
Modeling Attrition in Recommender Systems with Departing Bandits

Omer Ben-Porat*1, Lee Cohen*1, Liu Leqi*2, Zachary C. Lipton2, Yishay Mansour1,3

1 Blavatnik School of Computer Science, Tel-Aviv University
2 Machine Learning Department, Carnegie Mellon University

3 Google Research

Abstract

Traditionally, when recommender systems are formalized as
multi-armed bandits, the policy of the recommender system in-
fluences the rewards accrued, but not the length of interaction.
However, in real-world systems, dissatisfied users may depart
(and never come back). In this work, we propose a novel multi-
armed bandit setup that captures such policy-dependent hori-
zons. Our setup consists of a finite set of user types, and multi-
ple arms with Bernoulli payoffs. Each (user type, arm) tuple
corresponds to an (unknown) reward probability. Each user’s
type is initially unknown and can only be inferred through
their response to recommendations. Moreover, if a user is dis-
satisfied with their recommendation, they might depart the
system. We first address the case where all users share the
same type, demonstrating that a recent UCB-based algorithm
is optimal. We then move forward to the more challenging
case, where users are divided among two types. While naive
approaches cannot handle this setting, we provide an efficient
learning algorithm that achieves Õ(

√
T) regret, where T is

the number of users.

1 Introduction
At the heart of online services spanning such diverse indus-
tries as media consumption, dating, financial products, and
more, recommendation systems (RSs) drive personalized ex-
periences by making curation decisions informed by each
user’s past history of interactions. While in practice, these
systems employ diverse statistical heuristics, much of our
theoretical understanding of them comes via stylized formu-
lations within the multi-armed bandits (MABs) framework.
While MABs abstract away from many aspects of real-world
systems they allow us to extract crisp insights by formalizing
fundamental tradeoffs, such as that between exploration and
exploitation that all RSs must face (Joseph et al. 2016; Liu
and Ho 2018; Patil et al. 2020; Ron, Ben-Porat, and Shalit
2021). As applies to RSs, exploitation consists of continu-
ing to recommend items (or categories of items) that have
been observed to yield high rewards in the past, while ex-
ploration consists of recommending items (or categories of
items) about which the RS is uncertain but that could poten-
tially yield even higher rewards.

*Equal contribution, alphabetical order.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In traditional formalizations of RSs as MABs, the recom-
mender’s decisions affect only the rewards obtained. How-
ever, real-life recommenders face a dynamic that potentially
alters the exploration-exploitation tradeoff: Dissatisfied users
have the option to depart the system, never to return. Thus,
recommendations in the service of exploration not only im-
pact instantaneous rewards but also risk driving away users
and therefore can influence long-term cumulative rewards by
shortening trajectories of interactions.

In this work, we propose departing bandits which augment
conventional MABs by incorporating these policy-dependent
horizons. To motivate our setup, we consider the following
example: An RS for recommending blog articles must choose
at each time among two categories of articles, e.g., economics
and sports. Upon a user’s arrival, the RS recommends articles
sequentially. After each recommendation, the user decides
whether to “click” the article and continue to the next rec-
ommendation, or to “not click” and may leave the system.
Crucially, the user interacts with the system for a random
number of rounds. The user’s departure probability depends
on their satisfaction from the recommended item, which in
turn depends on the user’s unknown type. A user’s type en-
codes their preferences (hence the probability of clicking) on
the two topics (economics and sports).

When model parameters are given, in contrast to tradi-
tional MABs where the optimal policy is to play the best
fixed arm, departing bandits require more careful analysis to
derive an optimal planning strategy. Such planning is a local
problem, in the sense that it is solved for each user. Since the
user type is never known explicitly (the recommender must
update its beliefs over the user types after each interaction),
finding an optimal recommendation policy requires solving
a specific partially observable MDP (POMDP) where the
user type constitutes the (unobserved) state (more details in
Section 5.1). When the model parameters are unknown, we
deal with a learning problem that is global, in the sense that
the recommender (learner) is learning for a stream of users
instead of a particular user.

We begin with a formal definition of departing bandits
in Section 2, and demonstrate that any fixed-arm policy is
prone to suffer linear regret. In Section 3, we establish the
UCB-based learning framework used in later sections. We
instantiate this framework with a single user type in Section 4,
where we show that it achieves Õ(

√
T) regret for T being

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6072

the number of users. We then move to the more challenging
case with two user types and two recommendation categories
in Section 5. To analyze the planning problem, we effectively
reduce the search space for the optimal policy by using a
closed-form of the expected return of any recommender pol-
icy. These results suggest an algorithm that achieves Õ(

√
T)

regret in this setting. In the full version of this paper (Ben-
Porat et al. 2022), we also show an efficient optimal planning
algorithm for multiple user types and two recommendation
categories, and describe a scheme to construct semi-synthetic
problem instances for this setting using real-world datasets.

1.1 Related Work

MABs have been studied extensively by the online learn-
ing community (Cesa-Bianchi and Lugosi 2006; Bubeck,
Cesa-Bianchi et al. 2012). The contextual bandit literature
augments the MAB setup with context-dependent rewards
(Abbasi-Yadkori, Pál, and Szepesvári 2011; Slivkins 2019;
Mahadik et al. 2020; Korda, Szörényi, and Li 2016; Lattimore
and Szepesvári 2020). In contextual bandits, the learner ob-
serves a context before they make a decision, and the reward
depends on the context. Another line of related work con-
siders the dynamics that emerge when users act strategically
(Kremer, Mansour, and Perry 2014; Mansour, Slivkins, and
Syrgkanis 2015; Cohen and Mansour 2019; Bahar, Smorodin-
sky, and Tennenholtz 2016; Bahar et al. 2020). In that line of
work, users arriving at the system receive a recommendation
but act strategically: They can follow the recommendation
or choose a different action. This modeling motivates the de-
velopment of incentive-compatible mechanisms as solutions.
In our work, however, the users are modeled in a stochastic
(but not strategic) manner. Users may leave the system if they
are dissatisfied with recommendations, and this departure
follows a fixed (but possibly unknown) stochastic model.

The departing bandits problem has two important features:
Policy-dependent horizons, and multiple user types that can
be interpreted as unknown states. Existing MAB works (Azar,
Lazaric, and Brunskill 2013; Cao et al. 2020) have addresses
these phenomena separately but we know of no work that
integrates the two in a single framework. In particular, while
Azar, Lazaric, and Brunskill (2013) study the setting with
multiple user types, they focus on a fixed horizon setting.
Additionally, while Cao et al. (2020) deal with departure
probabilities and policy-dependent interaction times for a sin-
gle user type, they do not consider the possibility of multiple
underlying user types.

The planning part of our problem falls under the frame-
work of using Markov Decision Processes for modeling
recommender-user dynamics (Shani, Heckerman, and Braf-
man 2005). Specifically, our problem works with partially
observable user states which have also been seen in many
recent bandits variants (Pike-Burke and Grünewälder 2019;
Leqi et al. 2020). Unlike these prior works that focus on
interactions with a single user, departing bandits consider a
stream of users each of which has an (unknown) type selected
among a finite set of user types.

More broadly, our RS learning problem falls under the
domain of reinforcement learning (RL). Existing RL litera-

ture that considers departing users in RSs include Zhao et al.
(2020b); Lu and Yang (2016); Zhao et al. (2020a). While
Zhao et al. (2020b) handle users of a single type that de-
part the RS within a bounded number of interactions, our
work deals with multiple user types. In contrast to Zhao et al.
(2020a), we consider an online setting and provide regret
guarantees that do not require bounded horizon. Finally, Lu
and Yang (2016) use POMDPs to model user departure and
focus on approximating the value function. They conduct an
experimental analysis on historical data, while we devise an
online learning algorithm with theoretical guarantees.

2 Departing Bandits
We propose a new online problem, called departing ban-
dits, where the goal is to find the optimal recommenda-
tion algorithm for users of (unknown) types, and where
the length of the interactions depends on the algorithm it-
self. Formally, the departing bandits problem is defined by
a tuple 〈[M], [K],q,P,Λ〉, where M is the number of user
types, K is the number of categories, q ∈ [0, 1]M speci-
fies a prior distribution over types, and P ∈ (0, 1)K×M and
Λ ∈ (0, 1)K×M are the click-probability and the departure-
probability matrices, respectively.1

There are T users who arrive sequentially at the RS. At
every episode, a new user t ∈ [T] arrives with a type type(t).
We let q denote the prior distribution over the user types, i.e.,
type(t) ∼ q. Each user of type x clicks on a recommended
category a with probability Pa,x. In other words, each click
follows a Bernoulli distribution with parameter Pa,x. When-
ever the user clicks, she stays for another iteration, and when
the user does not click (no-click), she departs with probabil-
ity Λa,x (and stays with probability 1−Λa,x). Each user t
interacts with the RS (the learner) until she departs.

We proceed to describe the user-RS interaction protocol. In
every iteration j of user t, the learner recommends a category
a ∈ [K] to user t. The user clicks on it with probability
Pa,type(t). If the user clicks, the learner receives a reward of
rt,j(a) = 1.2 If the user does not click, the learner receives no
reward (i.e., rt,j(a) = 0), and user t departs with probability
Λa,type(t). We assume that the learner knows the value of a
constant ε > 0 such that maxa,x Pa,x ≤ 1−ε (i.e., ε does not
depend on T). When user t departs, she does not interact with
the learner anymore (and the learner moves on to the next
user t+ 1). For convenience, the departing bandits problem
protocol is summarized in Algorithm 1.

Having described the protocol, we move on to the goals
and performance of the learner. Without loss of generality, we
assume that the online learner’s recommendations are made
based on a policy π, which is a mapping from the history
of previous interactions (with that user) to recommendation
categories. For each user (episode) t ∈ [T], the learner selects
a policy πt that recommends category πt,j ∈ [K] at every

1We denote by [n] the set {1, . . . , n}.
2We formalize the reward as is standard in the online learning

literature, from the perspective of the learner. However, defining the
reward from the user perspective by, e.g., considering her utility as
the number of clicks she gives or the number of articles she reads
induces the same model.

6073

Algorithm 1: The Departing Bandits Protocol
Input: number of types M , number of categories K, and
number of users (episodes) T
Hidden Parameters: types prior q, click-probability P, and
departure-probability Λ

1: for episode t← 1, . . . , T do
2: a new user with type type(t) ∼ q arrives
3: j ← 1, depart← false
4: while depart is false do
5: the learner picks a category a ∈ [K]
6: with probability Pa,x, user t clicks on a and

rt,j(a)← 1; otherwise, rt,j(a)← 0
7: if rt,j(a) = 0 then
8: with probability Λa,x: depart← true and user

t departs
9: the learner observes rt,j(a) and depart

10: if depart is false then
11: j ← j + 1

iteration j ∈ [Nπt(t)], where Nπt(t) denotes the episode
length (i.e., total number of iterations policy πt interacts with
user t until she departs).3 The return of a policy π, denoted
by V π is the cumulative reward the learner obtains when
executing the policy π until the user departs. Put differently,
the return of π from user t is the random variable V π =∑Nπ(t)
j=1 rt,j(πt,j).
We denote by π∗ an optimal policy, namely a policy that

maximizes the expected return, π∗ = arg maxπ E[V π]. Sim-
ilarly, we denote by V ∗ the optimal return, i.e., V ∗ = V π

∗
.

We highlight two algorithmic tasks. The first is the plan-
ning task, in which the goal is to find an optimal policy π∗,
given P,Λ,q. The second is the online learning task. We
consider settings where the learner knows the number of cat-
egories, K, the number of types, M , and the number of users,
T , but has no prior knowledge regarding P,Λ or q. In the
online learning task, the value of the learner’s algorithm is
the sum of the returns obtained from all the users, namely

T∑
t=1

V πt =

T∑
t=1

Nπ(t)∑
j=1

rt,j(πt,j).

The performance of the leaner is compared to that of the best
policy, formally defined by the regret for T episodes,

RT = T · E[V π
∗
]−

T∑
t=1

V πt . (1)

The learner’s goal is to minimize the expected regret E[RT].

2.1 Example
The motivation for the following example is two-fold. First,
to get the reader acquainted with our notations; and second,
to show why fixed-arm policies are inferior in our setting.

Consider a problem instance with two user types (M =
2), which we call x and y for convenience. There are two

3We limit the discussion to deterministic policies solely; this is
w.l.o.g. (see Subsection 5.1 for further details).

Type x Type y
Category 1 P1,x = 0.5 P1,y = 0.28
Category 2 P2,x = 0.4 P2,y = 0.39
Prior qx = 0.4 qy = 0.6

Table 1: The departing bandits instance in Section 2.1.

categories (K = 2), and given no-click the departure is
deterministic, i.e., Λa,τ = 1 for every category a ∈ [K]
and type τ ∈ [M]. That is, every user leaves immediately if
she does not click. Furthermore, let the click-probability P
matrix and the user type prior distribution q be as in Table 1.

Looking at P and q, we see that Category 1 is better for
Type x, while Category 2 is better for type y. Notice that
without any additional information, a user is more likely
to be type y. Given the prior distribution, recommending
Category 1 in the first round yields an expected reward of
qxP1,x + qyP1,y = 0.368. Similarly, recommending Cate-
gory 2 in the first round results in an expected reward of 0.394.
Consequently, if we recommend myopically, i.e., without con-
sidering the user type, always recommending Category 2 is
better than always recommending Category 1.

Let πa denote the fixed-arm policy that always selects a
single category a. Using the tools we derive in Section 5 and
in particular Theorem 5.3, we can compute the expected re-
turns of π1 and π2, E[V π

1

] and E[V π
2

]. Additionally, using
results from Section 5.2, we can show that the optimal policy
for the planning task, π∗, recommends Category 2 until itera-
tion 7, and then recommends Category 1 for the rest of the
iterations until the user departs.

Using simple calculations, we see that E[V π
∗
]−E[V π

1

] >

0.0169 and E[V π
∗
] − E[V π

2

] > 1.22 × 10−5; hence, the
expected return of the optimal policy is greater than the
returns of both fixed-arm policies by a constant. As a re-
sult, if the learner only uses fixed-arm policies (πa for
every a ∈ [K]), she suffers linear expected regret, i.e.,
E[RT] = T · E[V π

∗
]−
∑T
t=1 E[V π

a

] = Ω(T).

3 UCB Policy for Sub-exponential Returns
In this section, we introduce the learning framework used in
the paper and provide a general regret guarantee for it.

In standard MAB problems, at each t ∈ [T] the learner
picks a single arm and receives a single sub-Gaussian re-
ward. In contrast, in departing bandits, at each t ∈ [T] the
learner receives a return V π , which is the cumulative reward
of that policy. The return V π depends on the policy π not
only through the obtained rewards at each iteration but also
through the total number of iterations (trajectory length).
Such returns are not necessarily sub-Gaussian. Consequently,
we cannot use standard MAB algorithms as they usually rely
on concentration bounds for sub-Gaussian rewards. Further-
more, as we have shown in Section 2.1, in departing bandits
fixed-arm policies can suffer linear regret (in terms of the
number of users), which suggests considering a more expres-
sive set of policies. This in turn yields another disadvantage
for using MAB algorithms for departing bandits, as their
regret is linear in the number of arms (categories) K.

6074

As we show later in Sections 4 and 5, for some natural
instances of the departing bandits problem, the return from
each user is sub-exponential (Definition 3.1). Algorithm 2,
which we propose below, receives a set of policies Π as input,
along with other parameters that we describe shortly. The
algorithm is a restatement of the UCB-Hybrid Algorithm
from Jia, Shi, and Shen (2021), with two modifications: (1)
The input includes a set of policies rather than a set of action-
s/categories, and accordingly, the confidence bound updates
are based on return samples (denoted by V̂ π) rather than
reward samples. (2) There are two global parameters (τ̃ and
η) instead of two local parameters per action. If the return
from each policy in Π is sub-exponential, Algorithm 2 not
only handles sub-exponential returns, but also comes with
the following guarantee: Its expected value is close to the
value of the best policy in Π.

3.1 Sub-exponential Returns
For convenience, we state here the definition of sub-
exponential random variables (Eldar and Kutyniok 2012).
Definition 3.1. We say that a random variable X is sub-
exponential with parameters (τ2, b) if for every γ such that
|γ| < 1/b,

E[exp(γ(X − E[X]))] ≤ exp(
γ2τ2

2
).

In addition, for every (τ2, b)-sub-exponential random vari-
ables, there exist constants C1, C2 > 0 such that the above
is equivalent to each of the following properties:
1. Tails: ∀v ≥ 0 : Pr[|X| > v] ≤ exp(1− v

C1
).

2. Moments: ∀p ≥ 1 : (E[|X|p])1/p ≤ C2p.
Let Π be a set of policies with the following property:

There exist τ̃ , η such that the return of every policy π ∈ Π

is (τ2, b)-sub-exponential with τ̃ ≥ τ and η ≥ b2

τ2 . The
following Algorithm 2 receives as input a set of policies Π
with the associated parameters, τ̃ and η. Similarly to the UCB
algorithm, it maintains an upper confidence bound U for each
policy, and balances between exploration and exploitation.
Theorem 3.2 below shows that Algorithm 2 always gets a
value similar to that of the best policy in Π up to an additive
factor of Õ

(√
|Π|T +|Π|

)
. The theorem follows directly

from Theorem 3 from Jia, Shi, and Shen (2021) by having
policies as arms and returns as rewards.
Theorem 3.2. Let Π be a set of policies with the associated
parameters τ̃ , η. Let π1, . . . , πT be the policies Algorithm 2
selects. It holds that

E

max
π∈Π

T · V π −
T∑
t=1

V πt

 = O(
√
|Π|T log T +|Π| log T).

There are two challenges in leveraging Theorem 3.2. The
first challenge is crucial: Notice that Theorem 3.2 does not
imply that Algorithm 2 has a low regret; its only guarantee is
w.r.t. the policies in Π received as an input. As the number
of policies is infinite, our success will depend on our ability
to characterize a “good” set of policies Π. The second chal-
lenge is technical: Even if we find such Π, we still need to

Algorithm 2: UCB-based algorithm with hybrid radii: UCB-
Hybrid (Jia, Shi, and Shen 2021)

1: Input: set of policies Π, number of users T , τ̃ , η
2: Initialize: ∀π ∈ Π : U0(π)←∞, n(π) = 0
3: for user t← 1, . . . , T do
4: Execute πt such that πt ∈ arg maxπ∈Π Ut−1(π) and

receive return V̂ πt [n(πt)]←
∑Nπt (t)
j=1 rt,j(πt,j)

5: n(πt)← n(πt) + 1
6: if n(πt) < 8η lnT then
7: Update Ut(πt) =

∑n(πt)
i=1 V̂ πt [i]

n(πt)
+

8
√
η·τ̃ lnT

n(πt)

8: else
9: Update Ut(πt) =

∑n(πt)
i=1 V̂ πt [i]

n(πt)
+

√
8τ̃2 lnT
n(πt)

characterize the associated τ̃ and η. This is precisely what
we do in Section 4 and 5.

4 Single User Type
In this section, we focus on the special case of a single user
type, i.e., M = 1. For notational convenience, since we only
discuss single-type users, we associate each category a ∈ [K]
with its two unique parameters Pa := Pa,1,Λa := Λa,1 and
refer to them as scalars rather than vectors. In addition, We
use the notation Na for the random variable representing the
number of iterations until a random user departs after being
recommended by πa, the fixed-arm policy that recommends
category a in each iteration.

To derive a regret bound for single-type users, we use two
main lemmas: Lemma 4.1, which shows the optimal policy is
fixed, and Lemma 4.3, which shows that returns of fixed-arm
policies are sub-exponential and calculate their corresponding
parameters. These lemmas allow us to use Algorithm 2 with
a policy set Π that contains all the fixed-arm policies, and
derive a Õ(

√
T) regret bound. All omitted proofs can be

found in the full version of this paper (Ben-Porat et al. 2022).
To show that there exists a category a∗ ∈ [K] for which

πa
∗

is optimal, we rely on the assumption that all the users
have the same type (hence we drop the type subscripts t),
and as a result the rewards of each category a ∈ [K] have
an expectation that depends on a single parameter, namely
E[r(a)] = Pa. Such a category a∗ ∈ [K] does not neces-
sarily have the maximal click-probability nor the minimal
departure-probability, but rather an optimal combination of
the two (in a way, this is similar to the knapsack problem,
where we want to maximize the reward while having as little
weight as possible). We formalize it in the following lemma.

Lemma 4.1. A policy πa
∗

is optimal if

a∗ ∈ arg max
a∈[K]

Pa

Λa(1−Pa)
.

As a consequence of this lemma, the planning problem
for single-type users is trivial—the solution is a fixed-arm
policy πa

∗
given in the lemma. However, without access

to the model parameters, identifying πa
∗

requires learning.
We proceed with a simple observation regarding the random

6075

number of iterations obtained by executing a fixed-arm policy.
The observation would later help us show that the return of
any fixed-arm policy is sub-exponential.
Observation 4.2. For every a ∈ [K] and every Λa > 0, the
random variable Na follows a geometric distribution with
success probability parameter Λa[1−Pa] ∈ (0, 1− ε].

Using Observation 4.2 and previously known results
(stated in the full version of this paper (Ben-Porat et al.
2022)), we show that Na is sub-exponential for all a ∈ [K].
Notice that return realizations are always upper bounded by
the trajectory length; this implies that returns are also sub-
exponential. However, to use the regret bound of Algorithm 2,
we need information regarding the parameters (τ2

a , ba) for
every policy πa. We provide this information in the following
Lemma 4.3.
Lemma 4.3. For each category a ∈ [K], the centred random
variable V π

a − E[V π
a

] is sub-exponential with parameters
(τ2
a , ba), such that

τa = ba = − 8e

ln(1−Λa(1−Pa))
.

Proof sketch. We rely on the equivalence between the subex-
ponentiality of a random variable and the bounds on its mo-
ments (Property 2 in Definition 3.1). We bound the expec-
tation of the return V π

a

, and use Minkowski’s and Jensen’s
inequalities to show in the full version (Ben-Porat et al.
2022) that E[|V πa − E[V π

a

]|p])1/p is upper bounded by
−4/ ln(1 −Λa(1 − Pa)) for every a ∈ [K] and p ≥ 1. Fi-
nally, we apply a normalization trick and bound the Taylor
series of E[exp(γ(V π

a −E[V π
a

]))] to obtain the result.

An immediate consequence of Lemma 4.3 is that the pa-
rameters τ̃ = 8e/ ln(1

1−ε) and η = 1 are valid upper bounds
for τa and ba/τ2

a for each a ∈ [K] (I.e., ∀a ∈ [K] : τ̃ ≥ τa
and η ≥ b2a/τ

2
a). We can now derive a regret bound using

Algorithm 2 and Theorem 3.2.
Theorem 4.4. For single-type users (M = 1), running Algo-
rithm 2 with Π = {πa : a ∈ [K]} and τ̃ = 8e

ln(1
1−ε)

, η = 1

achieves an expected regret of at most

E[RT] = O(
√
KT log T +K log T).

5 Two User Types and Two Categories
In this section, we consider cases with two user types (M =
2), two categories (K = 2) and departure-probability Λa,τ =
1 for every category a ∈ [K] and type τ ∈ [M]. Even in
this relatively simplified setting, where users leave after the
first “no-click”, planning is essential. To see this, notice that
the event of a user clicking on a certain category provides
additional information about the user, which can be used to
tailor better recommendations; hence, algorithms that do not
take this into account may suffer a linear regret. In fact, this is
not just a matter of the learning algorithm at hand, but rather
a failure of all fixed-arm policies; there are instances where
all fixed-arm policies yield high regret w.r.t. the baseline
defined in Equation (1). Indeed, this is what the example in
Section 2.1 showcases. Such an observation suggests that
studying the optimal planning problem is vital.

In Section 5.1, we introduce the partially observable MDP
formulation of departing bandits along with notion of belief-
category walk. We use this notion to provide a closed-form
formula for policies’ expected return, which we use exten-
sively later on. Next, in Section 5.2 we characterize the op-
timal policy, and show that we can compute it in constant
time relying on the closed-form formula. This is striking, as
generally computing optimal POMDP policies is computa-
tionally intractable since, e.g., the space of policies grows
exponentially with the horizon. Conceptually, we show that
there exists an optimal policy that depends on a belief thresh-
old: It recommends one category until the posterior belief
of one type, which is monotonically increasing, crosses the
threshold, and then it recommends the other category. Finally,
in Section 5.3 we leverage all the previously obtained results
to derive a small set of threshold policies of size O(lnT)
with corresponding sub-exponential parameters. Due to The-
orem 3.2, this result implies a Õ(

√
T) regret.

5.1 Efficient Planning
To recap, we aim to find the optimal policy when the click-
probability matrix and the prior over user types are known.
Namely, given an instance in the form of 〈P,q〉, our goal is
to efficiently find the optimal policy.

For planning purposes, the problem can be modeled by an
episodic POMDP, 〈S, [K], O,Tr,P,Ω,q, O〉. A set of states,
S = [M] ∪ {⊥} that comprises all types [M], along with
a designated absorbing state ⊥ suggesting that the user de-
parted (and the episode terminated). [K] is the set of the
actions (categories). O = {stay, depart} is the set of possi-
ble observations. The transition and observation functions,
Tr : S × [K] → S and Ω : S × [K] → O (respec-
tively) satisfy Tr(⊥ |i, a) = Ω(depart|i, a) = 1 − Pi,a

and Tr(i|i, a) = Ω(stay|i, a) = Pi,a for every type i ∈ [M]
and action a ∈ [K]. Finally, P is the expected reward matrix,
and q is the initial state distribution over the M types.

When there are two user types and two categories, the
click-probability matrix is given by Table 2 where we note
that the prior on the types holds qy = 1 − qx, thus can be
represented by a single parameter qx.
Remark 5.1. Without loss of generality, we assume that
P1,x ≥ P2,x,P1,y,P2,y since one could always permute the
matrix to obtain such a structure.

Since the return and number of iterations for the same
policy is independent of the user index, we drop the subscript
t in the rest of this subsection and use .

Type x Type y
Category 1 P1,x P1,y

Category 2 P2,x P2,y

Prior qx qy = 1− qx

Table 2: Click probabilities for two user types and two cate-
gories.

As is well-known in the POMDP literature (Kaelbling,
Littman, and Cassandra 1998), the optimal policy π∗ and its
expected return are functions of belief states that represent

6076

the probability of the state at each time. In our setting, the
states are the user types. We denote by bj the belief that the
state is (type) x at iteration j. Similarly, 1− bj is the belief
that the state is (type) y at iteration j. Needless to say, once
the state ⊥ is reached, the belief over the type states [M]
is irrelevant, as users do not come back. Nevertheless, we
neglect this case as our analysis does not make use it.

We now describe how to compute the belief. At iteration
j = 1, the belief state is set to be b1 = P (state = x) = qx.
At iteration j > 1, upon receiving a positive reward rj = 1,
the belief is updated from bj−1 ∈ [0, 1] to

bj(bj−1, a, 1) =
bj−1 ·Pa,x

bj−1 ·Pa,x + Pa,y(1− bj−1)
, (2)

where we note that in the event of no-click, the current user
departs the system, i.e., we move to the absorbing state ⊥.
For any policy π : [0, 1] → {1, 2} that maps a belief to a
category, its expected return satisfies the Bellman equation,

E[V π(b)] =
(
bPπ(b),x + (1− b)Pπ(b),y

)
·

(1 + E[V π(b′(b, π(b), 1))]).

To better characterize the expected return, we introduce the
following notion of belief-category walk.
Definition 5.2 (Belief-category walk). Let π : [0, 1] →
{1, 2} be any policy. The sequence

b1, a1 = π(b1), b2, a2 = π(b2), . . .

is called the belief-category walk. Namely, it is the induced
walk of belief updates and categories chosen by π, given all
the rewards are positive (rj = 1 for every j ∈ N).

Notice that every policy induces a single, well-defined
and deterministic belief-category walk (recall that we as-
sume departure-probabilities satisfy Λa,τ = 1 for every
a ∈ [K], τ ∈ [M]). Moreover, given any policy π, the trajec-
tory of every user recommended by π is fully characterized
by belief-category walk clipped at bNπ(t), aNπ(t).

In what follows, we derive a closed-form expression for
the expected return as a function of b, the categories chosen
by the policy, and the click-probability matrix.
Theorem 5.3. For every policy π and an initial belief b ∈
[0, 1], the expected return is given by

E[V π(b)] =

∞∑
i=1

b ·Pm1,i

1,x ·P
m2,i

2,x + (1− b)Pm1,i

1,y ·P
m2,i

2,y ,

where m1,i := |{aj = 1, j ≤ i}| and m2,i := |{aj =
2, j ≤ i}| are calculated based on the belief-category walk
b1, a1, b2, a2, . . . induced by π.

5.2 Characterizing the Optimal Policy
Using Theorem 5.3, we show that the planning problem can
be solved in O(1). To arrive at this conclusion, we perform
a case analysis over the following three structures of the
click-probability matrix P:
• Dominant Row, where P1,y ≥ P2,y;
• Dominant Column, where P2,x ≥ P2,y > P1,y;

• Dominant Diagonal, where P1,x ≥ P2,y > P1,y,P2,x.
Crucially, any matrix P takes exactly one of the three struc-
tures. Further, since P is known in the planning problem,
identifying the structure at hand takes O(1) time. Using this
structure partition, we characterize the optimal policy.

Dominant Row We start by considering the simplest struc-
ture, in which the Category 1 is preferred by both types of
users: Since P1,y ≥ P2,y and P1,x ≥ P2,x,P1,y,P2,y (Re-
mark 5.1), there exists a dominant row, i.e., Category 1.
Lemma 5.4. For any instance such that P has a dominant
row a, the fixed policy πa is an optimal policy.

As expected, if Category 1 is dominant then the policy that
always recommends Category 1 is optimal.

Dominant Column In the second structure we consider
the case where there is no dominant row, and that the column
of type x is dominant, i.e., P1,x ≥ P2,x ≥ P2,y > P1,y. In
such a case, which is also the one described in the example
in Section 2.1, it is unclear what the optimal policy would be
since none of the categories dominates the other.

Surprisingly, we show that the optimal policy can be of
only one form: Recommend Category 2 for some time steps
(possibly zero) and then always recommend Category 1. To
identify when to switch from Category 2 to Category 1, one
only needs to compare four expected returns.
Theorem 5.5. For any instance such that P has a dominant
column, one of the following four policies is optimal:

π1, π2, π2:bN∗c, π2:dN∗e,

where N∗ = N∗(P,q) is a constant, and π2:bN∗c (π2:dN∗e)
stands for recommending Category 2 until iteration bN∗c
(dN∗e) and then switching to Category 1.

The intuition behind the theorem is as follows. If the prior
tends towards type y, we might start with recommending Cat-
egory 2 (which users of type y are more likely to click on).
But after several iterations, and as long as the user stays, the
posterior belief b increases since P2,x > P2,y (recall Equa-
tion (2)). Consequently, since type x becomes more probable,
and since P1,x ≥ P2,x, the optimal policy recommends the
best category for this type, i.e., Category 1. For the exact
expression of N∗, we refer the reader to the full version of
the paper (Ben-Porat et al. 2022).

Using Theorem 5.3, we can compute the expected return
for each of the four policies in O(1), showing that we can
find the optimal policy when P has a column in O(1).

Dominant Diagonal In the last structure, we consider the
case where there is no dominant row (i.e., P2,y > P1,y) nor
a dominant column (i.e., P2,y > P2,x). At first glance, this
case is more complex than the previous two, since none of
the categories and none of the types dominates the other one.
However, we uncover that the optimal policy can be either
always recommending Category 1 or always recommending
Category 2. Theorem 5.6 summarizes this result.
Theorem 5.6. For any instance such that P has a dominant
diagonal, either π1 or π2 is optimal.

With the full characterization of the optimal policy derived
in this section (for all the three structures), we have shown
that the optimal policy can be computed in O(1).

6077

5.3 Learning: UCB-based Regret Bound
In this section, we move from the planning task to the learning
one. Building on the results of previous sections, we know
that there must exist a threshold policy—a policy whose
belief-category walk has a finite prefix of one category, and
an infinite suffix with the other category—which is optimal.
However, there can still be infinitely many such policies. To
address this problem, we first show how to reduce the search
space for approximately optimal policies with negligible ad-
ditive factor to a set of |Π| = O(ln(T)) policies. Then, we
derive the parameters τ̃ and η required for Algorithm 2. As an
immediate consequence, we get a sublinear regret algorithm
for this setting. We begin with defining threshold policies.

Definition 5.7 (Threshold Policy). A policy π is called an
(a, h)-threshold policy if there exists an number h ∈ N∪{0}
in π’s belief-category walk such that

• π recommends category a in iterations j ≤ h, and
• π recommends category a′ in iterations j > h,

for a, a′ ∈ {1, 2} and a 6= a′.

For instance, the policy π1 that always recommends Cate-
gory 1 is the (2, 0)-threshold policy, as it recommends Cat-
egory 2 until the zero’th iteration (i.e., never recommends
Category 2) and then Category 1 eternally. Furthermore, the
policy π2:bN∗c introduced in Theorem 5.5 is the (2, bN∗c)-
threshold policy.

Next, recall that the chance of departure in every iteration
is greater or equal to ε, since we assume maxa,τ Pa,τ ≤ 1−ε.
Consequently, the probability that a user will stay beyond
H iterations is exponentially decreasing with H . We could
use high-probability arguments to claim that it suffices to
focus on the first H iterations, but without further insights
this would yield Ω(2H) candidates for the optimal policy.
Instead, we exploit our insights about threshold policies.

Let ΠH be the set of all (a, h)-threshold policies for
a ∈ {1, 2} and h ∈ [H] ∪ {0}. Clearly, |ΠH | = 2H + 2.
Lemma 5.8 shows that the return obtained by the best policy
in ΠH is not worse than that of the optimal policy π∗ by a
negligible factor.

Lemma 5.8. For every H ∈ N, it holds that

E
[
V π

∗
− max
π∈ΠH

V π
]
≤ 1

2O(H)
.

Before we describe how to apply Algorithm 2, we need
to show that returns of all the policies in ΠH are sub-
exponential. In Lemma 5.9, we show that V π is (τ2, b)-sub-
exponential for every threshold policy π ∈ ΠH , and provide
bounds for both τ and b2/τ2.

Lemma 5.9. Let τ̃ = 8e
ln(1

1−ε)
and η = 1. For every threshold

policy π ∈ ΠH , the centred random variable V π − E[V π]
is (τ2, b)-sub-exponential with (τ2, b) satisfying τ̃ ≥ τ and
η ≥ b2/τ2.

We are ready to wrap up our solution for the learning task
proposed in this section. Let H = Θ(lnT), ΠH be the set
of threshold policies characterized before, and let τ̃ and η be
constants as defined in Lemma 5.9.

Theorem 5.10. Applying Algorithm 2 with ΠH , T, τ̃ , η on
the class of two-types two-categories instances considered in
this section always yields an expected regret of

E[RT] ≤ O(
√
T lnT).

Proof. It holds that

E[RT] = E

TV π∗
−

T∑
t=1

V πt


= E

[
TV π

∗
− max
π∈ΠH

TV π
]

+ E

max
π∈ΠH

TV π −
T∑
t=1

V πt


≤ T

2O(H)
+O(

√
HT log T +H log T) = O(

√
T lnT),

where the inequality follows from Theorem 3.2 and
Lemma 5.8. Finally, setting H = Θ(lnT) yields the desired
result.

6 Conclusions and Discussion
This paper introduces a MAB model in which the recom-
mender system influences both the rewards accrued and the
length of interaction. We dealt with two classes of problems:
A single user type with general departure probabilities (Sec-
tion 4) and the two user types, two categories where each
user departs after her first no-click (Section 5). For each prob-
lem class, we started with analyzing the planning task, then
characterized a small set of candidates for the optimal policy,
and then applied Algorithm 2 to achieve sublinear regret.

In the full version (Ben-Porat et al. 2022), we also consider
a third class of problems: Two categories, multiple user types
(M ≥ 2) where user departs with their first no-click. We
use the closed-form expected return derived in Theorem 5.3
to show how to use dynamic programming to find approxi-
mately optimal planning policies. We formulate the problem
of finding an optimal policy for a finite horizon H in a re-
cursive manner. Particularly, we show how to find a 1/2O(H)

additive approximation in run-time of O(H2). Unfortunately,
this approach cannot assist us in the learning task. Dynamic
programming relies on skipping sub-optimal solutions to sub-
problems (shorter horizons in our case), but this happens on
the fly; thus, we cannot a-priori define a small set of candi-
dates like what Algorithm 2 requires. More broadly, we could
use this dynamic programming approach for more than two
categories, namely forK ≥ 2, but then the run-time becomes
O(HK).

There are several interesting future directions. First, achiev-
ing low regret for the setup in Section 5 with K ≥ 2. We sus-
pect that this class of problems could enjoy a solution similar
to ours, where candidates for optimal policies are mixing two
categories solely. Second, achieving low regret for the setup
in Section 5 with uncertain departure (i.e., Λ 6= 1). Our ap-
proach fails in such a case since we cannot use belief-category
walks; these are no longer deterministic. Consequently, the
closed-form formula is much more complex and optimal plan-
ning becomes more intricate. These two challenges are left
open for future work.

6078

Acknowledgements
LL is generously supported by an Open Philanthropy AI Fel-
lowship. LC is supported by Ariane de Rothschild Women
Doctoral Program. ZL thanks the Block Center for Tech-
nology and Society; Amazon AI; PwC USA via the Digital
Transformation and Innovation Center; and the NSF: Fair
AI Award IIS2040929 for supporting ACMI lab’s research
on the responsible use of machine learning. This project has
received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and inno-
vation program (grant agreement No. 882396), by the Israel
Science Foundation (grant number 993/17), Tel Aviv Univer-
sity Center for AI and Data Science (TAD), and the Yandex
Initiative for Machine Learning at Tel Aviv University.

References
Abbasi-Yadkori, Y.; Pál, D.; and Szepesvári, C. 2011. Im-
proved algorithms for linear stochastic bandits. Advances in
neural information processing systems, 24: 2312–2320.
Azar, M. G.; Lazaric, A.; and Brunskill, E. 2013. Sequential
transfer in multi-armed bandit with finite set of models. In
Proceedings of the 26th International Conference on Neural
Information Processing Systems-Volume 2, 2220–2228.
Bahar, G.; Ben-Porat, O.; Leyton-Brown, K.; and Tennen-
holtz, M. 2020. Fiduciary bandits. In International Confer-
ence on Machine Learning, 518–527. PMLR.
Bahar, G.; Smorodinsky, R.; and Tennenholtz, M. 2016. Eco-
nomic Recommendation Systems: One Page Abstract. In
Proceedings of the 2016 ACM Conference on Economics and
Computation, EC ’16, 757–757. New York, NY, USA: ACM.
ISBN 978-1-4503-3936-0.
Ben-Porat, O.; Cohen, L.; Leqi, L.; Lipton, Z. C.; and Man-
sour, Y. 2022. Modeling Attrition in Recommender Systems
with Departing Bandits. arXiv preprint arXiv:2203.13423.
Bubeck, S.; Cesa-Bianchi, N.; et al. 2012. Regret analysis of
stochastic and nonstochastic multi-armed bandit problems.
Foundations and Trends® in Machine Learning, 5(1): 1–122.
Cao, J.; Sun, W.; Shen, Z.-J. M.; and Ettl, M. 2020. Fatigue-
Aware Bandits for Dependent Click Models. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34,
3341–3348.
Cesa-Bianchi, N.; and Lugosi, G. 2006. Prediction, learning,
and games. Cambridge Univ Press.
Cohen, L.; and Mansour, Y. 2019. Optimal Algorithm for
Bayesian Incentive-Compatible. In ACM Conf. on Economics
and Computation (EC).
Eldar, Y.; and Kutyniok, G. 2012. Compressed Sensing:
Theory and Applications. ISBN 978-1107005587.
Jia, H.; Shi, C.; and Shen, S. 2021. Multi-armed Bandit with
Sub-exponential Rewards. Operations Research Letters.
Joseph, M.; Kearns, M.; Morgenstern, J.; and Roth, A. 2016.
Fairness in learning: Classic and contextual bandits. arXiv
preprint arXiv:1605.07139.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial intelligence, 101(1-2): 99–134.

Korda, N.; Szörényi, B.; and Li, S. 2016. Distributed Cluster-
ing of Linear Bandits in Peer to Peer Networks. In Proceed-
ings of the 33rd International Conference on International
Conference on Machine Learning.
Kremer, I.; Mansour, Y.; and Perry, M. 2014. Implementing
the wisdom of the crowd. Journal of Political Economy, 122:
988–1012.
Lattimore, T.; and Szepesvári, C. 2020. Bandit algorithms.
Cambridge University Press.
Leqi, L.; Kilinc-Karzan, F.; Lipton, Z. C.; and Montgomery,
A. L. 2020. Rebounding Bandits for Modeling Satiation
Effects. arXiv preprint arXiv:2011.06741.
Liu, Y.; and Ho, C.-J. 2018. Incentivizing high quality user
contributions: New arm generation in bandit learning. In
Thirty-Second AAAI Conference on Artificial Intelligence.
Lu, Z.; and Yang, Q. 2016. Partially Observable Markov
Decision Process for Recommender Systems. CoRR,
abs/1608.07793.
Mahadik, K.; Wu, Q.; Li, S.; and Sabne, A. 2020. Fast
Distributed Bandits for Online Recommendation Systems.
Mansour, Y.; Slivkins, A.; and Syrgkanis, V. 2015. Bayesian
Incentive-Compatible Bandit Exploration. In ACM Conf. on
Economics and Computation (EC).
Patil, V.; Ghalme, G.; Nair, V.; and Narahari, Y. 2020. Achiev-
ing fairness in the stochastic multi-armed bandit problem. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, 5379–5386.
Pike-Burke, C.; and Grünewälder, S. 2019. Recovering ban-
dits. arXiv preprint arXiv:1910.14354.
Ron, T.; Ben-Porat, O.; and Shalit, U. 2021. Corporate Social
Responsibility via Multi-Armed Bandits. In Proceedings of
the 2021 ACM Conference on Fairness, Accountability, and
Transparency, 26–40.
Shani, G.; Heckerman, D.; and Brafman, R. I. 2005. An
MDP-Based Recommender System. Journal of Machine
Learning Research, 6(43): 1265–1295.
Slivkins, A. 2019. Introduction to multi-armed bandits. arXiv
preprint arXiv:1904.07272.
Zhao, X.; Zheng, X.; Yang, X.; Liu, X.; and Tang, J. 2020a.
Jointly Learning to Recommend and Advertise. In KDD ’20:
The 26th ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining.
Zhao, Y.; Zhou, Y.; Ou, M.; Xu, H.; and Li, N. 2020b. Maxi-
mizing Cumulative User Engagement in Sequential Recom-
mendation: An Online Optimization Perspective. In Gupta,
R.; Liu, Y.; Tang, J.; and Prakash, B. A., eds., KDD ’20: The
26th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining.

6079

