The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Beyond GNNs: An Efficient Architecture for Graph Problems

Pranjal Awasthi,' Abhimanyu Das, ! Sreenivas Gollapudi !

! Google Research
pranjalawasthi @ google.com, abhidas @ google.com, sgollapu @ google.com

Abstract

Despite their popularity for graph structured data, existing
Graph Neural Networks (GNNs) have inherent limitations
for fundamental graph problems such as shortest paths, k-
connectivity, minimum spanning tree and minimum cuts. In
these instances, it is known that one needs GNNs of high
depth, scaling at a polynomial rate with the number of nodes
n, to provably encode the solution space, in turn affecting their
statistical efficiency. In this work we propose a new hybrid
architecture to overcome this limitation. Our proposed archi-
tecture that we call as GNN™ networks involve a combination
of multiple parallel low depth GNNs along with simple pool-
ing layers involving low depth fully connected networks. We
provably demonstrate that for many graph problems, the so-
lution space can be encoded by GNN™ networks using depth
that scales only poly-logarithmically in the number of nodes.
This also has statistical advantages that we demonstrate via
generalization bounds for GNN™ networks. We empirically
show the effectiveness of our proposed architecture for a vari-
ety of graph problems and real world classification problems.

Introduction

In recent years Graph Neural Networks (GNNs) have become
a popular choice for learning problems over graph structured
data (Hamilton, Ying, and Leskovec 2017; Kipf and Welling
2016; Velickovic et al. 2017). Computation in GNNs is per-
formed by each node sending and receiving messages along
the edges of the graph, and aggregating messages from its
neighbors to update its embedding vector. After a few rounds
of message passing, the computed node embeddings from all
the nodes are aggregated to compute the final output (Gilmer
et al. 2017). This leads to a simple and elegant architecture
for learning functions on graphs. On the other hand, from a
theoretical and practical perspective, we also need these ar-
chitectures to be sample efficient, i.e., learnable from a small
number of training examples, where each training example
corresponds to a graph. Recent works have shown that gener-
alization in GNNs depends upon the depth of the architecture,
i.e., the number of rounds of message passing, as well as the
embedding size for each node in the graph (Garg, Jegelka, and
Jaakkola 2020). However, this requirement is in fundamental
conflict with the message passing framework. In particular,

Copyright (© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

6019

using GNNs to compute several fundamental graph problems
such as shortest paths, minimum spanning tree, min cut etc.,
necessarily requires the product of the depth of the GNN and
the embedding size to scale as \/n where n is the size of
the graph (Loukas 2020b). This in turn places a significant
statistical burden when learning these fundamental problems
on large scale graphs. A natural question then is whether
graph neural networks have any advantage over combinato-
rial algorithms for the above “simple” graph problems that
lie in the complexity class P, i.e., they admit polynomial time
algorithms. As has been observed in practice (Velickovic et al.
2017), and we will demonstrate via experiments in Section ,
graph neural network based approaches can often signifi-
cantly outperform combinatorial algorithms. In light of the
above we ask the the following: Can one develop sample effi-
cient neural network architectures for graph problems while
retaining the simplicity of the message passing framework?

Recent works have addressed the above question empiri-
cally by proposing extensions to GNN by augmenting vari-
ous pooling operations in conjunction with message pass-
ing rounds to capture more global structure (Ying et al.
2018; Simonovsky and Komodakis 2017; Fey et al. 2018). In
this work we propose a theoretically principled architecture,
called GNN™ networks for learning graph problems. Specifi-
cally, we borrow from two fundamental paradigms in graph
algorithm design namely, sketching and parallel computa-
tion, to design the proposed networks and show that these
paradigms admit a neural architecture that simultaneously
achieves low depth and low embedding size for many graph
problems. Before we present our improved architecture, we
briefly describe the standard GNN framework.

Model for GNNs. In this work we will study GNNs that
fall within the message passing framework, and using no-
tation from previous works we denote such networks as
GNN™ (Loukas 2020b). A GNN™ network operates in
the AGGREGATE and COMBINE model (Gilmer et al.
2017) that captures many popular variants such as Graph-
SAGE, Graph Convolutional Networks (GCNs) and GIN
networks (Hamilton, Ying, and Leskovec 2017; Kipf and
Welling 2016; Xu et al. 2019a). Given a graph G = (V, E),

let xgk) € R? denote the feature representation of node i

at layer k. We will refer to d as the embedding size of the

MLP, | e MLP,
GNN, GNN, — GNN,

Figure 1: The basic GNN™ block.

network. Then we have
a{" " = AGGREGATE({z* "V : j e N(1)}) (1)
2% = COMBINE(z{¥ 1 o*~1)).)

Here N (%) is the set of neighbors for node i. Typically the
aggregation and combination is performed via simple one or
two layer full connected networks, also known as multi layer
perceptrons (MLPs).

GNNT Networks. Our proposed GNN™ networks consist
of one or more layers of a GNN™ block shown in Figure 1.
The GNN™ block comprises of 7 parallel GNN™ networks
follows by s parallel fully connected network modules for
pooling where r and s are the hyperparameters of the archi-
tecture. More importantly we restrict the r GNN™ modules
to share the same set of weights. Hence the parallel GNN™
modules only differ in the way the node embeddings are
initialized. Furthermore, we restrict each GNN™ to be of
low depth. In particular, for graphs over n nodes of maxi-
mum degree d and diameter D, we will restrict the GNN™
to be of depth O(D - polylog(n)) and use an embedding
size of O(d - polylog(n))'. Similarly, we require the s fully
connected networks to be of depth O(D - polylog(n)) and
share the network weights. Hence, they only differ in the
inputs that they receive from the GNN™ modules in lower
layers. We connect the outputs of the GNN™ modules to
the fully connected pooling networks in a sparse manner and
restrict the input size of each fully connected network to be
O((d + D) - polylog(n)). Stacking up L layers of GNN™
blocks results in a GNNT network that is highly parameter
efficient and in total has O((d + D)L - polylog(n)) parame-
ters. For such a network we call the depth as the total number
of message passing rounds and the number of MLP layers
used across all the L stacks. Since we restrict our MLPs and
GNN™ blocks inside a GNNT network to be of low depth,
we will often abuse notation and refer to a GNN™ architec-
ture with L stacks of GNN™ blocks as a depth L architecture.
Our proposed design lets us alternate between local compu-
tations involving multiple parallel GNN blocks and global
post-processing stages, while still being sample efficient due
to the enforced parameter sharing. We will show that optimal
or near-optimal solutions to many popular graph problems
can indeed be computed via a GNN™ architecture. Below we
briefly summarize our main results.

Overview of Results. To demonstrate the generality of our
proposed architecture we study several fundamental graph

'When measuring the embedding size we will assume that each
dimension can hold up to O(log n) bits.

6020

problems and show how to construct efficient GNN™ net-
works to compute optimal or near optimal solutions to these
problems. We will focus on degree-d graphs, i.e., graphs of
maximum node degree d, with n nodes and diameter D and
will construct GNN T networks of depth O(D - polylog(n))

and O((D + d)polylog(n)) total parameters.

Shortest Paths. We consider the fundamental graph prob-
lem of computing (approximate) all pairs shortest paths in
undirected graphs. Given a graph G = (V, E), let dg(u, v)
be the shortest path between nodes © and v. We say that an
output {d¢ (u,v) : u,v € V'} is an a-approximate solution if
for all u # v it holds that dg (u, v) < dg(u,v) < adg(u,v).
We construct efficient GNNT networks for all pairs shortest
paths with the following guarantee.

Theorem 1. For any integer ¢ > 3, there is a depth
O(Dlogd + logn) GNN" network with O((n%l +d) -
polylog(n)) parameters that computes c-approximate all
pairs shortest paths in undirected unweighted graphs of di-
ameter D with n nodes and maximum degree d. On the other
hand, using GNN™ networks to compute a c-approximate
all pairs shortest paths, even on constant degree graphs with
O(logn) diameter, requires either the depth or the embed-
ding size to be Q(5).-

We will show how the above result implies that GNNT has
a provable sample-efficiency advantage over GNN™ once
the approximation factor ¢ exceeds three. As we will see
later (in Theorem 5), generalization bounds for GNN™ and
GNN' scale with the product of the depth and the number
of parameters. Furthermore, in all popularly used GNN™
networks the number of parameters scale with the embedding
size. The above result shows that the depth x embedding
size required for GNN™ is large(linear in n). On the other
hand, for real world graphs that follow power law distribu-
tions (Cohen and Havlin 2003), we will have D scaling as
O(logn) and d scaling as n¢ for some € € (0, 1). Hence for
GNN™, the product of the depth and the number of parame-
ters will typically scale sub-linearly in n, and we achieve a
polynomial advantage over standard GNN™ networks. Fur-
thermore, if the maximum degree grows only polylogarithmic
in n, say as in random graphs, then we achieve an exponential
improvement over GNN™ networks.

Note that for ¢ < 3 lower bounds exist that rule out any
sublinear sized embedding (hence networks with small em-
bedding size) to approximate shortest paths (Matousek 1996).
The regime of ¢ > 3 is of practical interest as well. In prac-
tice, computing exact shortest paths becomes impractical for
large scale graphs and often combinatorial algorithms for
computing c-approximate shortest paths are used. The larger
the ¢, the faster these algorithms can answer shortest path
queries. Empirical results show that choosing c to be a large
constant works well in many settings (Das Sarma et al. 2010).
Distance Oracles, which are efficient data structures that pre-
process the graph and store short sketches for each node, are
used in practice to answer approximate shortest path queries
in real time. The larger the sketch size the better the quality
of approximation (Thorup and Zwick 2005; Das Sarma et al.

2010). An important consequence of the theorem above is
that the the node embeddings produced by GNN™ network
in Figure 2 can also serve as sketches, where the sketch size
will correspond to the embedding size used in the network. In
other words the output of the GNN™ network can be viewed
as a distance oracle too. It is natural to then ask whether
in practice GNN™ based sketches can outperform combina-
torial algorithms. In Section we present empirical results
showing that a GNN™ network trained with sketch size of
[log n], significantly outperforms the state-of-the-art combi-
natorial algorithm of Das Sarma et al. (2010), even when the
combinatorial algorithm can use a sketch size of 8[logn].

Connectivity Measures. We consider various graph con-
nectivity measures. We first study the popular measure based
on graph effective resistances (Chandra et al. 1996).

Definition 1 (Effective Resistance). Let G be a weighted
undirected graph G with adjacency matrix A and the associ-
ated Laplacian L = D — A. Given an edge u, v, the effective
resistance between u, v is defined as

Ru,v = flq;LTgu,v-

Here &, is an n dimensional vector with +1 at position

u, —1 at position v and zeros everywhere. LT refers to the
matrix pseudo-inverse.

We also study the following connectivity measure that was
proposed by Panigrahy, Najork, and Xie (2012) in the context
of web graphs. Given an undirected graph G, let G, be the
random graph obtained by sampling each edge independently
with probability p.

Definition 2 (Affinity). For any two vertices u,v, and for
p € [0, 1], define A, (u, v) to be the probability that u, v are
connected in G,. Then the affinity between u and v is defined
as

Alu,0) = B[4, (u,v)

where the expectation is taken over p drawn from the uniform
distribution in [0, 1].

For the above two measures we show the following

Theorem 2. There exists a GNNT architecture of depth
O(Dlog(nd)) and O(Dlog(nd)) parameters, that on
graphs of diameter D with n nodes and maximum degree d,
approximates the above connectivity measures up to constant
factors. On the other hand, using GNN™ networks to com-
pute the above measures, even approximately on constant
degree O(logn) diameter graphs, necessarily requires either

the depth or the embedding size Q(v/n).

Clustering, Minimum Cuts and Minimum Spanning
Trees. We showcase the power of a GNN™ architecture
for computing other fundamental graph problems. Given an
undirected graph G, the spectral clustering of G corresponds
to the cut obtained by taking the sign of the eigenvector v cor-
responding to the second smallest eigenvalue Ao (L), where L
is the graph Laplacian. For computing the spectral clustering
via GNN™T networks we show the following

Theorem 3. There is a GNN' network of depth

O(W logn) and O(d) parameters, that computes an

6021

e-approximate spectral clustering on graphs of diameter D
with n nodes and maximum degree d. On the other hand,
using GNN™ networks to even approximately compute the
clustering on constant degree O(logn) diameter graphs re-

quires either the depth or the embedding size to be Q)(\/n).

The theorem above has an inverse dependence on the sec-
ond smallest eigenvalue of the graph Laplacian, i.e, A\o(L).
In worst case scenarios As(L) could be very small thereby
leading to no advantage of GNN™' over GNN™ networks.
However, once \o(L) > — GNN™ outperforms vanill

\/ﬁ s
GNN™ networks. Next we consider the problems of comput-
ing a global minimum cut and minimum spanning trees in
undirected graphs.

Theorem 4. There exist GNN™ networks of of depth O((D +
logn)logn) and O(d) parameters for computing a global
minimum cut (MINCUT) and minimum spanning tree (MST)
on graphs of diameter D with n nodes and maximum degree d.
Furthermore, using GNN" networks to compute these prim-
itives (even approximately) on a constant degree O(logn)
diameter graphs necessarily requires either the depth or the
width to be Q)(\/n).

As in the case with Theorem 1, the results in Theorems 2, 3
and 4 all imply that GNN™ has a provable sample-efficiency
advantage over GNN™ in most real world settings where D
scales as O(log n) and d scales sub-linearly in n.

Generalization Bounds. Our final result concerns the gen-
eralization properties of a depth L GNN™ architecture. For
ease of exposition, we state here the results for the case
when the GNN™ architecture produces a one dimensional out-
put. More general results are presented in the Appendix.Our
generalization bounds depend on the depth L and the total
number of parameters P in the GNN™ network. Following
recent work on providing generalization bounds for fully con-
nected and convolutional neural networks (Bartlett, Foster,
and Telgarsky 2017; Long and Sedghi 2020) that are based on
distance to initialization, we consider the class F3 of depth
L GNN™ networks with P parameters that are at a distance
B from a reference parameter configuration (typically the
parameters at random initialization). Let y € R denote the
output of the network and consider a Lipschitz loss function
£(y, 9). Then, we provide following guarantee.

Theorem 5 (Informal Theorem). Let {(3,y) be a Lipschitz
loss function bounded in |0, B). Then, given m i.i.d. samples
(G1,11), (Ga2,92), - .. (G, ym) generated from a distribu-
tion D, with probability at least 2/3, it holds that for all

fefﬂ,

Here Ep [¢] refers to the empirical loss on the training
set, and Ep [¢ ¢ refers to the expected loss over the data dis-
tribution. Notice that the above theorem implies that our
proposed GNN architecture for the above graph problems
can indeed be trained using very few samples as opposed to
the traditional GNN™ networks since the GNN™ network re-
quires much fewer parameters and depth. Furthermore, since

P(B+L)

Epley] —EDwf]’ < O(B -

a GNN™ network is a special case of a GNN architecture,
our analysis also leads to an improved bound on the general-
ization guarantees for GNN™ networks as well. In particular,
the above theorem improves upon the recent work of Garg,
Jegelka, and Jaakkola (2020) that provides generalization
guarantees for training GNNs that scale with the branching
factor (degree d) of the graph. We are able to remove this
dependence on the branching factor.

Related Work

GNNs operate primarily in the message passing framework
where nodes aggregate and combine messages from their
neighbors. Several variants of this basic paradigm have been
proposed, each differing in how the aggregation and combi-
nation is performed. Popular variants include GraphSAGE
(Hamilton, Ying, and Leskovec 2017), Graph Convolutions
Networks (Kipf and Welling 2016), GIN networks (Xu et al.
2019a), and graph pooling (Ying et al. 2018).

Recent works have also studied the representation power
of GNNs. The work of Xu et al. (2019a) demonstrates that
GNNss as considered in Eq. 1 are as powerful as the Weisfeiler-
Lehman test for graph isomorphism (Weisfeiler and Lehman
1968). Recent works Loukas (2020a); Chen et al. (2020)
study what properties of GNNs affect their ability to distin-
guish among certain classes of graphs. The work of Xu et al.
(2019b) studies the power of the message passing framework
of GNNss in representing computations involving dynamic
programming. GNN networks that can capture higher order
variants of the WL test have also been proposed recently
(Maron et al. 2019). Several works have also explored the
limitations of GNNs for computing graph primitives. The
work of Loukas (2020b) established a correspondence be-
tween the message passing GNN framework and the well
studied CONGEST model of distributed computing (Peleg
2000). Based on the above correspondence it follows that in
order to represent several important graph problems such as
shortest paths, minimum cuts and minimum spanning tree,
either the depth of the GNN or the embedding size of the
nodes has to scale with the graph size at a polynomial rate.
Notice that these lower bounds apply to any form of message
passing framework and as a result recent works in incorpo-
rating non-symmetric node messages (Sato, Yamada, and
Kashima 2019) in GNNSs also run into the same barriers.

In order to address the above limitations recent works
have proposed combining the GNN architecture with pooling
mechanisms for aggregating more global information (Ying
et al. 2018; Defferrard, Bresson, and Vandergheynst 2016;
Simonovsky and Komodakis 2017; Fey et al. 2018; Bianchi,
Grattarola, and Alippi 2019; Du et al. 2019; Mesquita, Souza,
and Kaski 2020). For example the work of Ying et al. (2018)
proposes a hierarchical approach where a GNN network is
followed by a clustering step to compute higher level “nodes”
to be used in the subsequent GNN operation. While these
approaches show empirical promise, ours is the first work
to design a principled architecture with theoretical guaran-
tees that merges local distributed computations with global
post-processing steps. The recent work of You, Ying, and
Leskovec (2020) performs an empirical study of how dif-
ferent parameters such as the depth and the embedding size

6022

affect the performance of GNNs and how to identify a good
tradeoff for a specific task at hand.

Finally, the question of generalization for GNNs has also
been studied in recent works (Garg, Jegelka, and Jaakkola
2020; Zhang et al. 2020; Du et al. 2019). The most rele-
vant to us is the recent work of Garg, Jegelka, and Jaakkola
(2020) that analyzes the Rademacher complexity of GNNs
with the aggregate mechanism being a simple addition and
the combine mechanism being a one layer neural network.
Via analyzing the Rademacher complexity the authors show
that the generalization for GNNs depends on the depth, the
embedding size and the branching factor (max degree) of
the graph. Our improved analysis in Section ?? extends the
result of Garg, Jegelka, and Jaakkola (2020). Not only does
our generalization bound apply to the more general GNN™
networks, for the case of GNNs considered in (Garg, Jegelka,
and Jaakkola 2020) our analysis shows that the dependence
on the branching factor can be eliminated in the generaliza-
tion bounds. Generalization bounds have also been proved
recently for GNN based networks that use the Neural Tangent
Kernel (NTK) during the aggregation and combination op-
erations (Du et al. 2019). There is also a recent line of work
that applies GNNs for tasks such as program analysis and
software checking (Allamanis, Brockschmidt, and Khademi
2017, Dinella et al. 2020; Bieber et al. 2020).

Shortest Paths

We provide a proof sketch of Theorem 1 showing how to
construct an efficient GNN™ architecture for the Shortest
Paths problem. In particular we study all pairs shortest paths.
All Pairs Shortest Paths. The input is a graph G = (V, E)
with n nodes. The desired output is an (g) dimensional vec-
tor containing (approximate) shortest path values between
each pair of vertices. Given a graph G, let dg(u,v) be the
shortest path between nodes u and v. We say that an output
{dg(u,v) : u,v € V'} is an a-approximate solution if for all
u # v it holds that

de(u,v) < Jg(u,v) < adg(u,v).

We first show that the GNN™ networks are highly inefficient
for learning this problem.

Theorem 6. Consider a GNN" network N of depth L over
n nodes where each node has a representation size of B. If
N encodes a(n)-approximate all pairs shortest paths for
graphs of constant degree and diameter bounded by O(logn)
then it must hold that B-L > (W”logn) The lower bound
holds for undirected unweighted graphs as well.

Proof. The recent work of Loukas (2020b) established that
computation in GNN™ networks is equivalent to the CON-
GEST model of computation in the design of distributed
algorithms (Peleg 2000). In particular, a lower bound on the
product of depth (L) and representation size (B) can be ob-
tained by establishing the corresponding lower bound on the
product of the number of rounds and the size of messages in
the CONGEST model of computing. Furthermore, the result
of Nanongkai (2014) shows that for any «(n)-approximation,
even on undirected graphs, the product of the number of the

number of rounds and the message size must be (m) .

Hence the corresponding lower bound on B - L follows. [

Circumventing Lower Bounds via GNN'. Next we de-
tail our proposed GNN™ architecture that can encode ap-
proximate shortest paths with significantly smaller depth and
embedding size.

Unweighted Graphs. To illustrate the main ideas we study
the case of undirected unweighted graphs. See the Appendix
for the more general case of weighted graphs. The starting
point of our construction is the following fundamental theo-
rem of Bourgain (1985) regarding metric embeddings.

Theorem 7 ((Bourgain 1985)). Any n-point metric (X, d)
can be embedded into the Euclidean metric of dimensionality
O(logn) and distortion O(logn).

The above theorem suggests that in principle, if we only
want to estimate shortest paths up to an approximation
of O(logn), then we only need node embeddings of size
O(logn). If there were a GNN™ network that could pro-
duce such embeddings, then one could simply compute the
Euclidean distance between each pair of points to get the
approximate shortest path. Furthermore, computing the Eu-
clidean distance given the node embeddings can be done
easily via a low depth fully connected network. Unfortu-
nately, producing the necessary low dimensional embeddings
is exactly the task for which GNN™ networks require large
depth as proved in Theorem 6 above. While there do exist
semi-definite programming based algorithms (Linial, Lon-
don, and Rabinovich 1995) for computing the embeddings
required for Bourgain’s theorem, they are not suitable for
implementation via efficient neural architectures. Instead we
rely on sketching based algorithms for computing shortest
path distances.

In particular, for the unweighted case we adapt the approx-
imate shortest path procedure of Matousek (1996) for design-
ing an efficient network architecture. The sketch proposed in
the work of Matousek (1996) computes, for each node u, the
distance of u from a random subset .S of the nodes. This can
be done via a simple breadth first search (BFS). Repeating
this process k-times provides a k-dimensional embedding
for each vertex and for an appropriate choice of k, these
embeddings can be used to compute approximate shortest
paths. Notice that parts of this sketch based procedure are
highly amenable to be implemented in a message passing
framework. Overall, the algorithm performs multiple paral-
lel BFS subroutines to compute the embeddings. It is well
known that BFS on diameter D graphs can be implemented
by a GNN™ of depth O(D). While there are other efficient
sketch constructions for approximate shortest paths (Thorup
and Zwick 2005; Das Sarma et al. 2010), we choose the
sketch mentioned above due to its simplicity.

Based on the above procedure, our proposed architecture
is shown in Figure 2. It consists of k parallel breadth first
search (BFS) modules for k = @(nc%l logn) for an integer
¢ > 3. Module ¢ computes the shortest path from each vertex
in G to any vertex in the set S;. The sets S1, .55, ..., Sk are
randomly chosen subsets of the vertex set V' of various sizes.

In particular there are @(nﬁ) subsets of size 1, @(n%)

6023

dg(n—1,n)

MLP(n — 1,n

dg(1,2)

(2)

@ . O D@ @)
vy ,vz(),...Vn‘_l,vn 1;1(),172(),‘...v,(‘z_)l,vn vl(k),vz(k), .:.v,?i)l.v,(,k)
’ BFS(SI,D)‘ BFS(S,, D) BFS(Sk, D)
G

Figure 2: The network architecture for approximate all pairs
shortest paths in unweighted graphs.

. 2 .
subsets of size 2, ©(n=+1) subsets of size 22, and so on

up to O(n<) subsets of size 215"} The BFS module i
produces n distance values viz), . ,vﬁf). These modules are
followed by (%) fully connected networks where each module
is responsible for computing the approximate shortest path
distance between a pair of vertices. In particular we have
da(s,t) = max; |v§l) - v,gl)|.

Notice from the discussion in Section that the architecture
in Figure 2 is a GNN™ network with a single GNN™ block.
In the next section we will show how we can generalize to
a suite of graph problems by stacking up multiple GNN™
blocks. For our proposed network in Figure 2 we have the
following guarantee.

Theorem 8. For any integer ¢ > 3, there exists a neural
network as shown in Figure 2 of depth O(Dlogd + logn)

~ _4_ .
and O(n'=+1) parameters, that on graphs of diameter D and
maximum degree d, encodes c-approximate all pairs shortest
paths in G.

The proof of the theorem above relies on the following
two lemmas concerning the implementation of the BFS and
the MLP modules. See the Appendix for the proof.

Lemma 1. The BFS module in Figure 2 can be implemented
by a GNN of depth O(D log d), O(1) total parameters and
with each node having a representation size of O(1).

Lemma 2. For any k, the MLP module in Figure 2 can be
implemented by a network of depth O(log k), O(k?) total
parameters.

Minimum Cuts

To illustrate another application, in this section we design an
efficient GNN™ architecture for computing the minimum cut
in an undirected graph. We first show that even computing
an approximate mincut using traditional GNN™ networks
requires either the depth or the embedding size to be Q(y/n).
Our efficient GNN™ based architecture is based on the paral-
lel algorithm for computing mincut (Karger and Stein 1996).
More importantly the architecture comprises of multiple lay-
ers of GNN™ blocks in contrast to a single GNN™ block in
the case of shortest paths.

The algorithm of Karger and Stein (1996) relies on the
following lemma.

Lemma 3 ((Karger and Stein 1996)). Ler G = (V, E) be
an undirected unweighted graph with m edges and n ver-
tices. Then with probability at least #, a random ordering
L of the edges contains a prefix L' of L such that the graph
G' = (V,L') contains exactly two connected components
corresponding to the global minimum cut in the graph.

Using the above, Karger and Stein (1996) proposed a
Monte-Carlo randomized algorithm to compute the global
minimum cut. For a given ordering L, the algorithm estimates
the length of the prefix L’ corresponding to the cut by using
a binary search procedure. This provides the set of active
edges, i.e., edges in the current choice L’ of the prefix. Then
one can run a connected components algorithm using edges
in L'. If the prefix is too small, it results in more than two
connected components; if it is too large it produces one con-
nected component. If the number of connected components
is two then the algorithm stops. Otherwise it recurses on the
appropriate side of L.

We implement the above algorithm using a GNN™ archi-
tecture of depth O(log m) as shown in Figure ?? where each
pair of (GNN,Update Prefix) blocks is a GNN™ block and
corresponds to a particular stage of the above binary search
procedure. During each stage one needs to perform a con-
nected component subroutine. This can be done via BFS and
is implemented in the GNN module. The GNN is followed
by the UpdatePrefix module that is an MLP implementing
the logic of selecting the appropriate side of the permutation
to recurse on.

More formally, at each of the O(logm) = O(log n) stages,
each vertex in the GNN™ maintains a list of which of its con-
necting edges are active, their position in the initial ordering
L, and an integer value in [1, m] corresponding to the current
choice of the prefix L’. This in total requires O(d) embedding
size. The goal next is to infer whether the number of con-
nected components induced by the active edges is one, two,
or more than two. This in turn decides the part of the ordering
the next stage will focus on. The computation of connected
components can be carried out using at most two breadth
first searches and hence via O(D) rounds of a GNN"™ net-
work, and a low depth MLP. Formally, we have the following
guarantee.

Theorem 9. There is a GNN' architecture of depth
O(Dlog?n) and O(d + logn) parameters that produces
the minimum cut.

Experiments

We show the efficacy of GNN™ on the aforementioned graph
problems: Shortest Paths, Effective Resistance, Affinity, MIN-
CUT, and MST, and compare to a state-of-the-art GNN™P
model (Xu et al. 2019a). Additionally, we also present re-
sults on evaluating our proposed architecture on real world
graph classification problems. Dataset. We generated syn-
thetic random graphs between 500 and 1000 nodes (n). For
the affinity measure, we used dense graphs with 250 nodes
to have a reasonable number of alternate paths between any
two end points. In particular, we generate graph s from the
Erdos-Renyi model G(n, p) with edge sampling probability
p = %. Specifically, we set o to be a constant in [1, 100] to

6024

capture varying degrees of sparsity. For each n, p we gen-
erate 30, 000 training examples consisting of tuples of the
form (G, s,t,d(s,t)) where G is a random graph drawn from
G(n,p), s, t are two vertices uniformly drawn at random and
d(s,t) is one of shortest path value, effective resistance, or
affinity between the two vertices. In the case of min cut and
minimum spanning tree, we generate tuples (g, vg) where
vg corresponds to the value of the minimum spanning tree
or the global minimum cut.

Models and Configurations. For our baseline GNN™ im-
plementation, we used the GIN model proposed in Xu
et al. (2019a). This has been empirically shown (Xu et al.
2019a; Loukas 2020b; Errica et al. 2020) to be a state-of-
the-art GNN™ model on several datasets. GIN updates fea-

ture representations xik) of each node v at iteration k as:
(k_l)), where

2 = MLP((l +e®) -2V 4 T en e o

MLP refers to a Multi-Layer Perceptron, N (v) is the set of
neighbors of v, and € is a learnable parameter. For problems
that involved weighted graphs (e.g. MST), we incorporated
edge weights into the GIN update equation by using the
weighted sum of neighbor representations.

Our GNN™ implementation used the same GIN imple-
mentation as its internal GNN™ block. All graphs in our
experiments were undirected. For both baseline and GNNT,
we used node degree as the input node features for MIN-
CUT and MST. For Shortest Paths, Effective Resistance and
Affinity, we set input node features to be Booleans indicat-
ing if the node is a source/destination node or not. See the
Appendix for further details.

In GNN, the embeddings across different nodes and dif-

ferent GNNmp blocks need to be “pooled” together and
passed onto the MLP modules to get the embeddings for
next layer (see e.g. Figure 1). For our theoretical construc-
tions we designed specific pooling operations for specific
problems, that show the existence of sample efficient net-
works. For our practical implementation, we use standard
sum and max pooling operations.
Results. We compare the test mean squared errors for the
two models across the five datasets. For all the five problem,
Table 1 lists the test MSEs and corresponding standard devia-
tions for the two models. As a sanity check, we also plot the
variance of the labels in our datasets, which corresponds to
the MSE obtained by a naive model that predicts the mean
label. We observe significant gains in accuracy of anywhere
between 15% relative MSE improvement over the GNN™
baseline (for Shortest Paths) to as much as 108% relative
MSE improvement (for Effective Resistance). Note that the
naive mean predictor’s MSE is at least an order of magnitude
larger than all the MSE values for GNN™ and GNN™ (ex-
cept for the MSTdataset, where it is around five times larger -
we suspect that the weighted graphs involved in this dataset
make this a harder problem).

We posit that these test MSE gains directly stem from the
sample-efficiency of GNNT due to low depth and parameters,
as captured in Theorems 1,2 and 4 - the most compact GNN ™
networks that can represent these problems are smaller than
the corresponding most compact GNN™ networks. By Theo-
rem 5, such networks will have smaller generalization errors.

Problem | Label Avg. MSE | Avg. MSE
Vari- (GNN™) | (GNN™)
ance

Shortest | 7.482 0975 £+ | 0.849 =+

Path 0.031 0.022

Effective | 7.949 0.397 £+ | 0.187 =+

Resis- 0.025 0.008

tance

Affinity | 3.030 0.0025 =+ | 0.0018 =+

0.00017 1.8e—05

MST 4637.4 1011.39 & | 733.901 +

106.94 30.97
MINCUT | 11.964 0963 £ | 0.694 =+
0.110 0.07

Table 1: Performance of GNN™and GNN™.

In the Appendix we also plot the test MSE as a function of
number of epochs to show that our models also converge
faster than the baseline GNN™P, though we do not have any
theoretical justification supporting this observation.

Distance Oracles. Here we evaluate the effectiveness of
embeddings produced by GNN™ and GNN™ networks to
serve as effective distance oracles. A distance oracle is a data
structure that can answer approximate shortest path queries
quickly and accurately after doing some pre-processing on
the graph. There exist many combinatorial algorithms to con-
struct such oracles by pre-processing the graph to compute
a k-dimensional sketch (Das Sarma et al. 2010; Thorup and
Zwick 2005). At query time the distance between two ver-
tices is then approximated by some ¢,, distance between the
sketches. We evaluate the ability of the embeddings produced
by GNNs to serve as effective sketches. For this purpose
we implement a state-of-the-art combinatorial sketch com-
putation algorithms of Das Sarma et al. (2010). For sketch
sizes in the range {[logn],2[logn],...,8[logn]}, where
n = 1000, we run the combinatorial algorithm to produce
the sketch of the required size. At the same time we train
a GNN™ and a GNN™ network (to minimize MSE as dis-
cussed above) to produce embeddings of the same size as that
of the sketch. Figure 3 shows the performance of the neural
networks as compared to the combinatorial algorithm. As can
be see, at embedding size of 3[logn], GNNT™ networks start
outperforming the combinatorial algorithm when run with
sketch size 5[log n]. Furthermore, GNN T at embedding size
of [log n], already outperforms the combinatorial algorithms
for all larger values of the sketch sizes.

Real World Data. While our theoretical results apply to
problems such as shortest paths it is a natural question to
ask how our proposed GNN™ architecture performs on other
tasks such as classification. We experiment with the follow-
ing real world datasets (Yanardag and Vishwanathan 2015)
that have been used in recent works for evaluating various
GNN architectures (Xu et al. 2019a): 1) IMDB-BINARY and
2) IMDB-MULTI datasets: These are movie collaboration

6025

Dataset Test Acc. | Test Acc.
(GNN™) | (GNN™T)
IMDB- 0.742 4+ | 0.769 =+
BINARY 0.09 0.02
IMDB- 0.523 &+ | 0.527 =+
MULTI 0.06 0.04
COLLAB 0.802 =+ | 0.816 =+
0.02 0.004
PROTEINS| 0.760 &+ | 0.765 =+
0.008 0.015
NCI1 0.849 4+ | 0.851 =+
0.004 0.003
PTC 0.686 £ | 0.708 =+
0.02 0.018
MUTAG 0.876 £ | 0.898 =+
0.016 0.012

Table 2: Performance of GNN™and GNN™.

10 Sketch
GNN
GNN+

1 2 3 4 5 B 7 B
sketch size: c logn

Figure 3: Performance of GNN™ and GNN as compared to
the combinatorial distance oracle of Das Sarma et al. (2010).

datasets with nodes as actors and the class label being the
genre. 3) COLLAB: This is a scientific collaboration dataset
with three classes. 4) PROTEINS: This is a bioinformatics
dataset with 3 class labels. 5) PTC, 6) NCI1 and 7) MUTAG:
These are various datasets of chemical compounds with two
class labels each.

We train our GNN proposed architecture on these graphs
using the cross-entropy loss and as before compare with
the GIN architecture of (Xu et al. 2019a). We use the same
input node features as in (Xu et al. 2019a) and use the same
experimental methodology as that for synthetic graphs above.
In particular, when tuning hyperparameter tuning we allow
the GNN™ architecture to explore depth up to 9 whereas
the GNN™ architecture is tuned by restricting the depth upto
3. See the Appendix for a comparison of the depth used by
GNN™ vs. GNN™. The results are summarized in Table 1.
As can be seen, in each instance GNN™ either outperforms
or matches the performance of the GNN™ architecture in
terms of final test accuracy. In the Appendix we also provide
an analysis of the depth used by GNNT and GNN™ on the
different datasets.

References

Allamanis, M.; Brockschmidt, M.; and Khademi, M. 2017.
Learning to represent programs with graphs. arXiv preprint
arXiv:1711.00740.

Bartlett, P. L.; Foster, D. J.; and Telgarsky, M. J. 2017.
Spectrally-normalized margin bounds for neural networks. In
Advances in Neural Information Processing Systems, 6240—
6249.

Bianchi, F. M.; Grattarola, D.; and Alippi, C. 2019. Min-
cut pooling in graph neural networks. arXiv preprint
arXiv:1907.00481.

Bieber, D.; Sutton, C.; Larochelle, H.; and Tarlow, D.
2020. Learning to Execute Programs with Instruction
Pointer Attention Graph Neural Networks. arXiv preprint
arXiv:2010.12621.

Bourgain, J. 1985. On Lipschitz embedding of finite metric
spaces in Hilbert space. Israel Journal of Mathematics, 52(1-
2): 46-52.

Chandra, A. K.; Raghavan, P.; Ruzzo, W. L.; Smolensky, R.;
and Tiwari, P. 1996. The electrical resistance of a graph
captures its commute and cover times. Computational Com-
plexity, 6(4): 312-340.

Chen, Z.; Chen, L.; Villar, S.; and Bruna, J. 2020. Can
graph neural networks count substructures? arXiv preprint
arXiv:2002.04025.

Cohen, R.; and Havlin, S. 2003. Scale-free networks are
ultrasmall. Physical review letters, 90(5): 058701.

Das Sarma, A.; Gollapudi, S.; Najork, M.; and Panigrahy, R.
2010. A sketch-based distance oracle for web-scale graphs.
In Proceedings of the third ACM international conference on
Web search and data mining, 401-410.

Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In Advances in neural information process-
ing systems, 3844-3852.

Dinella, E.; Dai, H.; Li, Z.; Naik, M.; Song, L.; and Wang,
K. 2020. Hoppity: Learning graph transformations to detect
and fix bugs in programs. In International Conference on
Learning Representations (ICLR).

Du, S. S.; Hou, K.; Salakhutdinov, R. R.; Poczos, B.; Wang,
R.; and Xu, K. 2019. Graph neural tangent kernel: Fusing
graph neural networks with graph kernels. In Advances in
Neural Information Processing Systems, 5723-5733.

Errica, F.; Podda, M.; Bacciu, D.; and Micheli, A. 2020.
A Fair Comparison of Graph Neural Networks for Graph
Classification. ICLR.

Fey, M.; Eric Lenssen, J.; Weichert, F.; and Miiller, H. 2018.
Splinecnn: Fast geometric deep learning with continuous b-
spline kernels. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 869-877.

Garg, V. K,; Jegelka, S.; and Jaakkola, T. 2020. Generaliza-
tion and Representational Limits of Graph Neural Networks.
ICML.

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. arXiv preprint arXiv:1704.01212.

6026

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive rep-
resentation learning on large graphs. In Advances in neural
information processing systems, 1024—-1034.

Karger, D. R.; and Stein, C. 1996. A new approach to the
minimum cut problem. Journal of the ACM, 43: 601-640.

Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.

Linial, N.; London, E.; and Rabinovich, Y. 1995. The ge-
ometry of graphs and some of its algorithmic applications.
Combinatorica, 15(2): 215-245.

Long, P. M.; and Sedghi, H. 2020. Generalization bounds for
deep convolutional neural networks. arXiv:1905.12600.

Loukas, A. 2020a. How hard is to distinguish graphs with
graph neural networks? Advances in neural information
processing systems, 33: 3465-3476.

Loukas, A. 2020b. What graph neural networks cannot learn:
depth vs width. ICLR.

Maron, H.; Ben-Hamu, H.; Serviansky, H.; and Lipman, Y.
2019. Provably powerful graph networks. In Advances in
Neural Information Processing Systems, 2156-2167.

Matousek, J. 1996. On the distortion required for embedding
finite metric spaces into normed spaces. Israel Journal of
Mathematics, 93(1): 333-344.

Mesquita, D.; Souza, A. H.; and Kaski, S. 2020. Re-
thinking pooling in graph neural networks. arXiv preprint
arXiv:2010.11418.

Nanongkai, D. 2014. Distributed approximation algorithms
for weighted shortest paths. In Proceedings of the forty-sixth
annual ACM symposium on Theory of computing, 565-573.

Panigrahy, R.; Najork, M.; and Xie, Y. 2012. How user
behavior is related to social affinity. In Proceedings of the
fifth ACM international conference on Web search and data
mining, 713-722.
Peleg, D. 2000. Distributed computing: a locality-sensitive
approach. SIAM.

Sato, R.; Yamada, M.; and Kashima, H. 2019. Approximation
ratios of graph neural networks for combinatorial problems.
In Advances in Neural Information Processing Systems, 4081—

4090.

Simonovsky, M.; and Komodakis, N. 2017. Dynamic
edge-conditioned filters in convolutional neural networks on
graphs. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 3693-3702.

Thorup, M.; and Zwick, U. 2005. Approximate distance
oracles. Journal of the ACM (JACM), 52(1): 1-24.

Velickovié, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903.

Weisteiler, B.; and Lehman, A. A. 1968. A reduction of
a graph to a canonical form and an algebra arising during
this reduction. Nauchno-Technicheskaya Informatsia, 2(9):
12-16.

Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019a. How
Powerful are Graph Neural Networks? ICLR.

Xu, K.; Li, J.; Zhang, M.; Du, S. S.; Kawarabayashi, K.-i.;
and Jegelka, S. 2019b. What Can Neural Networks Reason
About? arXiv preprint arXiv:1905.13211.

Yanardag, P.; and Vishwanathan, S. 2015. Deep Graph Ker-
nels. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD
’15, 1365-1374.

Ying, Z.; You, J.; Morris, C.; Ren, X.; Hamilton, W.; and
Leskovec, J. 2018. Hierarchical graph representation learning
with differentiable pooling. In Advances in neural informa-
tion processing systems, 4800—4810.

You, J.; Ying, Z.; and Leskovec, J. 2020. Design space for
graph neural networks. Advances in Neural Information
Processing Systems, 33.

Zhang, S.; Wang, M.; Liu, S.; Chen, P.-Y.; and Xiong, J. 2020.
Fast Learning of Graph Neural Networks with Guaranteed
Generalizability: One-hidden-layer Case. In International
Conference on Machine Learning, 11268—11277. PMLR.

6027

