREER
1750716.

References
Andoni, A.; and Indyk, P. 2006. Near-Optimal Hashing Al-
gorithms for Approximate Nearest Neighbor in High Di-
mensions. In 47th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS 2006), 21-24 October
2006, Berkeley, California, USA, Proceedings, 459–468.
IEEE Computer Society.
Balcan, M.-F.; Dick, T.; Liang, Y.; Mou, W.; and Zhang, H.
2017. Differentially private clustering in high-dimensional
euclidean spaces. In International Conference on Machine
Learning, 322–331. PMLR.
Bassily, R.; Nissim, K.; Stemmer, U.; and Thakurta, A.
2020. Practical Locally Private Heavy Hitters. J. Mach.
Learn. Res., 21: 16:1–16:42.
Braverman, V.; Frahling, G.; Lang, H.; Sohler, C.; and Yang,
L. F. 2017. Clustering High Dimensional Dynamic Data
Streams. CoRR, abs/1706.03887.
Chang, A.; Ghazi, B.; Kumar, R.; and Manurangsi, P. 2021.
Locally Private k-Means in One Round. In Meila, M.;
and Zhang, T., eds., Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, 1441–1451. PMLR.
Chaturvedi, A.; Jones, M.; and Nguyen, H. L. 2021. Locally
Private k-Means Clustering with Constant Multiplicative
Approximation and Near-Optimal Additive Error. CoRR,
abs/2105.15007.

6173

Duchi, J. C.; Jordan, M. I.; and Wainwright, M. J. 2013.
Local Privacy and Statistical Minimax Rates. CoRR,
abs/1302.3203.
Dwork, C.; Kenthapadi, K.; McSherry, F.; Mironov, I.; and
Naor, M. 2006. Our data, ourselves: Privacy via distributed
noise generation. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques,
486–503. Springer.
Erlingsson, Ú.; Pihur, V.; and Korolova, A. 2014. RAPPOR:
Randomized Aggregatable Privacy-Preserving Ordinal Re-
sponse. In Ahn, G.; Yung, M.; and Li, N., eds., Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November
3-7, 2014, 1054–1067. ACM.
Feldman, D.; Xiang, C.; Zhu, R.; and Rus, D. 2017. Core-
sets for differentially private k-means clustering and appli-
cations to privacy in mobile sensor networks. In 2017 16th
ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks (IPSN), 3–16. IEEE.
Kasiviswanathan, S. P.; Lee, H. K.; Nissim, K.; Raskhod-
nikova, S.; and Smith, A. 2011. What can we learn privately?
SIAM Journal on Computing, 40(3): 793–826.
Makarychev, K.; Makarychev, Y.; and Razenshteyn, I. P.
2019. Performance of Johnson-Lindenstrauss transform for
k-means and k-medians clustering. In Charikar, M.; and Co-
hen, E., eds., Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, Phoenix,
AZ, USA, June 23-26, 2019, 1027–1038. ACM.
Nguyen, H. L.; Chaturvedi, A.; and Xu, E. Z. 2021. Dif-
ferentially Private k-Means via Exponential Mechanism and
Max Cover. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021,
9101–9108. AAAI Press.
Nissim, K.; and Stemmer, U. 2018. Clustering algorithms
for the centralized and local models. In Algorithmic Learn-
ing Theory, 619–653. PMLR.
Stemmer, U. 2020. Locally private k-means clustering. In
Proceedings of the Fourteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 548–559. SIAM.
Stemmer, U.; and Kaplan, H. 2018. Differentially Private
k-Means with Constant Multiplicative Error. In Bengio, S.;
Wallach, H. M.; Larochelle, H.; Grauman, K.; Cesa-Bianchi,
N.; and Garnett, R., eds., Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, 5436–5446.
Thakurta, A. G.; Vyrros, A. H.; Vaishampayan, U. S.;
Kapoor, G.; Freudiger, J.; Sridhar, V. R.; and Davidson, D.
2017. Learning new words. Granted US Patents, 9594741.

6174

