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Abstract

Many efforts have been made for revealing the decision-
making process of black-box learning machines such as deep
neural networks, resulting in useful local and global expla-
nation methods. For local explanation, stochasticity is known
to help: a simple method, called SmoothGrad, has improved
the visual quality of gradient-based attribution by adding
noise to the input space and averaging the explanations of
the noisy inputs. In this paper, we extend this idea and pro-
pose NoiseGrad that enhances both local and global expla-
nation methods. Specifically, NoiseGrad introduces stochas-
ticity in the weight parameter space, such that the decision
boundary is perturbed. NoiseGrad is expected to enhance the
local explanation, similarly to SmoothGrad, due to the dual
relationship between the input perturbation and the decision
boundary perturbation. We evaluate NoiseGrad and its fusion
with SmoothGrad — FusionGrad — qualitatively and quan-
titatively with several evaluation criteria, and show that our
novel approach significantly outperforms the baseline meth-
ods. Both NoiseGrad and FusionGrad are method-agnostic
and as handy as SmoothGrad using a simple heuristic for the
choice of the hyperparameter setting without the need of fine-
tuning.

Introduction
The ubiquitous usage of Deep Neural Networks (DNNs), fu-
eled by their ability to generalize and learn complex non-
linear functions, has presented both researchers and practi-
tioners with the problem of non-interpretability and opaque-
ness of Machine Learning (ML) models. This lack of trans-
parency, coupled with the widespread use of these highly
complex models in practice, represents a risk and a major
challenge for the responsible usage of artificial intelligence,
especially in security-critical areas, e.g. the medical field.
In response to this, the field of eXplainable AI (XAI) has
emerged intending to make the predictions of complex algo-
rithms comprehensible for humans.

One possible dichotomy of post-hoc explanation methods
can be carried out on the basis of whether these methods re-
fer to the global or local properties of a learning machine.
The local level XAI aims to explain a model decision of
an individual input (Guidotti et al. 2018), for which various
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methods, such as Layer-wise Relevance Propagation (LRP)
(Bach et al. 2015), GradCAM (Selvaraju et al. 2019), Occlu-
sion (Zeiler and Fergus 2014), MFI (Vidovic et al. 2016), In-
tegrated Gradient (Sundararajan, Taly, and Yan 2017), have
proven effective in explaining DNNs. In contrast, global ex-
planations aim to illustrate the decision process as a whole,
without the connection to individual data samples. Recently,
methods belonging to the Activation-Maximization (Erhan
et al. 2009) family of methods have become widely popular,
such as DeepDream (Mordvintsev, Olah, and Tyka 2015),
GAN-generated explanations (Nguyen et al. 2016) and Fea-
ture Visualization (Olah, Mordvintsev, and Schubert 2017).

For local explanation, gradient-based methods are most
popular due to their simplicity, however, they tend to suf-
fer from the gradient shattering effect, which often results in
noisy explanation maps (Samek et al. 2021). As a remedy,
Smilkov et. al. proposed a simple method, called Smooth-
Grad (Smilkov et al. 2017), where stochasticity is intro-
duced to the input. Specifically, it adds Gaussian Noise to
the input features n times, computes the n corresponding
explanations, and takes the average over the n explanations.
SmoothGrad is applicable to any local explanation method
and has been practically proven to reduce the visual noise in
the explanation map.

The mechanism behind SmoothGrad’s enhancement of
explanations is not yet well understood. One could argue
that SmoothGrad averages out the shattering effect. How-
ever, SmoothGrad performs best when the added noise level
is around 10%–20% of the signal level, which not only
smooths out peaky derivatives but is large enough to cross
the decision boundary. From this fact, we hypothesize that
SmoothGrad perturbs the test sample in order to get a sig-
nal from the steepest part of the decision boundary. This
motivated us to explore another way of using stochasticity:
instead of adding noise to the input, our proposed method
— NoiseGrad (NG) — draws samples from the network
weights from a tempered Bayes posterior (Wenzel et al.
2020), such that the decision boundaries of some models
are close to the test sample, which results in more precise
explanations.

Our hypothesis leads to a natural and easy way of hy-
perparameter choice: the noise level added to the weights
(which corresponds to the temperature of the tempered
Bayes posterior) is chosen such that the relative perfor-
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Figure 1: Illustration of the differences in explanation behavior between Baseline (gradient-based explanation), SmoothGrad,
NoiseGrad, and FusionGrad for a toy experiment. Given training samples of two classes (orange and blue dots), a 3-layer
MLP was trained for binary classification, where the learned decision boundary is shown by the green dashed line. The gradient
explanations for a fixed test sample (red point) are shown as black arrows and the mean explanation as a bold black arrow. (a) For
the baseline method, the explanation is the gradient itself. (b) SmoothGrad enhances the explanation by sampling points in the
neighborhood (small red dots), and averaging their explanations (bold black arrow). (c) NoiseGrad enhances the explanation by
averaging over perturbed models, indicated by multiple decision boundaries (thin green dashed lines). (d) FusionGrad combines
SmoothGrad and NoiseGrad by incorporating both stochasticities in the input space and the model space.

mance drop is around 5%. In addition, we approximate the
tempered Bayes posterior by multiplicative noise applied to
the network weights — in the same spirit as MC dropout
(Gal and Ghahramani 2016). Thus, our proposed method
NoiseGrad can be implemented as easily as SmoothGrad
with an automatic hyperparameter choice and is applica-
ble to any model architecture and explanation method. Our
experiments empirically support our hypothesis and show
quantitatively and qualitatively that NoiseGrad outperforms
SmoothGrad and combining NoiseGrad with SmoothGrad,
which we refer to as FusionGrad, further boosts the perfor-
mance. An overview of our proposed methods is shown on
a toy experiment in Figure 1.

Another advantage of NoiseGrad over SmoothGrad is that
it is straightforwardly applicable to global explanations as
well. For example, we can replace the objective function
for activation maximization with its average over the model
samples, which is expected to stabilize the image repre-
senting the features captured by neurons. Our experiments
demonstrate that NoiseGrad improves global explanations in
terms of human interpretability and vividness of illustrated
abstractions.

Our main contributions include:

• We propose a novel method, NoiseGrad, that improves
local and global explanation methods by introducing
stochasticity to the model parameters.

• The performance gain by NoiseGrad and its fusion
with SmoothGrad, FusionGrad, for local explanations,
is shown qualitatively and quantitatively using different
evaluation criteria.

• We observe that NoiseGrad is further capable of enhanc-
ing global explanation methods.

Background
Let f(·; Ŵ ) : Rd → Rk be a neural network with learned
weights Ŵ ⊂ RS that maps a vector x ∈ Rd from the in-
put domain to a vector y ∈ Rk in the output domain. In
general, attribution methods could be viewed as an operator
E
(
x, f(·, Ŵ )

)
that attributes relevances to the features of

the input x with respect to the model function f(·,W ). More
in-depth discussion about the different explanation methods
used can be found in the Appendix.

Enhancing local explanations by adding noise to the in-
puts A recently proposed popular method, called Smooth-
Grad (SG), seeks to alleviate noise and visual diffusion
of saliency maps by introducing stochasticity to the inputs
(Smilkov et al. 2017). SmoothGrad adds Gaussian noise to
the input and takes the average over N instances of noise:

ESG (x) = 1
N

∑N
i=1E

(
x+ ξi, f(·, Ŵ )

)
,

ξi ∼ N (0, σ2
SGI)

(1)

where N (µ,Σ) is the Normal distribution with mean µ and
covariance Σ and I the identity matrix. The authors of the
original paper state that SG allows smoothening the gra-
dient landscape, thus providing better explanations. Later
SmoothGrad has also proven to be more robust against ad-
versarial attacks (Dombrowski et al. 2019).

Enhancing explanations by approximate Bayesian learn-
ing From a statistical perspective, training DNNs with the
most commonly used loss functions and regularizers, such
as categorical cross-entropy for classification and MSE for
regression, can be seen as performing maximum a-posteriori
(MAP) learning. Hence, the resulting weights can be thought
of as a point estimate for a posterior mode in the param-
eter space, capturing no uncertainty information. Recently,
Bykov et al. (2021) showed that incorporating information
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about posterior distribution can enhance local explanations
for DNNs. Intuitively, in contrast to the MAP learning,
where point estimates of weights represent one determin-
istic decision-making strategy, a posterior distribution rep-
resents an infinite ensemble of models, which employ dif-
ferent strategies towards the prediction. By aggregating the
variability of the decision-making processes of networks, we
can obtain a broader outlook on the features that were used
for the prediction, and thus deeper insights into the models’
behavior (Grinwald et al. 2022).

Since exact Bayesian Learning is intractable for DNNs,
a plethora of approximation methods have been proposed,
e.g., Laplace Approximation (Ritter, Botev, and Barber
2018), Variational Inference (Graves 2011; Osawa et al.
2019), MC dropout (Gal and Ghahramani 2016), Variational
Dropout (Kingma, Salimans, and Welling 2015; Molchanov,
Ashukha, and Vetrov 2017), MCMC sampling (Wenzel et al.
2020). Since most of the approximation methods require
full retraining of the network or evaluation of the second-
order statistics, which are computationally expensive, we
use a cruder approximation with multiplicative noise to draw
model samples for NoiseGrad.

Method
As mentioned previously, the mechanism why SmoothGrad
improves explanations has not been well understood. In em-
pirical experiments we found that SmoothGrad with a rec-
ommended 10%–20% noise level is large enough to cross
the decision boundary, resulting in a significant classifica-
tion accuracy drop. This finding implies that SmoothGrad
does not only smooth the peaky derivative but also collects
signals from the steepest part of the likelihood, i.e., decision
boundary, by perturbing the input sample with large noise.

Motivated by this observation, we propose another way
of introducing stochasticity – instead of perturbing the in-
put, we perturb the model itself. More specifically, we pro-
pose a new method — NoiseGrad — which draws network
weight samples from a tempered Bayes posterior (Wenzel
et al. 2020), i.e., the Bayes posterior with a temperature
higher than 1. The temperature should be so high that the
decision boundaries of some model samples are close to the
test sample, which reinforces the signals for explanations.

Local explanation with NoiseGrad Mathematically, we
define the local explanation with NoiseGrad (NG) as follows

ENG(x) =
1
M

∑M
i=1E (x, f(·,Wi)) , (2)

where {Wi}, i ∈ [1,M ] are samples drawn from a tem-
pered Bayes posterior. Since approximate Bayesian learn-
ing is computationally expensive, we approximate the poste-
rior with multiplicative Gaussian noise – in the spirit of MC
dropout (Gal and Ghahramani 2016): Wi = Ŵ · ηi, with
ηi ∼ N (1, σ2

NGI), where I refers to an identity matrix. By
averaging over a sufficiently large number of samplesM , we
expect NG to smooth the signal and also to collect amplified
signals from models whose decision boundary is close to the
test sample. This and the smoothing capabilities of the NG
method can be observed in Figure 2, where the gradients are
plotted for each grid-point on the toy dataset used before in

Figure 2: Illustration of the impact of NoiseGrad on a gra-
dient flow map. For the same problem as in Figure 1, for
each grid-point the gradient is computed (left). On the right
we can observe the effect of NoiseGrad — it smoothens the
gradients by perturbing the decision boundary.

Figure 1 for both Baseline and NG. From the results shown,
we can observe that NoiseGrad in fact smoothens out the
gradient.

FusionGrad We also propose FusionGrad (FG), a combi-
nation of NoiseGrad and SmoothGrad, to incorporate both
stochasticities in the input space and the model space

EFG(x) =
1
N

∑N
i=1

1
M

∑M
j=1E (x+ ξj , f(·,Wi)) (3)

where ξj ∼ N (0, σ2
SGI), N the number of noisy inputs,

and M the number of model samples. We show in our ex-
periments that FG further boosts the performance of NG,
providing the best qualitative and quantitative performances.

Global explanation with NoiseGrad Unlike Smooth-
Grad, NoiseGrad can be used to enhance global explanation
methods. An important class of global explanation methods
is activation maximization (AM) (Erhan et al. 2009), which
synthetically creates an input that maximizes a given func-
tion g(x). Usually, the activation of a particular neuron is
maximized, and thus the generated input can embody the
main concepts and abstractions that the DNN is looking for.
Many variants with different types of regularization have
emerged (Nguyen et al. 2016; Olah, Mordvintsev, and Schu-
bert 2017) — regularization is necessary because otherwise,
AM might synthesize adversarial inputs, which would not
convey visual information to the investigator.

NoiseGrad enhancement of any AM technique could be
performed as follows: given the target function g(x, Ŵ ) for
a model f(·; Ŵ ), we sample M models with the NG proce-
dure, and maximize the average function over the number of
perturbed models:

argmaxx∈C
1
M

∑M
i=1 g(x,Wi), (4)

where C is a regularized input domain, specific to a particular
implementation of an AM method.

Heuristic for hyperparameter setting One of the reasons
for the popularity of SmoothGrad is that it does not require
hyperparameter tuning: it works well if the number N of
noisy samples is sufficiently large, and the input noise level

6134



σSG is set to a value in the recommended range, 10%–20%,
compared to the signal level.

A major question is if one can set the noise level σNG

for NoiseGrad in a similar way that does not require fine-
tuning. We put forward a simple hypothesis: since we need
signals from models whose decision boundaries are close
to the test sample, we might choose the noise level σNG

such that we observe a certain performance drop. For the
classification setting with balanced classes, we can use ac-
curacy as a performance measure: from experimental re-
sults (discussed more in-depth in the Appendix) we rec-
ommend to set the relative accuracy drop AD(σ) = 1 −
(ACC(σ)−ACC(∞))/(ACC(0)−ACC(∞)) to around 5%,
where ACC(σ) denotes the classification accuracy at the
noise level σ. Note that ACC(0) and ACC(∞) correspond
to the original accuracy and the chance level, respectively.
This rule of thumb can be used for various model architec-
tures with different scales, as shown in the next section.

As a heuristic for FusionGrad, we recommend to half both
σSG and σNG (as found by their respective heuristics) to
equal the contribution from the input perturbation and the
model perturbation. Further, we empirically found that 10
samples are sufficient for both methods. With those heuris-
tics, NoiseGrad and FusionGrad can be used as effortlessly
as SmoothGrad. A detailed discussion on the relationship
between the explanation quality (localization criteria) and
accuracy drop can be found in the Appendix.

Experiments On Local Explanations
In this section, we explain datasets and evaluation metrics
used for evaluating our proposed methods for local attribu-
tion quality.

Datasets To measure the goodness of an explanation, one
typically needs to resort to proxies for evaluation since no
ground-truth for explanations exists. Similar to Arras, Os-
man, and Samek (2020) and Yang and Kim (2019); Romi-
jnders (2017), we therefore design a controlled setting for
which the ground-truth segmentation labels are simulated.
For this purpose, we construct a semi-natural dataset CM-
NIST (customized-MNIST), where each MNIST digit (Le-
Cun, Cortes, and Burges 2010) is displayed on a ran-
domly selected CIFAR background (Krizhevsky, Hinton
et al. 2009). To ensure that the explainable evidence for a
class lies in the vicinity of the object itself, rather than in
its contextual surrounding, we uniformly distribute CIFAR
backgrounds for each MNIST digit class as we construct the
CMNIST dataset. Ground-truth segmentation labels for the
explanations are formed by creating different variations of
segmentation masks around the object of interest such as a
squared box around the object or the pixels of the object it-
self. Moreover, to understand the real impact of SOTA, we
use the PASCAL VOC 2012 object recognition dataset (Ev-
eringham et al. 2010) and ILSVRC-15 dataset (Russakovsky
et al. 2015) for evaluation, where object segmentation masks
in the forms of bounding boxes are available. Further details
on training- and test splits, preprocessing steps and other rel-
evant dataset statistics can be found in the Appendix.

In an explainability context, the question naturally arises

whether object localization masks can be used as ground-
truth labels for explanations of natural datasets in which the
independence of the models from the background cannot be
guaranteed. We, therefore, report quantitative metrics only
on the controlled semi-natural dataset but report qualitative
results on the natural dataset as well.

Evaluation metrics While the debate of what proper-
ties an attribution-based explanation ought to fulfill contin-
ues, several works (Montavon, Samek, and Müller 2018;
Alvarez Melis and Jaakkola 2018; Carvalho, Pereira, and
Cardoso 2019) suggest that in order to produce human-
meaningful explanations one metric alone is not sufficient.
To broaden the view of what it means to provide a good ex-
planation, we evaluate the explanation-enhancing methods
using four well-studied properties — localization (Zhang
et al. 2018; Kohlbrenner et al. 2020; Theiner, Müller-
Budack, and Ewerth 2021; Arras, Osman, and Samek 2020),
faithfulness (Bach et al. 2015; Samek et al. 2016; Bhatt,
Weller, and Moura 2020; Nguyen and Martı́nez 2020; Rieger
and Hansen 2020), robustness (Alvarez Melis and Jaakkola
2018; Montavon, Samek, and Müller 2018; Yeh et al. 2019),
and sparseness (Nguyen and Martı́nez 2020; Chalasani et al.
2020; Bhatt, Weller, and Moura 2020). While there exists
several empirical interpretations, or operationalizations, for
each of these qualities, we selected one metric per cate-
gory. We adopted Relevance Rank Accuracy (Arras, Osman,
and Samek 2020) to express localization of the attributions,
Faithfulness correlation (Bhatt, Weller, and Moura 2020) to
capture attribution faithfulness, applied max-Sensitivity (Yeh
et al. 2019) to express attribution robustness and Gini in-
dex (Chalasani et al. 2020) to assess the sparsity of the attri-
butions. All evaluation measures are clearly motivated, de-
fined, and discussed in the Appendix.

Explanation methods NoiseGrad is method-agnostic,
which means, that it can be applied in conjunction with any
explanation method. However, in these experiments, we fo-
cus on a popular category of post-hoc gradient-based attri-
bution methods and use Saliency (SA) (Mørch et al. 1995)
as the base explanation method in the experiments similar as
in (Smilkov et al. 2017). Since the majority of model-aware
local explanation methods make use of the model gradients,
we argue that a potential explanation improvement on SA
with our proposed method may also be transferred to an im-
provement of a related gradient-based explanation method.
As the comparative baseline explanation method (Baseline),
we employ the Saliency explanation, which adds no noise to
either the weights nor the input. We report results on addi-
tional explanation methods in the Appendix.

Model architectures Explanations were produced for
networks of different architectural compositions such as
ResNet (He et al. 2016), VGG (Simonyan and Zisserman
2014) and LeNet (LeCun et al. 1998). All networks were
trained for image classification tasks so that they showcased
a comparable test accuracy to a minimum of 86%, 92% and
86% classification accuracy for CMNIST, PASCAL VOC
2012, and ILSVRC-15 datasets respectively. For more de-
tails on the model architectures, optimization configurations,
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Method Localization (↑) Faithfulness (↑) Robustness (↓) Sparseness (↑)
Baseline 0.7315 ± 0.0505 0.3413 ± 0.1549 0.0763 ± 0.0265 0.6272 ± 0.0475
SG 0.8263 ± 0.0483 0.3465 ± 0.1601 0.0590 ± 0.0235 0.5310 ± 0.0635
NG 0.8349 ± 0.0367 0.3635 ± 0.1536 0.0224 ± 0.0080 0.5794 ± 0.0533
FG 0.8435 ± 0.0358 0.3697 ± 0.1465 0.0153 ± 0.0058 0.5721 ± 0.0532

Table 1: Comparison of attribution quality where the noise levels are set by the heuristic. ↑ and ↓ indicate the larger is the better
and the smaller is the better, respectively. The values of the best method and the methods that are not significantly outperformed
by the best method, according to the Wilcoxon signed-rank test for p = 0.05, are bold-faced.

Method LeNet VGG11 VGG16 RN9 RN18 RN50

Baseline 0.922 ± 0.033 0.961 ± 0.017 0.967 ± 0.015 0.926 ± 0.026 0.913 ± 0.04 0.912 ± 0.035
SG 0.940 ± 0.048 0.971 ± 0.025 0.963 ± 0.034 0.975 ± 0.015 0.962 ± 0.026 0.967 ± 0.022
NG 0.949 ± 0.029 0.982 ± 0.011 0.985 ± 0.011 0.978 ± 0.012 0.963 ± 0.023 0.973 ± 0.017
FG 0.961 ± 0.025 0.984 ± 0.011 0.982 ± 0.013 0.982 ± 0.011 0.975 ± 0.016 0.969 ± 0.019

Table 2: Attribution ranking scores (AUC) for different architectures with noise levels set by our proposed heuristic. We can
observe that either NG or FG outperforms Baseline and SG. For the sake of space, we refer ResNets as RNs.

and training results, we refer to the Appendix.

Results
In the following, we present our experimental results. The
findings can be summarized as follows: (i) both NG and FG
offer an advantage over SG measured with several metrics
of attribution quality and (ii) as a heuristic, choosing the hy-
perparameters for NG and FG according to a classification
performance drop of 5% typically result in explanations with
a high attribution quality.

Quantitative evaluation We start by examining the per-
formance of the methods considering the four aforemen-
tioned attribution quality criteria applied to the absolute val-
ues of their respective explanations. The results are sum-
marized in Table 1, where the methods (Baseline, SG, NG,
FG) are stated in the first column and the respective val-
ues for localization, faithfulness robustness, and sparseness
in columns 2-5. The scores were computed and averaged
over 256 randomly chosen test samples from the CMNIST
dataset, using a ResNet-9 classifier and the Saliency as the
base attribution method. The Quantus library was employed
for XAI evaluation1 (Hedström et al. 2022).

The noise level for SG, NG, and FG is set by the heuristic,
which was described in the method section. We conducted
the same experiment with additional base attribution meth-
ods and datasets and found similar tendencies, which are
reported in the Appendix. In the Appendix, we also inves-
tigated how the different noise levels for FusionGrad (σNG

and σSG) influence the ranking of attributions, as well as per-
formed model parameter randomization sanity checks (Ade-
bayo et al. 2018).

From Table 1, we can observe a significant attribution
quality boost by our proposed methods, NG, and FG in com-
parison to the baselines, Baseline and SG. For each of the

1Code can be found at https://github.com/understandable-
machine-intelligence-lab/quantus

examined quality criteria, the values range between [0, 1].
For localization, faithfulness, and sparseness higher values
are better and for robustness lower values are better. The
combination of SmooothGrad and NoiseGrad, i.e., Fusion-
Grad is significantly better than either method alone. In sum-
mary, we conclude that NG outperforms SG on all four cri-
teria and Baseline on the most criteria except Sparseness,
and FG further boosts the performance. In general, any per-
turbation naturally degrades the sparseness, and therefore
Baseline gives the best sparseness score. Note that NG and
FG both improve the other criteria with less degradation of
sparseness in comparison to SG. It is important to also em-
phasize that evaluation of explanation methods should al-
ways be viewed holistically — i.e., while Baseline may be
the most sparse explanation, it would not be the overall pre-
ferred option since it is the least faithful, localized, and ro-
bust explanation of them all. Further evaluation results on
the ILSVRC-15 dataset can be found in the Appendix.

Heuristic applied to different architectures In Table 2,
we present ranking AUC scores for different model architec-
tures trained on CMNIST, using the recommended heuristic
to set the noise level.

We can observe that appropriate noise levels are chosen
with the proposed heuristic — where NG and FG signifi-
cantly outperform Baseline and SG.

Qualitative evaluation Figure 3 shows attribution maps
for an image from the PASCAL VOC 2012 dataset for Base-
line, SG, NG, and FG for two attribution methods, Integrated
Gradients (IG) (Sundararajan, Taly, and Yan 2017) and Gra-
dientSHAP (GradSHAP) (Lundberg and Lee 2017). Com-
pared to Baseline and SmoothGrad, NG and FG demonstrate
improved localized attribution with improved vividness. Se-
mantic meaningful features such as the nose and the eyes of
the dog are highlighted by NG but not by SG, indicating that
our methods can find additional attributional evidence for a
class that SG or Baseline explanation does not. Furthermore,
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Figure 3: Attribution maps by Baseline, SG, NG, and FG for two base explanation methods Integrated Gradients (IG) and
GradientSHAP (GradSHAP), for an image from the PASCAL VOC 2012 dataset. We can observe that both NG and FG improve
the sharpness of the attributions compared to Baseline and SG. Moreover, NG highlights semantic features of the dog, such as
the nose and the eyes, which are not visible for Baseline and SG.

Figure 4: Illustration of NG-enhanced Saliency explanations for the CMNIST dataset: we observe an improvement of the
localization ability of the explanation when increasing the hyperparameter σ until σ ≤ 0.4 –– afterward, if the noise amplitude
becomes too large, the models lose their predicting ability, which results in noisy attribution maps.

as we enumerated several test samples to find representative
qualitative characteristics that distinguish the different ap-
proaches, we could conclude that attributions of NG and FG
are typically more crisp and concise compared to Baseline
and SG explanations.

Figure 4 shows the noise level dependence of the NG at-
tribution map with Saliency as the base attribution. Visually,
the attribution seems to improve with a noise level between
σNG ∈ [0.2, 0.4], which is chosen by our heuristic as well.
More examples are given in the Appendix.

Experiments On Global Explanations
Finally, we apply NoiseGrad to enhance the global explana-
tions generated by Feature Visualisation 2 (Olah, Mordvint-
sev, and Schubert 2017). We applied FV to the output neu-

2For generating global explanations following library was used
https://github.com/Mayukhdeb/torch-dreams

rons for different classes of a ResNet-18 network pre-trained
on ImageNet dataset with and without NoiseGrad.

Figure 5 indicates the feature visualization images by
the Baseline AM (top row) and by AM using NoiseGrad
(bottom row). We can observe that the visualized abstrac-
tions with NoiseGrad are more vivid and more human-
understandable, implying that the NG-enhanced global ex-
planation can convey improved recognizability of underly-
ing high-level concepts. More examples and experiments
can be found in the Appendix.

Conclusion
In this work, we demonstrated that the use of stochasticity
in the parameter space of deep neural networks can enhance
techniques for eXplainable AI (XAI).

Our proposed NoiseGrad draws samples from the ap-
proximated tempered Bayes posterior, such that the decision
boundary of some model samples is close to the test sam-
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Figure 5: Global explanation by activation maximization
(AM) without (top row) and with (bottom) NoiseGrad,
applied to ResNet-18 network pre-trained on ImageNet
dataset. For each column, the output neuron for the speci-
fied class is explained.

ple, effectively amplifying the gradient signals. In our exper-
iments on local explanations, we have shown the advantages
of NoiseGrad and its fusion with the existing SmoothGrad
method qualitatively and quantitatively on several evaluation
criteria. A notable advantage of NoiseGrad over Smooth-
Grad is that it can also enhance global explanation meth-
ods by smoothing the objective for activation maximiza-
tion (AM), leading to enhanced human-interpretable con-
cepts learned by the model. We believe that our idea of in-
troducing stochasticity in the parameter space facilitates the
development of practical and reliable XAI for real-world ap-
plications.

Limitations Since the number of parameters in a DNN is
usually larger than the number of features in the input data,
NoiseGrad is more computationally expensive than Smooth-
Grad (more discussion in the Appendix).

In addition, explanation evaluation is still an unsolved
problem in XAI research and each evaluation technique
comes with individual drawbacks. Further research is
needed to establish a sufficient set of quantitative evaluation
metrics beyond the four criteria used in this paper.

Future work To broaden the applicability of our proposed
methods, we are interested to investigate the performance of
NG and FG on other tasks than image classification such as
time-series prediction or NLP. We also want to further ex-
plore how NG and FG explanations change when alternative
ways of adding noise to the weights of a neural network are
employed e.g., by adding different levels of noise to differ-
ent layers or individual neurons.
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W.; Lapuschkin, S.; and Höhne, M. M. C. 2022. Quantus:
An Explainable AI Toolkit for Responsible Evaluation of
Neural Network Explanations.
Kingma, D. P.; Salimans, T.; and Welling, M. 2015. Varia-
tional Dropout and the Local Reparameterization Trick. In
Advances in NIPS.
Kohlbrenner, M.; Bauer, A.; Nakajima, S.; Binder, A.;
Samek, W.; and Lapuschkin, S. 2020. Towards Best Prac-
tice in Explaining Neural Network Decisions with LRP.
arXiv:1910.09840.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11): 2278–2324.
LeCun, Y.; Cortes, C.; and Burges, C. 2010. MNIST
handwritten digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2.
Lundberg, S. M.; and Lee, S.-I. 2017. A unified approach to
interpreting model predictions. In Advances in neural infor-
mation processing systems, 4765–4774.
Molchanov, D.; Ashukha, A.; and Vetrov, D. 2017. Varia-
tional Dropout Sparsifies Deep Neural Networks. In Pro-
ceedings of ICML.
Montavon, G.; Samek, W.; and Müller, K.-R. 2018. Methods
for interpreting and understanding deep neural networks.
Digital Signal Processing, 73: 1–15.
Mørch, N. J. S.; Kjems, U.; Hansen, L. K.; Svarer, C.; Law,
I.; Lautrup, B.; Strother, S. C.; and Rehm, K. 1995. Visu-
alization of neural networks using saliency maps. In Pro-
ceedings of International Conference on Neural Networks
(ICNN’95), Perth, WA, Australia, November 27 - December
1, 1995, 2085–2090. IEEE.
Mordvintsev, A.; Olah, C.; and Tyka, M. 2015. In-
ceptionism: Going Deeper into Neural Networks.
https://research.googleblog.com/2015/06/inceptionism-
going-deeper-into-neural.html. Accessed: 2022-04-25.
Nguyen, A.; Dosovitskiy, A.; Yosinski, J.; Brox, T.; and
Clune, J. 2016. Synthesizing the preferred inputs for neu-
rons in neural networks via deep generator networks. In
Advances in neural information processing systems, 3387–
3395.

Nguyen, A.; and Martı́nez, M. R. 2020. On quanti-
tative aspects of model interpretability. arXiv preprint
arXiv:2007.07584.
Olah, C.; Mordvintsev, A.; and Schubert, L. 2017. Feature
visualization. Distill, 2(11): e7.
Osawa, K.; Swaroop, S.; Jain, A.; Eschenhagen, R.; Turner,
R. E.; Yokota, R.; and Khan, M. E. 2019. Practical Deep
Learning with Bayesian Principles. In Advances in NeurIPS.
Rieger, L.; and Hansen, L. K. 2020. A simple defense
against adversarial attacks on heatmap explanations. arXiv
preprint arXiv:2007.06381.
Ritter, H.; Botev, A.; and Barber, D. 2018. A scalable
laplace approximation for neural networks. In 6th Inter-
national Conference on Learning Representations, ICLR
2018-Conference Track Proceedings, volume 6. Interna-
tional Conference on Representation Learning.
Romijnders, R. 2017. Simple Semantic Segmentation. https:
//github.com/RobRomijnders/segm. Accessed: 2022-04-25.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
Berg, A. C.; and Fei-Fei, L. 2015. ImageNet Large Scale Vi-
sual Recognition Challenge. International Journal of Com-
puter Vision (IJCV), 115(3): 211–252.
Samek, W.; Binder, A.; on, G.; Lapuschkin, S.; and Müller,
K.-R. 2016. Evaluating the visualization of what a deep neu-
ral network has learned. IEEE transactions on neural net-
works and learning systems, 28(11): 2660–2673.
Samek, W.; Montavon, G.; Lapuschkin, S.; Anders, C. J.;
and Müller, K.-R. 2021. Explaining deep neural networks
and beyond: A review of methods and applications. Pro-
ceedings of the IEEE, 109(3): 247–278.
Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;
Parikh, D.; and Batra, D. 2019. Grad-CAM: Visual Explana-
tions from Deep Networks via Gradient-Based Localization.
International Journal of Computer Vision, 128(2): 336–359.
Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Smilkov, D.; Thorat, N.; Kim, B.; Viégas, F.; and Watten-
berg, M. 2017. Smoothgrad: removing noise by adding
noise. arXiv preprint arXiv:1706.03825.
Sundararajan, M.; Taly, A.; and Yan, Q. 2017. Axiomatic
attribution for deep networks. In International Conference
on Machine Learning, 3319–3328. PMLR.
Theiner, J.; Müller-Budack, E.; and Ewerth, R.
2021. Interpretable Semantic Photo Geolocalization.
arXiv:2104.14995.
Vidovic, M. M.-C.; Görnitz, N.; Müller, K.-R.; and Kloft, M.
2016. Feature importance measure for non-linear learning
algorithms. arXiv preprint arXiv:1611.07567.
Wenzel, F.; Roth, K.; Veeling, B. S.; Swiatkowski, J.; Tran,
L.; Mandt, S.; Snoek, J.; Salimans, T.; Jenatton, R.; and
Nowozin, S. 2020. How Good is the Bayes Posterior in Deep
Neural Networks Really? arXiv:2002.02405.

6139



Yang, M.; and Kim, B. 2019. Benchmarking Attribu-
tion Methods with Relative Feature Importance. CoRR,
abs/1907.09701.
Yeh, C.-K.; Hsieh, C.-Y.; Suggala, A. S.; Inouye, D. I.; and
Ravikumar, P. 2019. On the (in) fidelity and sensitivity for
explanations. arXiv preprint arXiv:1901.09392.
Zeiler, M. D.; and Fergus, R. 2014. Visualizing and under-
standing convolutional networks. In European conference
on computer vision, 818–833. Springer.
Zhang, J.; Bargal, S. A.; Lin, Z.; Brandt, J.; Shen, X.; and
Sclaroff, S. 2018. Top-down neural attention by excita-
tion backprop. International Journal of Computer Vision,
126(10): 1084–1102.

6140


