
Admissible Policy Teaching through Reward Design

Kiarash Banihashem, Adish Singla, Jiarui Gan, Goran Radanovic
Max Planck Institute for Software Systems

{kbanihas, adishs, jrgan, gradanovic}@mpi-sws.org

Abstract

We study reward design strategies for incentivizing a reinforce-
ment learning agent to adopt a policy from a set of admissible
policies. The goal of the reward designer is to modify the
underlying reward function cost-efficiently while ensuring that
any approximately optimal deterministic policy under the new
reward function is admissible and performs well under the
original reward function. This problem can be viewed as a dual
to the problem of optimal reward poisoning attacks: instead
of forcing an agent to adopt a specific policy, the reward
designer incentivizes an agent to avoid taking actions that
are inadmissible in certain states. Perhaps surprisingly, and in
contrast to the problem of optimal reward poisoning attacks,
we first show that the reward design problem for admissible
policy teaching is computationally challenging, and it is
NP-hard to find an approximately optimal reward modification.
We then proceed by formulating a surrogate problem whose
optimal solution approximates the optimal solution to the
reward design problem in our setting, but is more amenable
to optimization techniques and analysis. For this surrogate
problem, we present characterization results that provide
bounds on the value of the optimal solution. Finally, we
design a local search algorithm to solve the surrogate problem
and showcase its utility using simulation-based experiments.

Introduction
Reinforcement learning (RL) (Sutton and Barto 2018) is a
framework for deriving an agent’s policy that maximizes its
utility in sequential decision making tasks. In the standard for-
mulation, the utility of an agent is defined via its reward func-
tion, which determines the decision making task of interest.
Reward design plays a critical role in providing sound speci-
fications of the task goals and supporting the agent’s learning
process (Singh, Lewis, and Barto 2009; Amodei et al. 2016).

There are different perspectives on reward design, which
differ in the studied objectives. A notable example of reward
design is reward shaping (Mataric 1994; Dorigo and Colom-
betti 1994; Ng, Harada, and Russell 1999) which modifies
the reward function in order to accelerate the learning process
of an agent. Reward transformations that are similar to or
are based on reward shaping are not only used for accelerat-
ing learning. For example, reward penalties are often used

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in safe RL to penalize the agent whenever it violates safety
constraints (Tessler, Mankowitz, and Mannor 2018). Simi-
larly, reward penalties can be used in offline RL for ensuring
robustness against model uncertainty (Yu et al. 2020), while
exploration bonuses can be used as intrinsic motivation for
an RL agent to reduce uncertainty (Bellemare et al. 2016).

In this paper, we consider a different perspective on reward
design, and study it in the context of (targeted) policy teach-
ing and closely related (targeted) reward poisoning attacks.
In this line of work (Zhang and Parkes 2008; Zhang, Parkes,
and Chen 2009; Ma et al. 2019; Rakhsha et al. 2020b,a), the
reward designer perturbs the original reward function to in-
fluence the choice of policy adopted by an optimal agent. For
instance, (Zhang and Parkes 2008; Zhang, Parkes, and Chen
2009) studied policy teaching from a principal’s perspective
who provides incentives to an agent to influence its policy.
In reward poisoning attacks (Ma et al. 2019; Rakhsha et al.
2020b,a), an attacker modifies the reward function with the
goal of forcing a specific target policy of interest. Importantly,
the reward modifications do not come for free, and the goal
in this line of work is to alter the original reward function in
a cost-efficient manner. The associated cost can, e.g., model
the objective of minimizing additional incentives provided
by the principal or ensuring the stealthiness of the attack.

The focus of this paper is on a dual problem to reward
poisoning attacks. Instead of forcing a specific target policy,
the reward designer’s goal is to incentivize an agent to avoid
taking actions that are inadmissible in certain states, while en-
suring that the agent performs well under the original reward
function. As in reward poisoning attacks, the reward designer
cares about the cost of modifying the original reward func-
tion. Interestingly and perhaps surprisingly, the novel reward
design problem leads to a considerably different characteri-
zation results, as we show in this paper. We call this problem
admissible policy teaching since the reward designer aims to
maximize the agent’s utility w.r.t. the original reward func-
tion, but under constraints on admissibility of state-action
pairs. These constraints could encode additional knowledge
that the reward designer has about the safety and security of
executing certain actions. A comparison of our framework
with targeted policy teaching can be seen in Figure 1. Our
key contributions are:
• We develop a novel optimization framework based on

Markov Decision Processes (MDPs) for finding a minimal

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6037

Figure 1. Comparison between targeted and admissible policy teaching. (a) depicts the targeted policy teaching framework. In
this framework, the reward designer has a target policy π† and perturbs the original reward function R to the modified reward
function R̂ in order to ensure that π† is optimal w.r.t R̂. This would ensure that a learner maximizing its performance w.r.t R̂
would follow π†. Since there may be many suitable R̂, the designer typically chooses the one with minimum modification cost.
(b) shows the admissible policy teaching problem studied in this paper. In contrast to a single targeted policy, the designer has a
set of admissible policies Πadm

det . The goal of the designer is to modify R to ensure that the learner chooses an admissible policy.
As before, the designer wants to keep modification cost at a minimum. Unlike the previous setting, we are also interested in the
performance of the learner w.r.t the original reward function R.

reward modifications which ensure that an optimal agent
adopts a well-performing admissible policy. which ensure
that the optimal RL agent adopts an admissible policy
(See subsection Problem Formulation).

• We show that finding an optimal solution to the reward
design problem for admissible policy teaching is compu-
tationally challenging, in particular, that it is NP-hard to
find a solution that approximates the optimal solution.

• We provide characterization results for a surrogate prob-
lem whose optimal solution approximates the optimal
solution to our reward design problem. For a specific class
of MDPs, which we call special MDPs, we present an
exact characterization of the optimal solution. For general
MDPs, we provide bounds on the optimal solution value.

• We design a local search algorithm for solving the
surrogate problem, and demonstrate its efficacy using
simulation-based experiments.

Related Work
Reward design. A considerable number of works is re-
lated to designing reward functions that improve an agent’s
learning procedures. The optimal reward problem focuses
on finding a reward function that can support computation-
ally bounded agents (Sorg, Singh, and Lewis 2010; Sorg,
Lewis, and Singh 2010). Reward shaping (Mataric 1994;
Dorigo and Colombetti 1994), and in particular, potential-
based reward shaping (Ng, Harada, and Russell 1999) and
its extensions (e.g., (Devlin and Kudenko 2012; Grześ 2017;
Zou et al. 2019)) densify the reward function so that the agent
receives more immediate signals about its performance, and
hence learns faster. As already mentioned, similar reward
transformations, such as reward penalties or bonuses, are
often used for reducing uncertainty or for ensuring safety
constraints (Bellemare et al. 2016; Yu et al. 2020; Tessler,
Mankowitz, and Mannor 2018). Related to safe and secure
RL are works that study reward specification problem and
negative side affects of reward misspecification (Amodei et al.
2016; Hadfield-Menell et al. 2017). The key difference be-

tween the above papers and our work is that we focus on
policy teaching rather than on an agent’s learning procedures.

Teaching and steering. As already explained, our work re-
lates to prior work on policy teaching and targeted reward poi-
soning attacks (Zhang and Parkes 2008; Zhang, Parkes, and
Chen 2009; Ma et al. 2019; Huang and Zhu 2019; Rakhsha
et al. 2020b,a; Zhang et al. 2020b; Sun, Huo, and Huang
2021). Another line of related work is on designing steering
strategies. For example, (Nikolaidis et al. 2017; Dimitrakakis
et al. 2017; Radanovic et al. 2019) consider two-agent collab-
orative settings where a dominant agent can exert influence
on the other agent, and the goal is to design a policy for the
dominant agent that accounts for the imperfections of the
other agent. Similar support mechanisms based on providing
advice or helpful interventions have been studied by (Amir
et al. 2016; Omidshafiei et al. 2019; Tylkin, Radanovic, and
Parkes 2021). In contrast, we consider steering strategies
based on reward design. When viewed as a framework for
supporting an agent’s decision making, this paper is also re-
lated to works on designing agents that are robust against
adversaries (Pinto et al. 2017; Fischer et al. 2019; Lykouris
et al. 2019; Zhang et al. 2020a, 2021a,b; Banihashem, Singla,
and Radanovic 2021). These works focus on agent design
and are complementary to our work on reward design.

Problem Setup
In this section we formally describe our problem setup.

Environment
The environment in our setting is described by a discrete-time
Markov Decision Process (MDP) M = (S,A,R, P, γ, σ),
where S and A are the discrete finite state and action spaces
respectively1, R : S × A → R is a reward function, P :

1This setting can encode the case where states have different
number of actions (e.g., by adding actions to the states with smaller
number of actions and setting the reward of newly added state-action
pairs to −∞).

6038

S × A × S → [0, 1] specifies the transition dynamics with
P (s, a, s′) denoting the probability of transitioning to state
s′ from state s by taking action a, γ ∈ [0, 1) is the discounted
factor, and σ is the initial state distribution. A deterministic
policy π is a mapping from states to actions, i.e., π : S → A,
and the set of all deterministic policies is denoted by Πdet.

Next, we define standard quantities in this MDP, which
will be important for our analysis. First, we define the
score of a policy π as the total expected return scaled by
1 − γ, i.e., ρπ,R = E

[
(1− γ)

∑∞
t=1 γ

t−1R(st, at)|π, σ
]
.

Here states st and actions at are obtained by executing
policy π starting from state s1, which is sampled from
the initial state distribution σ. Score ρπ,R can be obtained
through state occupancy measure µπ by using the equation
ρπ,R =

∑
s µ

π(s) · R(s, π(s)). Here, µπ is the expected
discounted state visitation frequency when π is executed,
given by µπ(s) = E

[
(1− γ)

∑∞
t=1 γ

t−11 [st = s] |π, σ
]
.

Note that µπ(s) can be equal to 0 for some states. Further-
more, we define µπmin = mins|µπ(s)>0 µ

π(s)—the minimum
always exists due to the finite state and action spaces. Simi-
larly, we denote by µmin the minimal value of µπmin across all
deterministic policies, i.e., µmin = minπ∈Πdet µ

π
min.

We define the state-action value function, or Q values as
Qπ,R(s, a) = E

[∑∞
t=1 γ

t−1R(st, at)|π, s1 = s, a1 = a
]
,

where states st and actions at are obtained by executing
policy π starting from state s1 = s in which action a1 = a
is taken. State-action values Q(s, a) relate to score ρ via the
equation ρπ,R = Es∼σ

[
(1− γ) ·Qπ,R(s, π(s))

]
, where the

expectation is taken over possible starting states.

Agent and Reward Functions
We consider a reinforcement learning agent whose behavior
is specified by a deterministic policy π, derived offline using
an MDP model given to the agent. We assume that the agent
selects a deterministic policy that (approximately) maximizes
the agent’s expected utility under the MDP model specified by
a reward designer. In other words, given an access to the MDP
M = (S,A,R, P, γ, σ), the agent chooses a policy from the
set OPTεdet(R) = {π ∈ Πdet : ρπ,R > maxπ′∈Πdet ρ

π′,R − ε},
where ε is a strictly positive number. It is important to note
that the MDP model given to the agent might be different
from the true MDP model of the environment. In this paper,
we focus on the case when only the reward functions of these
two MDPs (possibly) differ.

Therefore, in our notation, we differentiate the reward
function that the reward designer specifies to the agent, de-
noting it by R̂, from the original reward function of the en-
vironment, denoting it by R. A generic reward function is
denoted by R, and is often used as a variable in our optimiza-
tion problems. We also denote by π∗ a deterministic policy
that is optimal with respect to R for any starting state, i.e.,
Qπ
∗,R(s, π∗(s)) = maxπ∈Πdet Q

π,R(s, π(s)) for all states s.

Reward Designer and Problem Formulation
We take the perspective of a reward designer whose goal is
to design a reward function, R̂, such that the agent adopts
a policy from a class of admissible deterministic policies
Πadm

det ⊆ Πdet. Ideally, the new reward function R̂ would be

close to the original reward functionR, thus reducing the cost
of the reward design. At the same time, the adopted policy
should perform well under the original reward function R,
since this is the performance that the reward designer wants
to optimize and represents the objective of the underlying
task. As considered in related works (Ma et al. 2019; Rakhsha
et al. 2020b,a), we measure the cost of the reward design by
L2 distance between the designed R̂ and the original reward
function R. Moreover, we measure the agent’s performance
with the score ρπ,R, where the agent’s policy π is obtained
w.r.t. the designed reward function R̂. Given the model of
the agent discussed in the previous subsection, and assuming
the worst-case scenario (w.r.t. the tie-breaking in the policy
selection), the following optimization problem specifies the
reward design problem for admissible policy teaching (APT):

min
R

max
π

∥∥R−R∥∥
2
− λ · ρπ,R (P1-APT)

s.t. OPTεdet(R) ⊆ Πadm
det

π ∈ OPTεdet(R),

where λ ≥ 0 is a trade-off factor.2 While in this problem
formulation Πadm

det can be any set of policies, we will primarily
focus on admissible policies that can be described by a set
of admissible actions per state. More concretely, we define
sets of admissible actions per state denoted by Aadm

s ⊆ A.
Given these sets Aadm

s , the set of admissible policies will be
identified as Πadm

det = {π|π(s) ∈ Aadm
s ∨ µπ(s) = 0 for s ∈

S}.3 In other words, these policies must take admissible
actions for states that have non-zero state occupancy measure.

We conclude this section by validating the soundness of the
optimization problem (P1-APT). The following proposition
shows that the optimal solution to the optimization problem
(P1-APT) is always attainable.
Proposition 1. If Πadm

det is not empty, there always exists an
optimal solution to the optimization problem (P1-APT).

In the following sections, we analyze computational as-
pects of this optimization problem, showing that it is in-
tractable in general and providing characterization results
that bound the value of solutions. The proofs are provided in
the full version of the paper (Banihashem et al. 2022).

Computational Challenges
We start by analyzing computational challenges behind the
optimization problem (P1-APT). To provide some intuition,
let us first analyze a special case of (P1-APT) where λ = 0,
which reduces to the following optimization problem:

min
R

∥∥R−R∥∥
2

(P2-APTλ=0)

s.t. OPTεdet(R) ⊆ Πadm
det .

This special case of the optimization problem with λ =
0 is a generalization of the reward poisoning attack from

2Since we are taking a worst-case view w.r.t tie-breaking among
policies, we maximize over π.

3In practice, we can instead put the constraint that µπ(s) is
greater than or equal to some threshold. For small enough threshold,
our characterization results qualitatively remain the same.

6039

(Rakhsha et al. 2020b,a). In fact, the reward poisoning attack
of (Rakhsha et al. 2020a) can be written as

min
R

∥∥R−R∥∥
2

(P3-ATK)

s.t. OPTεdet(R) ⊆ {π|π(s) = π†(s) if µπ†(s) > 0},
where π† is the target policy that the attacker wants to
force. However, while (P3-ATK) is tractable in the setting of
(Rakhsha et al. 2020a), the same is not true for (P2-APTλ=0);
see Remark 1. Intuitively, the difficulty of solving the opti-
mization problem (P2-APTλ=0) lies in the fact that the policy
set Πadm

det (in the constraints of (P2-APTλ=0)) can contain ex-
ponentially many policies. Since the optimization problem
(P2-APTλ=0) is a specific instance of the optimization prob-
lem (P1-APT), the latter problem is also computationally
intractable. We formalize this result in the following theorem.
Theorem 1. For any constant p ∈ (0, 1), it is NP-hard to
distinguish between instances of (P2-APTλ=0) that have
optimal values at most ξ and instances that have optimal
values larger than ξ ·

√
(|S| · |A|)1−p. The result holds even

when the parameters ε and γ in (P2-APTλ=0) are fixed to
arbitrary values subject to ε > 0 and γ ∈ (0, 1).

The proof of the theorem is based on a classical NP-
complete problem called EXACT-3-SET-COVER (X3C)
(Karp 1972; Garey and Johnson 1979). The result implies
that it is unlikely (assuming that P = NP is unlikely) that there
exists a polynomial-time algorithm that always outputs an
approximate solution whose cost is at most

√
(|S| · |A|)1−p

times that of the optimal solution for some p > 0.
We proceed by introducing a surrogate problem (P4-APT),

which is more amenable to optimization techniques and anal-
ysis since the focus is put on optimizing over policies rather
than reward functions. In particular, the optimization problem
takes the following form:

min
π∈Πadm

det ,R

∥∥R−R∥∥
2
− λ · ρπ,R (P4-APT)

s.t. OPTεdet(R) ⊆ {π′|π′(s) = π(s) if µπ(s) > 0}.
Note that (P4-APT) differs from (P3-ATK) in that it opti-
mizes over all admissible policies, and it includes perfor-
mance considerations in its objective. The result in Theo-
rem 1 extends to this case as well, so the main computational
challenge remains the same.

The following proposition shows that the solution to the
surrogate problem (P4-APT) is an approximate solution to
the optimization problem (P1-APT), with an additive bound.
More precisely:

Proposition 2. Let R̂1 and R̂2 be the optimal solutions to
(P1-APT) and (P4-APT) respectively and let l(R) be a func-
tion that outputs the objective of the optimization problem
(P1-APT), i.e.,

l(R) = max
π∈OPTεdet(R)

∥∥R−R∥∥
2
− λρπ,R. (1)

Then R̂2 satisfies the constraints of (P1-APT), i.e,
OPTεdet(R̂2) ⊆ Πadm

det , and

l(R̂1) ≤ l(R̂2) ≤ l(R̂1) +
ε

µmin
·
√
|S| · |A|.

Due to this result, in the following sections, we focus on
the optimization problem (P4-APT), and provide character-
ization for it. Using Proposition 2 we can obtain analogous
results for the optimization problem (P1-APT).

Remark 1. The optimization problem (P3-ATK) is a strictly
more general version of the optimization problem studied
in (Rakhsha et al. 2020a) since (P3-ATK) does not require
µπ(s) > 0 for all π and s. This fact also implies that the
algorithmic approach presented in (Rakhsha et al. 2020a) is
not applicable in our case. We provide an efficient algorithm
for finding an approximate solution to (P3-ATK) with prov-
able guarantees in the full version of the paper (Banihashem
et al. 2022).

Characterization Results for Special MDPs
In this section, we consider a family of MDPs where an
agent’s actions do not influence transition dynamics, or more
precisely, all the actions influence transition probabilities in
the same way. In other words, the transition probabilities sat-
isfy P (s, a, s′) = P (s, a′, s′), for all s, a, a′, s′. We call this
family of MDPs special MDPs, in contrast to general MDPs
that are studied in the next section. Since an agent’s actions
do not influence the future, the agent can reason myopically
when deciding on its policy. Therefore, the reward designer
can also treat each state separately when reasoning about the
cost of the reward design. Importantly, the hardness result
from the previous section does not apply for this instance
of our setting, so we can efficiently solve the optimization
problems (P1-APT) and (P4-APT).

Forcing Myopic Policies

We first analyze the cost of forcing a target policy π† in
special MDPs. The following lemma plays a critical role in
our analysis.

Lemma 1. Consider a special MDP with reward function R,
and let π∗adm(s) = arg maxa∈Πadm

det
R(s, a). Then the cost of

the optimal solution to the optimization problem (P3-ATK)
with π† = π∗adm is less than or equal to the cost of the optimal
solution to the optimization problem (P3-ATK) with π† = π
for any π ∈ Πadm

det .

In other words, Lemma 1 states that in special MDPs it
is easier to force policies that are myopically optimal (i.e.,
optimize w.r.t. the immediate reward) than any other policy
in the admissible set Πadm

det . This property is important for the
optimization problem (P4-APT) since its objective includes
the cost of forcing an admissible policy.

Analysis of the Reward Design Problem

We now turn to the reward design problem (P4-APT) and
provide characterization results for its optimal solution. Be-
fore stating the result, we note that for special MDPs µπ(s)
is independent of policy π, so we denote it by µ(s).

Theorem 2. Consider a special MDP with reward function

6040

R. Define R̂(s, a) = R(s, a) for µ(s) = 0 and otherwise

R̂(s, a) =

xs + ε

µ(s) if a = π∗adm(s)

xs if a 6= π∗adm(s) ∧R(s, a) ≥ xs
R(s, a) otherwise

,

where xs is the solution to the equation∑
a 6=π∗adm(s)

[
R(s, a)− x

]+
= x−R(s, π∗adm(s)) +

ε

µ(s)
.

Then, (π∗adm, R̂) is an optimal solution to (P4-APT).
Theorem 2 provides an interpretable solution to (P4-APT):

for each state-action pair (s, a 6= π∗adm(s)) we reduce the
corresponding reward R(s, a) if it exceeds a state dependent
threshold. Likewise, we increase the rewards R(s, π∗adm(s)).

Characterization Results for General MDPs
In this section, we extend the characterization results from the
previous section to general MDPs for which transition prob-
abilities can depend on actions. In contrast to the previous
section, the computational complexity result from Theorem 1
showcase the challenge of deriving characterization results
for general MDPs that specify the form of an optimal solu-
tion. We instead focus on bounding the value of an optimal
solution to (P4-APT) relative to the score of an optimal
policy π∗. More specifically, we define the relative value Φ as

Φ =
∥∥∥R− R̂2

∥∥∥
2︸ ︷︷ ︸

cost

+λ · [ρπ
∗,R − ρπ2,R]︸ ︷︷ ︸

performance reduction

,

where (π2, R̂2) is an optimal solution to the optimization
problem (P4-APT). Intuitively, Φ expresses the optimal
value of (P4-APT) in terms of the cost of the reward design
and the agent’s performance reduction.

The characterization results in this section provide bounds
on Φ and are obtained by analyzing two specific policies: an
optimal admissible policy π∗adm ∈ arg maxπ∈Πadm

det
ρπ,R that

optimizes for performance ρ, and a min-cost policy πminc that
minimizes the cost of the reward design and is a solution to
the optimization problem (P4-APT) with λ = 0. As we show
in the next two subsections, bounding the cost of forcing π∗adm
and πminc can be used for deriving bounds on Φ. Next, we
utilize the insights of the characterization results to devise a
local search algorithm for solving the reward design problem,
whose utility we showcase using experiments.

Perspective 1: Optimal Admissible Policy
Let us consider an optimal admissible policy π∗adm ∈
arg maxπ∈Πadm

det
ρπ,R. Following the approach presented in

the previous section, we can design R̂ by (approximately)
solving the optimization problem (P3-ATK) (see Remark 1)
with the target policy π† = π∗adm. While this approach does
not yield an optimal solution for general MDPs, the cost of
its solution can be bounded by a quantity that depends on
the gap between the scores of an optimal policy π∗ and an
optimal admissible policy π∗adm.

In particular, for any policy π we can define the perfor-
mance gap as ∆π

ρ = ρπ
∗,R − ρπ,R. As we will show, the

cost of forcing policy π can be upper and lower bounded by
terms that linearly depend on ∆π

ρ . Consequently, this means
that one can also bound Φ with terms that linearly depend on
∆ρ = minπ ∆π

ρ , which is nothing else but the performance
gap of π = π∗adm. Formally, we obtain the following result.
Theorem 3. The relative value Φ is bounded by

αρ ·∆ρ ≤ Φ ≤ βρ ·∆ρ +
ε

µmin
·
√
|S| · |A|,

where αρ =
(
λ+ 1−γ

2

)
and βρ =

(
λ+ 1

µmin

)
.

Note that the bounds in the theorem can be efficiently
computed from the MDP parameters. Moreover, the reward
design approach based on forcing π∗adm yields a solution to
(P4-APT) whose value (relative to the score of π∗) satisfies
the bounds in Theorem 3. We use this approach as a baseline.

Perspective 2: Min-Cost Admissible Policy
We now take a different perspective, and compare Φ to the
cost of the reward design obtained by forcing the min-cost
policy πminc . Ideally, we would relate Φ to the the smallest
cost that the reward designer can achieve. However, this cost
is not efficiently computable (due to Theorem 1), making
such a bound uninformative.

Instead, we consider Q values: as Ma et al. (2019) showed,
the cost of forcing a policy can be upper and lower bounded
by a quantity that depends on Q values. We introduce a
similar quantity, denoted by ∆Q and defined as

∆Q = min
π∈Πadm

det

max
s∈Sπpos

(
Qπ
∗,R(s, π∗(s))−Qπ

∗,R(s, π(s))
)
,

where Sπpos = {s|µπ(s) > 0} contains the set of states
that policy π visits with strictly positive probability. In the
full version of the paper, we present an algorithm called
QGREEDY that efficiently computes ∆Q. The QGREEDY al-
gorithm also outputs a policy πqg that solves the correspond-
ing min-max optimization problem. By approximately solv-
ing the optimization problem (P3-ATK) with π† = πqg, we
can obtain reward function R̂ as a solution to the reward
design problem. We use this approach as a baseline in our
experiments, and also for deriving the bounds on Φ relative
to ∆Q provided in the following theorem.
Theorem 4. The relative value Φ is bounded by

αQ ·∆Q ≤ Φ ≤ βQ ·∆Q +
ε

µmin

√
|S| · |A|,

where αQ =
(
λ · µmin + 1−γ

2

)
and βQ =

(
λ+

√
|S|
)

.

The bounds in Theorem 4 are obtained by analyzing the
cost of forcing policy πqg and the score difference (ρπ

∗,R −
ρπqg,R). The well-known relationship between ρπ,R − ρπ′,R
andQπ,R for any two policies π, π′ (e.g., see (Schulman et al.
2015)) relates the score difference (ρπ

∗,R−ρπqg,R) toQπ
∗,R,

so the crux of the analysis lies in upper and lower bounding
the cost of forcing policy πqg. To obtain the corresponding

6041

Algorithm 1. CONSTRAIN&OPTIMIZE

Input: MDP M , admissible set Πadm
det

Output: Reward function R̂, policy πco

1: πco ← arg maxπ∈Πadm
det
ρπ,R

2: costco ← approx. solve (P3-ATK) with π† = πco

3: set Πco ← Πadm
det

4: repeat
5: outputnew ←false
6: for s in priority-queue(Sπco

pos) do
7: Π′ ← {π|π ∈ Πco ∧ π(s) 6= πco(s)}
8: π′ ← arg maxπ∈Π′ ρ

π,R

9: cost′ ← approx. solve (P3-ATK) with π† = π′

10: if cost′ − λρπ′,R < costco − λρπco,R then
11: set πco ← π′, costco ← cost′, and Πco ← Π′

12: set outputnew ←true and break
13: end if
14: end for
15: until outputnew = false
16: R̂← approx. solve (P3-ATK) with π† = πco

bounds, we utilize similar proof techniques to those presented
in (Ma et al. 2019) (see Theorem 2 in their paper). Since the
analysis focuses on πqg, the approach based on forcing πqg
outputs a solution to (P4-APT) whose value (relative to the
score of π∗) satisfies the bounds in Theorem 4.

Practical Algorithm: CONSTRAIN&OPTIMIZE
In the previous two subsections, we discussed characteri-
zation results for the relative value Φ by considering two
specific cases: optimizing performance and minimizing cost.
We now utilize the insights from the previous two subsections
to derive a practical algorithm for solving (P4-APT). The
algorithm is depicted in Algorithm 1, and it searches for a
well performing policy with a small cost of forcing it.

The main blocks of the algorithm are as follows:
• Initialization (lines 1-2). The algorithm selects π∗adm as

its initial solution, i.e., πco = π∗adm, and evaluates its cost
by approximately solving (P3-ATK).

• Local search (lines 4-15). Since the initial policy πco is
not necessarily cost effective, the algorithm proceeds with
a local search in order to find a policy that has a lower
value of the objective of (P4-APT). In each iteration of
the local search procedure, it iterates over all states that are
visited by the current πco (i.e., Sπco

pos), prioritizing those that

have a higher value ofQπ
∗,R(s, π∗(s))−Qπ∗,R(s, πco(s))

(obtained via priority-queue). The intuition behind this
prioritization is that this Q value difference is reflective
of the cost of forcing action πco(s) (as can be seen by
setting λ = 0 in the upper bound of Theorem 4). Hence,
deviations from πco that are considered first are deviations
from those actions that are expected to induce high cost.

• Evaluating a neighbor solution (lines 7-12). Each vis-
ited state s defines a neighbor solution in the local search.
To find this neighbor, the algorithm first defines a new ad-
missible set of policies Π′ (line 7), obtained from the cur-

rent one by making action πco(s) inadmissible. The neigh-
bor solution is then identified as π′ ∈ arg maxπ∈Π′ ρ

π,R

(line 8) and the costs of forcing it is calculated by approx-
imately solving (P3-ATK) with π† = π′ (line 9). If π′
yields a better value of the objective of (P4-APT) than πco
does (line 10), we have a new candidate policy and the set
of admissible policies is updated to Π′ (lines 11-12).

• Returning solution (line 16). Once the local search fin-
ishes, the algorithm outputs πco and the reward function R̂
found by approximately solving (P3-ATK) with π† = πco.
In each iteration of the local search (lines 5-14), the al-

gorithm either finds a new candidate (outputnew=true) or the
search finishes with that iteration (outputnew=false). Notice
that the former cannot go indefinitely since the admissible set
reduces between two iterations. This means that the algorithm
is guaranteed to halt. Since the local search only accepts new
policy candidates if they are better than the current πco (line
10), the output of CONSTRAIN&OPTIMIZE is guaranteed
to be better than forcing an optimal admissible policy (i.e.,
approx. solving (P3-ATK) with π† = π∗adm).

Numerical Simulations
We analyze the efficacy of CONSTRAIN&OPTIMIZE in solv-
ing the optimization problem (P4-APT) and the policy it
incentivizes, πco. We consider three baselines, all based on
approximately solving the optimization problem (P3-ATK),
but with different target policies π†: a) forcing an optimal
policy, i.e., π† = π∗, b) forcing an optimal admissible pol-
icy, i.e., π† = π∗adm, c) forcing the policy obtained by the
QGREEDY algorithm, i.e., π† = πqg.4 We compare these ap-
proaches by measuring their performance w.r.t. the objective
value of (P4-APT)—lower value is better. By default, we set
the parameters γ = 0.9, λ = 1.0 and ε = 0.1.5

Experimental Testbeds
As an experimental testbed, we consider three simple navi-
gation environments, shown in Figure 2. Each environment
contains a start state S and goal state(s) G. Unless otherwise
specified, in a non-goal state, the agent can navigate in the
left, right, down, and up directions, provided there is a state
in that direction. In goal states, the agent has a single action
which transports it back to the start state.

Cliff environment (Figure 2a). This environment depicts
a scenario where some of the states are potentially unsafe
due to model uncertainty that the reward designer is aware
of. More concretely, the states with “red” cell boundaries in
Figure 2a represent the edges of a cliff and are unsafe; as such,
all actions leading to these states are considered inadmissible.
In this environment, the action in the goal state yields a
rewardR of 20 while all other actions yield a rewardR of−1.

Action hacking environment (Figure 2b). This environ-
ment depicts a scenario when some of the agent’s actions
could be hacked at the deployment phase, taking the agent

4π∗ might not be admissible; also, even though π∗ is an optimal
policy, there is still a cost of forcing it to create the required gap.

5For details regarding the experiments and code, please refer to
the full version of our paper (Banihashem et al. 2022).

6042

S G

(a) Cliff environment

G3 S G2

G1 G2

20%

80%

(b) Action hacking environment

M

S

G G

(c) Grass and mud environment

Figure 2. Qualitative assessment: (a) πco is the same as π∗adm, taking the longer path to the goal state than π∗ in order to avoid the
cliff edge, while πqg simply alternates between the starting state and the state below it; (b) πco takes the path to the goal state
G3—this behavior is less costly to incentivize than navigating to G2 since in the former case the reward designer mainly needs to
compensate for the difference in rewards between G3 and G2 (G1 is reachable only 20% of the time from S); (c) π∗ takes a path
through the grass states, π∗adm takes a different but admissible path towards the same goal, while πco navigates the agent towards
the other goal (with a lower cumulative reward, but the corresponding policy is less costly to force). Quantitative assessment:
The objective values of (P4-APT) for the approaches based on forcing π∗, π∗adm, πqg, and πco are respectively: (a) 0.27, 1.59,
3.93, and 1.59; (b) −2.04, 14.96, 5.00, and 3.82; and (c) −9.54, 9.46, 17.26, and 7.92.

0 0.2 0.4 0.6 0.8 1
ε

0

4

8

12

16

O
bj

ec
tiv

e

π∗ π∗adm πqg πco

(a) Cliff

0 0.2 0.4 0.6 0.8 1
ε

0

5

10

15

20

25

O
bj

ec
tiv

e

π∗ π∗adm πqg πco

(b) Action hacking

0 0.2 0.4 0.6 0.8 1
ε

-10

-4

2

8

14

20

O
bj

ec
tiv

e

π∗ π∗adm πqg πco

(c) Grass and mud

0 2 4 6 8 10
λ

-7

-2

3

8

13

O
bj

ec
tiv

e

π∗ π∗adm πqg πco

(d) Cliff

0 2 4 6 8 10
λ

-21

-14

-7

0

7

14

O
bj

ec
tiv

e

π∗ π∗adm πqg πco

(e) Action hacking

0 2 4 6 8 10
λ

-100

-70

-40

-10

20

O
bj

ec
tiv

e
π∗ π∗adm πqg πco

(f) Grass and mud

Figure 3. Effect of λ and ε on the objective value of (P4-APT) for different approaches. (a, b, c) vary ε with λ = 1.0; (d, e, f)
vary λ with ε = 0.1. Lower values on the y-axis denote better performance. Note that π∗ is not an admissible policy in these
environments; importantly, the objective value for πco is consistently better (lower) than for π∗adm and πqg, highlighting its efficacy.

to a bad state. The reward designer is aware of this potential
hacking and seeks to design a reward function so that these
actions are inadmissible. More concretely, the action leading
the agent to G1 is considered inadmissible. In this environ-
ment, we consider the reward function R and dynamics P
as follows. Whenever an agent reaches any of the goal states
(G1, G2, or G3), it has a single action that transports it back
to the starting state and yields a reward of 50, 10, and 5 for
G1, G2, and G3 respectively. In all other states, the agent
can take either the left or right action and navigate in the

corresponding direction, receiving a reward of −1. With a
small probability of 0.20, taking the right action in the state
next to S results in the agent moving up instead of right.

Grass and mud environment (Figure 2c). This en-
vironment depicts a policy teaching scenario where the
reward designer and the agent do not have perfectly aligned
preferences (e.g., the agent prefers to walk on grass, which
the reward designer wants to preserve). The reward designer
wants to incentivize the agent not to step on the grass states,
so actions leading to them are considered inadmissible.

6043

In addition to the starting state and two goal states, the
environment contains four grass states, one mud state, and
16 ordinary states, shown by “light green”, “light pink”, and
“light gray” cells respectively. The “black” cells in the figure
represent inaccessible blocks. The reward function R is as
follows: the action in the goal states yields a reward of 50;
the actions in the grass and mud states yield rewards of 10
and −2 respectively; all other actions have a reward of −1.

Results

Figure 2 provides an assessment of different approaches by
visualizing the agent’s policies obtained from the designed
reward functions R̂. For these results, we set the parameters
λ = 1.0 and ε = 0.1. In order to better understand the effect
of the parameters λ and ε, we vary these parameters and solve
(P4-APT) with the considered approaches. The results are
shown in Figure 3 for each environment separately. We make
the following observations based on the experiments. First,
the approaches based on forcing π∗ and π∗adm benefit more
from increasing λ. This is expected as these two policies have
the highest scores under R; the scores of πqg and πco is less
than or equal to the score of π∗adm. Second, the approaches
based on forcing πqg and πco are less susceptible to increasing
ε. This effect is less obvious, and we attribute it to the fact
that QGREEDY and CONSTRAIN&OPTIMIZE output πqg and
πco respectively by accounting for the cost of forcing these
policies. Since this cost clearly increases with ε—intuitively,
forcing a larger optimality gap in (P3-ATK) requires larger
reward modifications—we can expect that increasing ε dete-
riorates more the approaches based on forcing π∗ and π∗adm.
Third, the objective value of (P4-APT) is consistently bet-
ter (lower) for πco than for π∗adm and πqg, highlighting the
relevance of CONSTRAIN&OPTIMIZE.

Conclusion

The characterization results in this paper showcase the com-
putational challenges of optimal reward design for admissible
policy teaching. In particular, we showed that it is compu-
tationally challenging to find minimal reward perturbations
that would incentivize an optimal agent into adopting a well-
performing admissible policy. To address this challenge, we
derived a local search algorithm that outperforms baselines
which either account for only the agent’s performance or for
only the cost of the reward design. On the flip side, this algo-
rithm is only applicable to tabular settings, so one of the most
interesting research directions for future work would be to
consider its extensions based on function approximation. In
turn, this would also make the optimization framework of this
paper more applicable to practical applications of interest,
such as those related to safe and secure RL.

Acknowledgments

Jiarui Gan was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 945719).

References
Amir, O.; Kamar, E.; Kolobov, A.; and Grosz, B. 2016. In-
teractive teaching strategies for agent training. In IJCAI,
804–811.
Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schul-
man, J.; and Mané, D. 2016. Concrete problems in AI safety.
CoRR, abs/1606.06565.
Banihashem, K.; Singla, A.; Gan, J.; and Radanovic, G. 2022.
Admissible Policy Teaching through Reward Design. CoRR,
abs/2201.02185.
Banihashem, K.; Singla, A.; and Radanovic, G. 2021. De-
fense Against Reward Poisoning Attacks in Reinforcement
Learning. CoRR, abs/2102.05776.
Bellemare, M.; Srinivasan, S.; Ostrovski, G.; Schaul, T.; Sax-
ton, D.; and Munos, R. 2016. Unifying count-based explo-
ration and intrinsic motivation. NeurIPS, 29: 1471–1479.
Devlin, S. M.; and Kudenko, D. 2012. Dynamic potential-
based reward shaping. In AAMAS, 433–440.
Dimitrakakis, C.; Parkes, D. C.; Radanovic, G.; and Tylkin,
P. 2017. Multi-View Decision Processes: The Helper-AI
Problem. In NeurIPS, 5443–5452.
Dorigo, M.; and Colombetti, M. 1994. Robot shaping: De-
veloping autonomous agents through learning. Artificial
intelligence, 71(2): 321–370.
Fischer, M.; Mirman, M.; Stalder, S.; and Vechev, M. 2019.
Online robustness training for deep reinforcement learning.
CoRR, abs/1911.00887.
Garey, M. R.; and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman.
Grześ, M. 2017. Reward Shaping in Episodic Reinforcement
Learning. In AAMAS, 565–573.
Hadfield-Menell, D.; Milli, S.; Abbeel, P.; Russell, S.; and
Dragan, A. D. 2017. Inverse reward design. In NeurIPS,
6768–6777.
Huang, Y.; and Zhu, Q. 2019. Deceptive Reinforcement
Learning Under Adversarial Manipulations on Cost Signals.
In GameSec, 217–237.
Karp, R. M. 1972. Reducibility among combinatorial prob-
lems. In Complexity of computer computations, 85–103.
Springer.
Lykouris, T.; Simchowitz, M.; Slivkins, A.; and Sun, W.
2019. Corruption robust exploration in episodic reinforce-
ment learning. CoRR, abs/1911.08689.
Ma, Y.; Zhang, X.; Sun, W.; and Zhu, J. 2019. Policy poison-
ing in batch reinforcement learning and control. In NeurIPS,
14543–14553.
Mataric, M. J. 1994. Reward functions for accelerated learn-
ing. In ICML, 181–189.
Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invariance
under reward transformations: Theory and application to
reward shaping. In ICML, 278–287.
Nikolaidis, S.; Nath, S.; Procaccia, A. D.; and Srinivasa, S.
2017. Game-theoretic modeling of human adaptation in
human-robot collaboration. In HRI, 323–331.

6044

Omidshafiei, S.; Kim, D.-K.; Liu, M.; Tesauro, G.; Riemer,
M.; Amato, C.; Campbell, M.; and How, J. P. 2019. Learning
to teach in cooperative multiagent reinforcement learning. In
AAAI, 6128–6136.
Pinto, L.; Davidson, J.; Sukthankar, R.; and Gupta, A. 2017.
Robust adversarial reinforcement learning. In ICML, 2817–
2826.
Radanovic, G.; Devidze, R.; Parkes, D.; and Singla, A. 2019.
Learning to collaborate in markov decision processes. In
ICML, 5261–5270.
Rakhsha, A.; Radanovic, G.; Devidze, R.; Zhu, X.; and
Singla, A. 2020a. Policy Teaching in Reinforcement Learning
via Environment Poisoning Attacks. CoRR, abs/2011.10824.
Rakhsha, A.; Radanovic, G.; Devidze, R.; Zhu, X.; and
Singla, A. 2020b. Policy Teaching via Environment Poi-
soning: Training-time Adversarial Attacks against Reinforce-
ment Learning. In ICML, 7974–7984.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust region policy optimization. In ICML, 1889–
1897.
Singh, S.; Lewis, R. L.; and Barto, A. G. 2009. Where
do rewards come from. In the Annual Conference of the
Cognitive Science Society, 2601–2606.
Sorg, J.; Lewis, R. L.; and Singh, S. 2010. Reward design
via online gradient ascent. NeurIPS, 2190–2198.
Sorg, J.; Singh, S.; and Lewis, R. 2010. Internal rewards
mitigate agent boundedness. In ICML, 1007–1014.
Sun, Y.; Huo, D.; and Huang, F. 2021. Vulnerability-Aware
Poisoning Mechanism for Online RL with Unknown Dynam-
ics. In ICLR.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning:
An introduction. MIT press.
Tessler, C.; Mankowitz, D. J.; and Mannor, S. 2018. Reward
Constrained Policy Optimization. In ICLR.
Tylkin, P.; Radanovic, G.; and Parkes, D. C. 2021. Learn-
ing robust helpful behaviors in two-player cooperative Atari
environments. In AAMAS, 1686–1688.
Yu, T.; Thomas, G.; Yu, L.; Ermon, S.; Zou, J. Y.; Levine,
S.; Finn, C.; and Ma, T. 2020. MOPO: Model-based Offline
Policy Optimization. In NeurIPS, 14129–14142.
Zhang, H.; Chen, H.; Boning, D.; and Hsieh, C.-J. 2021a.
Robust reinforcement learning on state observations with
learned optimal adversary. CoRR, abs/2101.08452.
Zhang, H.; Chen, H.; Xiao, C.; Li, B.; Boning, D.; and
Hsieh, C.-J. 2020a. Robust deep reinforcement learning
against adversarial perturbations on observations. CoRR,
abs/2003.08938.
Zhang, H.; and Parkes, D. C. 2008. Value-Based Policy
Teaching with Active Indirect Elicitation. In AAAI, 208–214.
Zhang, H.; Parkes, D. C.; and Chen, Y. 2009. Policy teaching
through reward function learning. In EC, 295–304.
Zhang, X.; Chen, Y.; Zhu, X.; and Sun, W. 2021b. Ro-
bust policy gradient against strong data corruption. CoRR,
abs/2102.05800.

Zhang, X.; Ma, Y.; Singla, A.; and Zhu, X. 2020b. Adaptive
Reward-Poisoning Attacks against Reinforcement Learning.
In ICML, 11225–11234.
Zou, H.; Ren, T.; Yan, D.; Su, H.; and Zhu, J. 2019. Reward
shaping via meta-learning. CoRR, abs/1901.09330.

6045

