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Abstract

Online learning algorithms have become a ubiquitous tool
in the machine learning toolbox and are frequently used in
small, resource-constraint environments. Among the most
successful online learning methods are Decision Tree (DT)
ensembles. DT ensembles provide excellent performance
while adapting to changes in the data, but they are not re-
source efficient. Incremental tree learners keep adding new
nodes to the tree but never remove old ones increasing the
memory consumption over time. Gradient-based tree learn-
ing, on the other hand, requires the computation of gradi-
ents over the entire tree which is costly for even moder-
ately sized trees. In this paper, we propose a novel memory-
efficient online classification ensemble called shrub ensem-
bles for resource-constraint systems. Our algorithm trains
small to medium-sized decision trees on small windows and
uses stochastic proximal gradient descent to learn the en-
semble weights of these ‘shrubs’. We provide a theoretical
analysis of our algorithm and include an extensive discus-
sion on the behavior of our approach in the online setting.
In a series of 2 959 experiments on 12 different datasets,
we compare our method against 8 state-of-the-art methods.
Our Shrub Ensembles retain an excellent performance even
when only little memory is available. We show that SE offers
a better accuracy-memory trade-off in 7 of 12 cases, while
having a statistically significant better performance than most
other methods. Our implementation is available under https:
//github.com/sbuschjaeger/se-online.

Introduction
Many real-world applications rely on efficient online learn-
ing algorithms that are executed on small, resource-
constraint devices (Da Xu, He, and Li 2014). In online learn-
ing, the algorithm must process large amounts of data with
limited resources in a fast-paced way to provide predictions
at any point in time. In addition, data streams often belong
to long-running processes which naturally evolve over time
and thereby introduce concept drift. Thus, the algorithm
must also be able to adapt to new situations and changing
data distributions.

Tree ensembles are one of the most popular choices for
online learning due to their ability to cope with drift. There
are two main strategies to train online tree ensembles. The
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first strategy uses incremental base-learners such as Hoeffd-
ing Trees (HT) (Domingos and Hulten 2000) or Hoeffd-
ing Anytime Trees (HTT) (Manapragada, Webb, and Salehi
2018) to incrementally grow individual trees on either dif-
ferent subsets of the data, different sets of features (e.g. as in
Online Bagging and its variations (Oza 2005; Abdulsalam,
Skillicorn, and Martin 2008; Gomes et al. 2017b; Gomes,
Read, and Bifet 2019)), or on different targets (e.g. as in
Online Boosting and its variations (Reichler, Harris, and
Savchenko 2004; Oza 2005; Kolter and Maloof 2005; Pelos-
sof et al. 2009; Chen, Lin, and Lu 2012; Beygelzimer et al.
2015)). The drawback of this strategy is that HT and HTT
always keep adding new nodes to the tree without removing
old ones. Thus, the size of the trees grows over time which
is not suitable for applications on small devices. The sec-
ond strategy is to use a fixed tree structure and to update the
individual split nodes of the tree via (stochastic) gradient-
descent (Irsoy, Yildiz, and Alpaydin 2012; Kontschieder
et al. 2015; Seyedhosseini and Tasdizen 2015; Shen et al.
2018). While this approach uses a fixed amount of memory,
it requires the costly computation of gradients by backprop-
agation through the entire tree, which is not suitable for the
processing capabilities of small devices.

In this paper, we establish a third strategy. We propose to
maintain a bounded but dynamic ensemble of so-called de-
cision shrubs. Just as in botany, decision shrubs are small- to
medium-sized trees which compete against each other. Our
algorithm trains shrubs on small windows and uses stochas-
tic proximal gradient descent to learn the weights of indi-
vidual shrubs in the ensemble. Shrubs with sub-optimal per-
formance are aggressively pruned from the ensemble while
new shrubs are regularly introduced. This makes our algo-
rithm fast and memory-efficient while it retains a high de-
gree of adaptability to evolving data streams. In contrast
to incremental learners, our trees never exceed a fixed size.
In contrast to gradient-based approaches, we replace costly
gradient-computations with a continuous re-training of trees
on small batches. Our contributions are as follows:

• Shrub ensembles: We present a learning objective
which enforces a small and effective ensemble. The
Shrub Ensemble (SE) algorithm uses a variant of the
theoretically well-founded proximal gradient descent,
which introduces the training of new shrubs on small
batches of the data and the automatic removal of sub-
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optimal trees from the ensemble.
• Theoretical analysis: We provide a theoretical analysis

of the behavior of our algorithm and discuss under which
conditions new shrubs are added and old shrubs are re-
moved from the ensemble.

• Experimental analysis: In a series of 2 959 experiments
on 12 different datasets we compare our method against
8 other state-of-the-art methods. Our Shrub Ensembles
retain an excellent performance even when only little
memory is available. We show that SE offers a better
accuracy-memory trade-off in 7 of 12 cases, while having
a statistically significant better performance than most
other methods.

Related Work
Closely related to our approach are online learning algo-
rithms of tree-based ensembles. Here we identify three gen-
eral research directions: racing-based, gradient-based algo-
rithms and window-based algorithms.

Racing-based Algorithms
Racing-based algorithms propose multiple hypotheses and
let them race each other for the best performance (Maron
and Moore 1993, 1997; Loh and Nowozin 2013). (Domin-
gos and Hulten 2000) applied this idea to decision tree (DT)
induction and proposed the Hoeffding Tree (HT) algorithm.
HT is an online version of the regular top-down induction
of DTs. The induction starts with the root node and cre-
ates a list of split hypotheses. The performance of each hy-
pothesis is measured while new items arrive and are com-
pared against each other using Hoeffding’s inequality. Once
Hoeffding’s bound yields that a split is significantly bet-
ter than any other split, the split is integrated into the tree.
Consecutively, new child nodes are introduced which re-
ceive a new list of candidate splits and the race continues.
The vanilla HT algorithm is only able to handle categori-
cal input variables and uses the classification error as a split
criterion; multiple extensions have been proposed to gener-
alize this approach (Hulten, Spencer, and Domingos 2001;
Holmes, Kirkby, and Pfahringer 2005; Pfahringer, Holmes,
and Kirkby 2007, 2008; Bifet and Gavalda 2009; Rutkowski
et al. 2013; Mirkhan, Amir Haeri, and Meybodi 2019).

Most notably, the overall approach of HTs has been im-
proved by Hoeffding Anytime Trees (HTT) (Manapragada,
Webb, and Salehi 2018). HTTs greedily select the best split
nodes after a few examples before Hoeffding’s bound deems
it significantly better than the other splits, but keeps eval-
uating all split candidates in all nodes. Then, it re-orders
the entire tree if the initial greedy choice becomes sub-
optimal due to Hoeffding’s Bound. Given HT and its sib-
lings, a multitude of different ensemble techniques have
been proposed including online bagging variants (Kolter
and Maloof 2005; Oza 2005; Abdulsalam, Skillicorn, and
Martin 2008; Gomes et al. 2017b; Gomes, Read, and Bifet
2019) and online boosting variations (Reichler, Harris, and
Savchenko 2004; Oza 2005; Pelossof et al. 2009; Chen, Lin,
and Lu 2012; Beygelzimer et al. 2015). More specialized ap-
proaches, which are, e.g., specifically designed for concept

drift data are also available (Abdulsalam, Skillicorn, and
Martin 2008; Bifet, Holmes, and Pfahringer 2010; Hoens,
Chawla, and Polikar 2011; Gomes et al. 2017b; Gomes,
Read, and Bifet 2019). For an overview see (Gomes et al.
2017a; Krawczyk et al. 2017) and references therein.

Gradient-Based Algorithms
Gradient-based algorithms view the entire DT ensemble as
a single model which is trained via (stochastic) gradient de-
scent (Kontschieder et al. 2015; Seyedhosseini and Tasdizen
2015; Ahmetoğlu, İrsoy, and Alpaydın 2018; Shen et al.
2018; Irsoy and Alpaydın 2021). A single DT is represented
by the function

h(x) =
∑
i∈L

gi(x)
∏
j∈Pi

sj(x), (1)

where L is the set of leaves, Pi is the path from the root
node to the i-th leaf node, sj : Rd → [0, 1] is a split func-
tion and gi : Rd → RC is the leaf’s prediction function. The
entire ensemble is then given by f(x) = 1

M

∑M
i=1 hi(x)

and the objective is to find the function f that minimizes the
loss `(f(x), y). Regular DTs use axis-aligned splits s(x) =
1{xi ≤ t} in which i is a pre-computed feature index and t
is a threshold. This function is not smooth which makes the
optimization via gradient descent difficult. Thus, a soft DT
with s(x) = σ(z(x)) (for the children at the right side) and
s(x) = 1−σ(z(x)) (for the children at the left side) is often
used where σ is the sigmoid function and z : Rd → R is an-
other split function. A common example for the split func-
tion is a linear function z(x) = 〈x,w〉. The weight vector
w is thereby a part of the optimization objective and deter-
mines the features which are relevant in the corresponding
split by its nonzero entries.

Some approaches introduce sparsity regularization terms
for w in order to enforce using fewer features in z (Yildiz
and Alpaydin 2014). Other approaches apply dropout to the
tree edges during training (Irsoy and Alpaydın 2021), add
the possibility to resize the tree during learning (Tanno et al.
2019) or map examples into a lower dimensional embedding
space for smaller trees (Kumar, Goyal, and Varma 2017).
Lastly, we want to note that soft decision trees can also be
viewed as a specialized Deep Learning architecture, which
has been explored to some extent (Frosst and Hinton 2017;
Biau, Scornet, and Welbl 2019). While all these approaches
have the advantage that the tree size is (relatively) fixed, they
require the costly computation of gradients through back-
propagation over the entire tree and suffer from the vanish-
ing gradient problem, which additionally slows down con-
vergence (Hochreiter 1998).

Window-Based Algorithms
Highly related to our approach are DTs which are learned
on a window of the data. Training a single DT on a slid-
ing window has already been proposed in the 80s (Kubat
1989). The FLORA method constructs logical formulas of
the form A1 ∧ A2 ∧ · · · ∧ An =⇒ B using so-called
rough-sets (Pawlak 1982). Clearly, the above formula also
represents a decision tree, even though the training of such a
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tree does not follow the more established CART or ID3 al-
gorithm. Street and Kim extend this approach by introducing
a heuristic which re-trains individual trees of the ensemble
on small batches of the data whenever the performance of a
classifier deteriorates(Street and Kim 2001). Unfortunately,
we could not find any evidence that this simple baseline
has been considered much beyond its original publication or
the related variants FLORA2 - FLORA4 (Widmer and Ku-
bat 1996). More ‘recent’ papers often train (batched) Naive
Bayes, SVM or KNN over a fixed-sized window (Scholz and
Klinkenberg 2005; Bifet and Gavalda 2007), while current
work does not compare against fixed-sized windows at-all
(Gomes et al. 2017b; Gomes, Read, and Bifet 2019).

Our approach extends the training of DTs over a fixed-
sized window to learning an optimal combination of trees
on the fly via proximal gradient descent.

Shrub Ensembles
We start by formalizing our problem setup. Let S =
{(xi, yi)|i ∈ {0, . . . }} be an open-ended sequence of d-
dimensional feature vectors xi ∈ Rd and labels yi ∈
Y ⊆ RC . For classification problems with C ≥ 2
classes we encode each label as a one-hot vector y =
(0, . . . , 0, 1, 0, . . . , 0), having yc = 1 for the assigned la-
bel c ∈ {0, . . . , C − 1}; for regression problems we have
C = 1 and Y = R. In this paper, we focus on classi-
fication problems, even though the presented approach is
directly applicable to regression, as well. Let S[t : t +
T ] = {(xt, yt), . . . , (xt+T , yt+T )} denote the sub-sequence
of length T starting at element t. Our goal is to maintain
a suitable model f : Rd → Y , which integrates the knowl-
edge of previously observed examples S[0 : t − 1], while
also offering a good prediction f(xt) for the next data point
xt before the true label yt is known. There are three crucial
challenges in this setting:
• Computational efficiency: The algorithm must process

examples at least as fast as new examples arrive.
• Memory efficiency: The algorithm has only a limited

budget of memory and fails if more memory is required.
• Evolving data streams: The underlying distribution of

the data might change over time, e.g., in the form of
concept drift, and the algorithm must adapt to new data
trends to preserve its performance.

In this paper, we assume that f is an additive ensem-
ble of K = |H| base learners from some model class
H = {h : Rd → RC}, where K is potentially very large
or even infinite. Each of the K learners hi ∈ H is associated
with a weight wi ≥ 0 and the ensemble is given by:

f(x) =
K∑
i=1

wihi(x) (2)

Now, assume that the set of models H is fixed to a fi-
nite set beforehand (we will discuss how to adapt H dur-
ing optimization later). Then our goal is to learn the opti-
mal weights wi for each base learner. Since we require a
memory-efficient and adaptable algorithm, only M � K
trees should receive a nonzero weight and the remaining

K −M hypotheses should have a zero weight wi = 0. In
this way, the computation of f(xt) becomes very efficient
since only M instead of K models must be executed for
prediction. Additionally, we are free to select another set of
M hypotheses if there is a drift in the data, thus retaining
the adaptability of the algorithm. Formally, we propose the
following optimization objective

arg min
w∈RK

T∑
t=1

`
(
fS[0:t−1](xt), yt

)
s.t. ‖w‖0 ≤M,wi ≥ 0,

K∑
i=1

wi = 1

(3)

where M ≥ 1 is the maximum number of ensemble mem-
bers, ` : RC × Y → R+ is a loss function, ‖w‖0 =∑K
i=1 1{wi 6= 0} is the 0−norm which counts the num-

ber of nonzero entries in w and fS[0:t−1] : R
d → RC is

the model at time t. For concreteness, we now focus on the
(multi-class) MSE loss but note that our implementation also
supports other loss functions such as the cross-entropy loss:

`(fS[0:t−1](xt), yt) =
1

C
‖fS[0:t−1](xt)− yt‖2 (4)

Optimizing the Weights whenH is known
The direct minimization of L(w, h) =∑T
t=1 `(fS[0:t−1](xt), yt) is infeasible, since S is open-

ended and unknown beforehand. However, we can store
small batches B = S[t− B : t] of the incoming data (e.g. a
sliding window) and use them to approximate our objective
via the sample mean

LB(w, h) =
1

BC

∑
(x,y)∈B

‖f(x)− y‖2. (5)

The function L is convex and smooth, and its global opti-
mum can be easily derived via its stationary points. How-
ever, the feasible set

∆ =

{
w ∈ RK+

∣∣∣∣∣
K∑
i=1

wi = 1, ‖w‖0 = M

}
(6)

is not convex, which makes the convex optimization prob-
lem to minimize L(w, h) over w ∈ Rd a nonconvex prob-
lem, minimizing L(w, h) over the feasible set w ∈ ∆.

A popular choice to enable the integration of constraints
into gradient-based optimization methods is to use proxi-
mal gradient descent. In particular, since we consider batch-
wise updates of parameters, we discuss the application of
Stochastic Proximal Gradient Descent (SPGD).

SPGD is an iterative algorithm, where every iteration con-
sists of two steps: first, a gradient descent update of the ob-
jective function LB(w, h) is performed without considering
any constraint. Then, the prox-operator is applied to project
its argument onto the feasible set ∆. The proximal gradient
update for every iteration is then given as

w ← P (w − α∇wLB(w)) , (7)
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where α ∈ R+ is the step-size and P : RK → ∆ is the
corresponding prox-operator. For ∇wL(w, h) = ∇wLB(w)
(e.g. if B = S), we obtain the ‘regular’ proximal gradient
descent algorithm. (Kyrillidis et al. 2013) study the com-
putation of the prox-operator for the combination of spar-
sity requirements and simplex constraints, which define our
feasible set. Assuming that the vector w is decreasingly or-
dered, such that w1 ≥ . . . ≥ wK , they present an operator
that sets theK−M smallest entries inw to zero and projects
the M largest values onto the probability simplex:

P (w)i =

{
0 if i > M

[wi − τ ]+ otherwise

where τ =
1

β

(
β∑
i=1

wi − 1

)
,

β = max

{
j

∣∣∣∣∣wj > 1

j

j∑
i=1

(wi − 1) , j ≤M

} (8)

OptimizingH Simultaneously with the Weights
If the set of classifiersH is large, then the computation of the
weight-gradient can be costly, even when the prox-operator
ensures that only M models receive a nonzero weight. In
turn, a small candidate set H restricts the possibilities to
adapt to the environment such that the model can not ade-
quately react to concept drift. A natural solution to this prob-
lem is to drop the assumption that all models inH are known
beforehand and to instead dynamically change H with new
incoming data. To do so we maintain at most M trees in the
ensemble whose corresponding entries in w are nonzero.

In every iteration we add a new tree to the ensemble and
then update theM+1 weights ofw. The update ensures that
at least one of theM+1 trees obtain a weight of zero, which
will be replaced in the subsequent step with a newly trained
tree. The new tree will be a part of the ensemble as long as
its weight is in subsequent updates not set to zero. The trees
are trained on small batches and are thus comparably small.

Our method Shrub Ensembles (SE) is outlined in Algo-
rithm 1. We start with an empty buffer B and an empty set
of trees H. For every new data item we update the sliding
window buffer (line 3-4), train a new classifier (e.g., via
CART) and initialize its weight with zero (line 6-8). Then,
we perform the gradient step followed by the prox-operator
(line 9-11). Finally, we remove classifiers with a weight of
0 (line 12). The intuition of our approach is that a newly
trained shrub which (significantly) improves the ensemble’s
prediction will likely receive a large enough weight after the
gradient update to survive the subsequent prox-operator. If,
however, the tree does not improve the ensemble’s predic-
tion much it might only receive little gradient-mass, such
that the tree is removed from the ensemble immediately.

Theoretical Performance of Shrub Ensembles
Theorem 1 formalizes the theoretical behavior of Shrub En-
sembles. It shows that whenever a new, previously unknown
relationship (or concept) between observations and labels is
discovered, then SE will include the newly trained tree in

Algorithm 1: Shrub Ensembles.
1: w ← (0); B ← [ ];H ← [ ] . Init.
2: for next item (x, y) do
3: if |B| = B then . Update batch
4: B.pop first()
5: B.append((x, y))
6: hnew ← train(B) . Add new classifier
7: H.append(hnew)
8: w ← (w1, . . . , wM , 0) . Initialize weight
9: w ← w − α∇wLB(w) . Gradient step

10: w,H ← sorted(w,H) . Sort decreasing order
11: w ← P(w) . Project on feasible set
12: w,H ← prune(w,H) . Remove zero weights

the ensemble, given an appropriate choice for the step size.
In particular this means two things: first, when M = 1 then
SE resembles the continuous re-training of trees over a slid-
ing window of fixed size, similar to the previously discussed
FLORA algorithm. Second, SE will always incorporate a
new concept into the ensemble while keeping track of past
concepts, only replacing that tree with the smallest contribu-
tion to the entire ensemble. For large step sizes our approach
is very aggressive as we introduce a new tree immediately
in the ensemble when a single new concept arrives. For very
fast changing data, this can be beneficial, but in some set-
tings this can hurt the performance, e.g., if the data is very
noisy.

Theorem 1 has two crucial assumptions. First, shrubs are
assumed to be fully-grown so that they perfectly isolate the
points in the current window. Second, the step size must be
large enough. Turning this statement around, SE might de-
cide not to include a new tree into the ensemble if the step
size is smaller than BC

4m or if trees are not perfectly fitting
the current batch. In this case, the new concept (x, y) might
be ignored if it only appears a few times in the current win-
dow. If, however, the new concept appears multiple times
in the window a newly trained tree will likely ‘overfit’ this
new concept and therefore receive a big enough weight to re-
place one of the other trees. It follows that for large step sizes
α > BC

4m and fully-grown trees SE will follow changes in the
distribution very quickly, whereas for smaller step sizes and
‘weaker’ trees it will be more resilient to noise in the data.
Theorem 1. Let M ≥ 1 be the maximum ensemble size in
the shrub ensembles (SE) algorithm and let B be the buffer
size. Consider a classification problem with C classes. Fur-
ther, let m ≤ M be the number of models in the ensem-
ble. Now assume that a new observation (xB , yB) arrives,
which was previously unknown to the ensemble so that ∀j =
1, . . . ,m : hj(xB) 6= yB . Let SE train fully-grown trees with
hj(x) ∈ {0, 1}C and let h be the new tree, trained on the
current window, such that ∀i = 1, . . . , B : h(xi) = yi. Then
we have for α > BC

4m the following cases:

• (1) If m < M , then h is added to the ensemble
• (2) If m = M , then h replaces the tree with the smallest

weight from the ensemble.

The proof is stated in the appendix.
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Runtime and Memory of Shrub Ensembles
The continuous training of new models in SE might seem
costly, but for reasonable choices of base learners and win-
dow sizes, the training is comparably quick. First, the reg-
ular CART or ID3 algorithm requires O(dN2 logN) run-
time where N is the number of datapoints. In our case
we have N = B, that is, the runtime of tree induction is
limited by the window size. Second, there are many effi-
cient heuristics and implementations available for decision
tree induction that improve the theoretical and practical run-
time of tree learning, e.g. by only considering a well-chosen
subset of splits (Chen and Guestrin 2016; Ke et al. 2017;
Prokhorenkova et al. 2018; Geurts, Ernst, and Wehenkel
2006). The computation of the prox-operator in Algorithm
1 is in O(M logM) (Wang and Carreira-Perpinan 2013).
The complexity is dominated by the sorting of w. To fur-
ther decrease the runtime we can maintain a sorted list of
w and H instead of sorting them from scratch (line 10).
This can efficiently be done via a binary search tree which
only requires O(logM) runtime for the insertion and dele-
tion (line 12) of items. Hence the total complexity of SE is
O
(
dB2 logB + logM

)
.

Regarding the memory consumption, we note that the size
of the trained trees are inherently limited by the window size
– regardless of the specific training algorithm. A fully-grown
tree that perfectly separates the observations in B requires
at most B leaf nodes. Therefore, the total number of nodes
used by a tree is upper-bounded by the window size with
2log2 B+1− 1 = 2 ·B− 1. It follows that Algorithm 1 stores
at most B examples and M + 1 models, each having at most
2 ·B − 1 nodes. This makes our shrub ensembles an overall
fast and memory efficient algorithm.

Experiments
In our experimental evaluation we are interested in the
performance of our shrub ensembles in comparison to re-
cent state-of-the-art methods. We are specifically interested
in the accuracy-memory trade-off of these methods. For
our analysis we adopt a hardware-agnostic view which as-
sumes that we are given a fixed memory budget for our
model, which should, naturally, maintain a state-of-the-art
performance. For racing-based algorithms (cf. Section ) we
use Online Naive Bayes (NB), Hoeffding Trees (HT), Ho-
effding Anytime Trees (HTT), Streaming Random Patches
(SRP), Adaptive Random Forest (ARF), Online Bagging
(Bag) and Smooth Boost (SB) implemented in MOA (Bifet
et al. 2010). For gradient-based approaches (cf. Section ) we
implemented soft decision tree ensembles (SDT) using Py-
Torch (Paszke et al. 2019). For Shrub Ensembles (SE) we
used our own C++ implementation. We compare the perfor-
mance of each algorithm using the average test-then-train
accuracy and the average model size (in kilobyte) on 12 dif-
ferent datasets depicted in the appendix. Our code is avail-
able under https://github.com/sbuschjaeger/se-online.

We measure the model size as the entire model, including
any stored variables (e.g., including the sliding window). A
careful reader might view this comparison as slightly biased
against MOA since it is implemented in Java, whereas the

other algorithms are implemented in C++ (with a Python in-
terface). Unfortunately, there is currently no alternative, ef-
ficient MOA implementation available. Preliminary projects
to implement MOA in C++1 or Python2 have not been fi-
nalized, yet. Thus, we put effort in making this compari-
son fair by computing a reference size of each MOA model
first (before it received any data points), which is then sub-
tracted from the measurements. This way, we only account
for changes in the model due to new items and do not include
the ‘static’ overhead of Java.

To ensure a fair comparison between the hyperparameter
choices of each individual algorithm, we follow the method-
ology presented in (Bergstra and Bengio 2012). In a series
of preliminary experiments, we identify reasonable ranges
for each hyperparameter and method (e.g., number of trees
in an ensemble, window size, step sizes etc.). Then, for each
method and dataset we sample at most 50 random hyperpa-
rameter configurations from these ranges and evaluate their
performance. An example of such a configuration can be
found in the appendix and further details can be taken from
the source code. To ensure timely and realistic results, we re-
move each configuration which took longer than two hours
to complete or models which exceed 100 MB in sizes. In
summary, we test 312 different configurations per dataset
totaling to 3 744 experiments of which we analyzed 2 786
experiments. For the experiments we used a cluster node
with 256 AMD EPYC 7742 CPUs and 1TB ram in total.
An anonymized version of our source code is available in
the appendix, and our source code as well as the additional
results will be made public after acceptance.

Quantitative Analysis
As mentioned before, we are interested in the most accu-
rate models with the smallest memory consumption. Clearly
these two metrics can contradict each other. Hence we com-
pute the Pareto front of each method which contains those
parameter configurations that are not dominated across one
or more dimensions. Then, we summarize the algorithm’s
performance via the area-under the Pareto front (APF) nor-
malized by the biggest model for the given dataset for com-
parison. For the individual accuracies of each method please
consult the appendix.

Table 1 shows the normalized area under the Pareto front.
It can be seen that SE and SRP generally performs best fol-
lowed by ARF. Our SE method ranks first on 7 datasets of-
fering the best accuracy-memory trade-off followed by SRP
which ranks first on 4 datasets. On the third place we find
ARF which ranks first on the rbf m dataset. SDT does not
perform well. We hypothesize that this is due to the random
initialization combined with the vanishing gradient problem.
On the led g dataset it did not finish the computation in un-
der 2 hours and thus was removed for our evaluation. To give
a statistical meaningful comparison we present the results in
Table 1 as a CD diagram (Demšar 2006). In a CD diagram

1https://github.com/huawei-noah/streamDM-Cpp
2The authors of https://riverml.xyz/ confirmed that they cur-

rently strive for functional and ‘feature complete’ code and perform
optimizations later on during development.
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ARF Bag HT HTT NB SB SDT SE SRP

agrawal a 0.8259 0.8939 0.9145 0.9136 0.7429 0.9124 0.0977 0.9355 0.8877
agrawal g 0.7738 0.8535 0.8601 0.8732 0.7427 0.8759 0.4548 0.9157 0.8571
airlines 0.5679 0.3461 0.5654 0.6588 0.6693 0.5048 0.3877 0.6818 0.5369
covtype 0.9274 0.8157 0.8487 0.8712 0.6458 0.8196 0.0374 0.9284 0.9285
elec 0.9081 0.8946 0.8641 0.8771 0.7616 0.8821 0.4251 0.9401 0.9091
gas-sensor 0.9238 0.9120 0.8474 0.9217 0.7287 0.7580 0.1716 0.9679 0.9537
led a 0.7149 0.7050 0.6846 0.7095 0.6441 0.7199 0.1011 0.7233 0.7240
led g 0.7085 0.7034 0.6825 0.7089 0.6439 0.7174 - 0.7144 0.7124
nomao 0.9793 0.9613 0.9443 0.9668 0.9277 0.9606 0.8863 0.9866 0.9752
rbf f 0.7550 0.5171 0.3807 0.4014 0.2975 0.4217 0.0725 0.7302 0.7739
rbf m 0.8541 0.7566 0.6262 0.6803 0.3295 0.6478 0.1667 0.7962 0.8479
weather 0.7788 0.7827 0.7510 0.7658 0.6958 0.7688 0.3287 0.7586 0.7895

Table 1: Normalized area under the Pareto front (APF) for each method and each dataset with models smaller than 100 MB.
Rounded to the fourth decimal digit. Larger is better. The best method is depicted in bold.
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Figure 1: Critical Difference Diagram for the normalized
area under the Pareto Front for different methods over mul-
tiple datasets. For all statistical tests p = 0.95 was used.
More to the right (lower rank) is better. Methods in con-
nected cliques are statistically similar.

each method is ranked according to its performance and a
Friedman-Test is used to determine if there is a statistical dif-
ference between the average rank of each method. If this is
the case, then a pairwise Wilcoxon-Test between all methods
checks whether there is a statistical difference between two
classifiers. CD diagrams visualize this evaluation by plotting
the average rank of each method on the x-axis and connect
all classifiers whose performances are statistically similar
via a horizontal bar. Figure 1 shows the corresponding CD
diagram, where p = 0.95 was used for all statistical tests. It
can be seen that SE ranks first with an average rank between
1−2 with some distance to SRP which – on average – ranks
between 3− 4th place closely followed by ARF. Next, there
is {SRP,ARF,HTT, SB,Bag,HT,NB} which form a
second clique and {Bag,HT,NB, SDT} which forms the
last clique. While all three methods {SE, SRP,ARF}
are in the same clique and hence offer similar per-
formance, SE has some distance. It is only present in
this clique meaning that it is statistically better than
{HTT, SB,Bag,HT,NB, SDT}.

Qualitative Analysis
To gain a more complete picture we now inspect the iterative
development of the test-then-train accuracy and the model

size over the learning process for the best performing config-
uration of each algorithm without any memory constraints.
Figures 2 and 3 plot the number of seen data points against
the accuracy and memory requirement for the gas-sensor and
led a dataset. The gas-sensor dataset is interesting because it
contains real-world data with a known time of drift whereas
the led a dataset contain artificial drift. Looking at the ac-
curacy in Figure 2 (top row) we notice a rather chaotic be-
havior in the beginning, which can be attributed to the fact
that in the first 10 months of measurements new classes ap-
pear for the first time. Once each class was presented at-least
once to the algorithms, the accuracy approaches one, where
SE has the highest accuracy, followed by SRP. After roughly
4, 000 datapoints we see a drop in the accuracy of ARF and
NB which can be attributed to sudden changes in the distri-
bution after roughly 20 month of measurements. Here, the
number of measurements, as well as the class distribution
heavily changes. We also observe that HTT seems to cope
better with the dynamic changes in this dataset, compared to
HT, which can be expected from the more greedy nature of
the algorithm.

Looking at the memory consumption in Figure 2 (bottom
row) we notice an interesting behavior (note the logarith-
mic scale). We see that SE uses by far the fewest, strictly
bounded resources whereas the other algorithm require at
least a magnitude more memory. As expected, the memory
consumption of HT and HTT monotonously rises over time
as these algorithms never remove any internal node from
the tree. Moreover, HTT must maintain the list of all pos-
sible splits at all times, thereby requiring more memory than
HT. Likewise, the use of multiple HT(T)s as base learners
of ARF, SRP, Bagging and SB is reflected in the plot. In
addition, ARF and SRP both utilize the ADWIN drift de-
tector (Bifet and Gavalda 2007) which uses a variable sized
sliding window. The window size is computed by Hoeffd-
ing’s Bound which is ideally suited if no specific distribu-
tion can be assumed. On the downside, the window size
convergences comparably slow. As a result, the algorithms
store additional information for large windows to detect a
possible drift further increasing the memory consumption.
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Figure 2: Accuracy and memory consumption over the num-
ber of items on the gas-sensor dataset. Best viewed in color.

Naive Bayes (NB) is a strong competitor to SE, but also re-
quires roughly a magnitude more memory. Last, we notice
that the memory consumption of SDT increases over time
due to a large sliding window in the hyperparameter set-
tings. We conclude that our SE method offers the best pre-
dictive performance in the gas-sensor dataset while using the
fewest resources making it an ideal algorithm for resource-
constrained environments.

Figure 3 shows the test-then-train accuracy (top row) and
average model size (bottom row) for the led a dataset. While
the accuracy is relatively stable in the beginning we can see a
clear drop around the 250,000 item mark and a smaller drop
later at around 500,000 items. NB and HT seem to suffer the
most from this concept drift, but also the other algorithms
lose some predictive power. Again, SDT does not seem to
learn anything at-all. Looking at the memory consumption,
we see a similar picture as before: HT(T) and ensembles
of HT(T) learners steadily increase their memory consump-
tion over time, requiring up to 100 MB. NB and SDT have
the smallest memory consumption wheres SE ranks third in
memory consumption in this setting. Again, we find that SE
offers excellent performance while ranking among the most
resource-friendly methods.
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Figure 3: Accuracy and memory consumption over the num-
ber of items on the led a dataset. Best viewed in color.

Conclusions

In this paper we introduced Shrub Ensembles (SE) as a tree
ensemble which is able to process large amounts of data
with limited resources in a fast-paced way, while adapting to
new situations on the fly. We noticed, that incremental tree
learner never remove any nodes from the tree slowly increas-
ing the memory consumption over time. Gradient-based tree
learning, on the other hand, requires the costly computation
of gradients through backpropagation, making the overall al-
gorithm slow. In contrast, Shrub Ensembles are ensembles of
small- to medium sized trees which are aggressively pruned
during optimization, such that sub-optimal shrubs are re-
moved while new shrubs are regularly introduced. We theo-
retically showed that shrub ensembles will always add a new
tree to the ensemble once a new, previously unknown con-
cept is available (cf. Theorem 1). Further, we discussed the
behavior of our algorithm on noisy data and the influence of
its hyperparameters. Our Shrub Ensembles retain an excel-
lent performance even when only little memory is available.
In an extensive experimental study we showed that SE of-
fers a better accuracy-memory trade-off in 7 of 12 cases,
while having a statistically significant better performance
than most other methods.
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