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Abstract

Neural ordinary differential equations (NODE) have been pro-
posed as a continuous depth generalization to popular deep
learning models such as Residual networks (ResNets). They
provide parameter efficiency and automate the model selection
process in deep learning models to some extent. However, they
lack the much-required uncertainty modelling and robustness
capabilities which are crucial for their use in several real-world
applications such as autonomous driving and healthcare. We
propose a novel and unique approach to model uncertainty in
NODE by considering a distribution over the end-time T of
the ODE solver. The proposed approach, latent time NODE
(LT-NODE), treats T as a latent variable and apply Bayesian
learning to obtain a posterior distribution over T from the
data. In particular, we use variational inference to learn an
approximate posterior and the model parameters. Prediction is
done by considering the NODE representations from different
samples of the posterior and can be done efficiently using a
single forward pass. As T implicitly defines the depth of a
NODE, posterior distribution over T would also help in model
selection in NODE. We also propose, adaptive latent time
NODE (ALT-NODE), which allow each data point to have
a distinct posterior distribution over end-times. ALT-NODE
uses amortized variational inference to learn an approximate
posterior using inference networks. We demonstrate the effec-
tiveness of the proposed approaches in modelling uncertainty
and robustness through experiments on synthetic and several
real-world image classification data.

Introduction
Deep learning models such as Residual networks
(ResNet) (He et al. 2016) have brought advances in
several computer vision tasks (Ren et al. 2017; He et al.
2020; Wang, Chen, and Hu 2019). They used skip con-
nections to allow the models to grow deeper and improve
performance without suffering from the vanishing gradient
problem. Recently, neural ordinary differential equations
(NODEs) (Chen et al. 2018) were proposed as a continuous
depth generalization to ResNets. The feature computations
in ResNet can be seen as solving an ordinary differential
equation (ODE) with Euler method (Lu et al. 2018; Haber
and Ruthotto 2017; Ruthotto and Haber 2019). Here, the
ODE is parameterized by a neural network and the NODE
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can grow to an arbitrary depth as defined by the end-time
T . It was shown that NODE is more robust (Hanshu et al.
2019) than traditional deep learning models, and is invertible,
parameter efficient and maintains a constant memory cost
with respect to growth in depth.

Modeling uncertainty is paramount for many high-risk ap-
plications such healthcare (Ker et al. 2017) and autonomous
driving vehicles (Fridman et al. 2019). However, standard
NODE models compute a point estimate of predictions which
fail to capture uncertainty in predictions. Like ResNets, they
tend to make high confidence wrong predictions on out-of-
sample observations (Anumasa and Srijith 2021a), restricting
their use in high-risk applications. There exist very few works
trying to address the uncertainty in NODE (Anumasa and
Srijith 2021a; Kong, Sun, and Zhang 2020; Dandekar et al.
2021) and their uncertainty modelling capabilities are re-
stricted by architectural and training assumptions. Though,
NODE models have addressed the model selection in deep
learning to a great extent, it still require the user to define the
parameters such as end time T to the ODE solver. This im-
plicitly determines the depth of the NODE. In this work, we
propose a unique approach to model uncertainty in NODE,
latent time neural ODE (LT-NODE), which addresses these
drawbacks by learning a distribution over end-time T .

LT-NODE is based on the idea of capturing uncertainty by
treating the end time T as a latent variable. This allows us to
define a distribution over T and the representations of the data
point at different values of T sampled from the distribution
provides an estimate of uncertainty. To capture uncertainty
and to obtain a good generalization capability, it is important
to learn the distribution over T from the data and we employ
Bayesian inference techniques such as variational inference
to learn an approximate posterior. Consequently, the posterior
over T will also help in addressing the model selection in
NODE in determining an appropriate end time. The proposed
approach can get uncertainty estimates using single forward
pass and is very efficient unlike other uncertainty modelling
techniques which require multiple model evaluations. More-
over, it provides uncertainty estimates with two additional
parameters associated with the variational posterior.

Recently, it was shown that a NODE with a different depth
(end-time) for different data points can overcome the draw-
backs of standard NODEs, for e.g., in solving concentric
annuli and reflection tasks (Dupont, Doucet, and Teh 2019;

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

6010



Massaroli et al. 2020). Inspired by this, we propose a variant,
adaptive latent time neural ODE (ALT-NODE), which allows
each sample to have a separate posterior distribution over
end-time. To learn the posterior, we consider an amortized
variational inference, where we specify an inference network
which provides the variational approximation over T for each
sample. We develop ALT-NODEs which also do predictions
efficiently, by requiring only one forward pass through the
model. Moreover, the proposed uncertainty estimation tech-
niques for neural ODEs are generic and can be applied to
several recent variants of the NODE model and architec-
tures. We demonstrate the superior uncertainty modelling
capability of LT-NODE and ALT-NODE under different ex-
perimental setups on synthetic and several real-world image
classification data sets such as CIFAR10, SVHN, MNIST,
and F-MNIST. Our main contributions can be summarized
as follows.

1. We propose a novel and unique approach to model un-
certainty in NODE by treating end-time T as latent and
learns a posterior distribution over end-times which also
aids in model selection.

2. We propose a variant which learns input dependent poste-
rior distribution over latent end-times.

3. We develop variational inference and amortized varia-
tional inference techniques for the proposed model to
learn an approximate posterior distribution over latent
end-times.

4. We demonstrate the uncertainty and robustness modelling
capability of the proposed models on different experimen-
tal setups and on several image classification data sets.

Related Work
Neural ODEs (Chen et al. 2018) are continuous depth gen-
eralization of ResNets (He et al. 2016) and was shown to
provide competitive results on several image classification
tasks. Recently, several NODE variants were proposed which
improved the generalization performance in NODE. For in-
stance, Zhuang et al. (2020) addressed the flaws in the adjoint
sensitive method used to learn parameters in NODE to im-
prove gradient computation and performance. Augmented
NODE (ANODE) (Gholami, Keutzer, and Biros 2019) aug-
mented the latent layers with additional dimension and was
found to be more effective than NODE in solving complex
problems such as concentric annuli and reflection. (Massaroli
et al. 2020) addressed it by assuming depth of the NODE to be
adaptive and data dependent. They also provide NODE vari-
ants which generalizes ANODE to consider data dependent
and higher order augmentation. There are NODE variants
which improves performance by letting the parameters to
change over time (Massaroli et al. 2020; Zhang et al. 2019)
or through regularization (Finlay et al. 2020; Ghosh et al.
2020). However, very few works aim to address the lack of
uncertainty modelling and robustness capabilities in the neu-
ral ODE models. Although NODE (Hanshu et al. 2019) was
shown to be more robust than similar ResNet architecture,
they lack the required robustness and uncertainty modelling
capabilities (Anumasa and Srijith 2021a).

NODE-GP replaced the fully connected neural network
layer in NODE with Gaussian processes to improve uncer-
tainty and robustness capabilities in NODE (Anumasa and
Srijith 2021a). SDE-Net (Kong, Sun, and Zhang 2020) tries
to address this by using the framework of stochastic differen-
tial equations. SDE-Net uses an additional diffusion network
which learns to provide a high diffusion for the computed
state trajectories of the data outside the training distribution.
However, SDE-Net suffers some drawbacks in that it requires
an additional diffusion network which needs to be trained
explicitly on an out-of-distribution (OOD) data and require
multiple forward passes through the model to get uncertainty
estimates. Explicit training on an OOD data is practically
infeasible for several applications. Concurrent to our work,
Bayesian neural ODE (Dandekar et al. 2021) proposes to
model uncertainty using the standard technique of learning
a distribution over weights through the black-box inference
techniques based on Markov chain Monte Carlo (MCMC)
methods. We propose an uncertainty modelling technique
unique to NODE and yet generalizable to several NODE
architectures, where the uncertainty is modeled by consid-
ering a distribution over end-times. The proposed approach
requires only a single forward pass through the model to
obtain uncertainty aware predictive probability and models
the uncertainty with just 2 additional parameters (variational
parameters). This fully Bayesian approach which computes
posterior over end-time is different from Ghosh et al. (2020)
which uses random end-times only as a regularization tech-
nique during training and does not model uncertainty over
predictions. Our approach to model uncertainty corroborates
well with some recent advances in modelling uncertainty in
discrete depth networks (Dikov and Bayer 2019; Antoran,
Allingham, and Hernández-Lobato 2020; Wenzel et al. 2020).
They show that uncertainty can be modelled effectively by
considering representations from different layers or through
distributions over hyper-parameters or architectures of a deep
neural network. The proposed approach differs from them
as NODE requires different probabilistic modelling, learning
objective and training due to its continuous depth character.
In addition, the use of amortized variational inference to learn
input specific posterior distribution over end-times, further
makes the proposed approach unique and novel.

The proposed approaches are different from the latent
NODEs (Rubanova, Chen, and Duvenaud 2019; Yildiz,
Heinonen, and Lahdesmaki 2019) which are generative
NODEs used for modeling the latent state dynamics asso-
ciated with time series data. They assume the initial state
to be latent and a posterior distribution learnt over the ini-
tial state is used to generate the time series data. In contrast,
we address the regression and classification problems with
a fixed initial state (input image or a transformation of it).
Hence, we consider a distribution over latent end-times and
associated representations in a feed forward NODE to model
uncertainty. However, this may not be a suitable for time
series data where measurement times are observed.

Background
We consider a supervised learning problem and let D =
{X,y} = {(xi, yi)}Ni=1 be the set of training data points
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with input xi ∈ RD and yi ∈ {1, . . . , C} for a classifica-
tion and yi ∈ R for regression. For a discrete deep learning
model, the hidden representation at layer l is denoted as
hl. We consider the hidden layer representations obtained
through neural ODE transformations for a point x at time
t as hx(t), where hx(t) ∈ RH . The neural network trans-
formations defining the ODE (NODE block) is denoted as
f(hx(t), t, θθθh), with θθθh being the neural network parameters.
Typically, a NODE block is a stack of convolution layers or
fully connected layers with nonlinear activation functions.
The fully connected neural network (FCNN) transforming
the hidden representation to a probability over the output y is
represented as gy(hx(t), θθθg), with parameters θθθg . We denote
θθθ to represent all the parameters in the NODE including the
initial down-sampling block.

Neural Ordinary Differential Equations
ResNets transform the input to an output using a sequence
of neural network transformations f(·) with skip connec-
tions between layers. The operations on a hidden represen-
tation ht to obtain ht+1 in ResNets can be expressed as
ht+1 = ht + f(ht, θθθh). Neural ordinary differential equa-
tions (NODEs) show that a sequence of such transforma-
tions can be obtained as a solution to an ordinary differential
equation of the following form, dhx(t)

dt = f(hx(t), t, θθθh)
Here, we assume the latent representations hx(t) is a func-
tion of time and changes continuously over time as defined
by this ordinary differential equation. Solving the ODE re-
quires one to provide an initial value hx(0) (initial value
problem) and is typically considered as the input data x or
a transformation using a down-sampling block d(·). Given
hx(0), hidden representation at some end-time T can be
obtained as hx(T ) = hx(0) +

∫ T

0
f(hx(t), t, θθθh). Since

the direct computation of hx(T ) is intractable, numerical
techniques such as Euler method or adaptive numerical tech-
niques such as Dopri5 are used to obtain the final repre-
sentation (ODESolve(f(hx(t), t, θθθh),hx(0), 0, T )). For e.g.,
Euler method is a single step method where hx(t) is up-
dated sequentially until end-time T with a step size dt.
A particular step in the Euler method can be written as
hx(t + 1) = hx(t) + dtf(hx(t), t, θθθh) We see that this
is equivalent to the transformations performed in ResNet.
On the other hand, adaptive numerical methods compute
hidden representations at arbitrary times as determined by
the error tolerance until the user specified end-time T . The
end-time T implicitly determines the number of transfor-
mations and consequently the depth of the network. The
hidden representation hx(T ) is taken as the final layer rep-
resentation and is passed through a fully connected neural
network to obtain the probability of predicting the output
y, i.e. p(y|x, T,θθθ) = gy(hx(T ), θθθg). This predictive prob-
ability is used with an appropriate loss function, for e.g.,
cross-entropy loss for classification, to obtain the final ob-
jective function. This is optimized to learn the parameters in
the model using techniques such as adjoint sensitive method.
NODE based models provide a generalization performance
close to ResNets with a smaller number of parameters and
automates the model or depth selection to some extent.

Latent Time Neural Ordinary Differential
Equations

NODEs were found to be useful for many computer vision ap-
plications. However, their application to high-risk real-world
problems such as healthcare and autonomous driving is lim-
ited by their lack of uncertainty modelling capability. We aim
to develop efficient NODE models which can provide good
uncertainty estimates and make them amenable to such prob-
lems. We propose a novel approach, latent time neural ODE
(LT-NODE), which is based on the idea of modelling uncer-
tainty through the uncertainty over end-time T . The proposed
approach considers the hidden representations at different
end-times to obtain the predictive probability capable of mod-
elling the model uncertainty or epistemic uncertainty. All the
representations from different end-times T do not equally
contribute to the predictive performance. Some of them will
have a higher contribution than others. To account for this, we
treat the end-time T as a latent variable and learn a distribu-
tion over it from the data. To achieve this, we follow Bayesian
learning principles (Bishop 2006) where we define a prior
distribution over T and learn a posterior distribution T from
the data. The prediction is done using the representations
corresponding to the end-time sampled from the posterior
over T . The disagreements in the representations help to com-
pute the model uncertainty. A side benefit of the proposed
LT-NODE approach is that it automates the model selection
over end time T . The posterior distribution over T allows
the model to learn the end-time from the data. Moreover, our
approach is generic and can be applied to model uncertainty
with any recent NODE architecture.

The end-time T associated with NODE takes a posi-
tive real value and we would like to evaluate the repre-
sentations at arbitrary times in the positive real valued in-
terval to compute uncertainty. This makes NODEs chal-
lenging and different from discrete depth neural networks
and we need an appropriate distribution which allows this.
This motivates us to use Gamma distribution whose sup-
port is (0,∞) as the prior over T with shape and rate pa-
rameters being αp and βp respectively, thus p(T |αp, βp) =

Gamma(T |αp, βp) =
β
αp
p

Γ(αp)
Tαp−1e−βpT , where Γ(αp) is

gamma function. Gamma distribution can be useful to model
the end-times as it is more flexible than exponential dis-
tribution and can place its probability density over end-
times in any arbitrary region. The likelihood of modelling
outputs y given a value for the end-time T and inputs X
is denoted as p(y|T,X,θθθ) =

∏N
i=1 p(yi|T,xi, θθθ) where

p(yi|T,xi, θθθ) = gyi
(hxi

(T ), θθθg). Given the likelihood and
the prior, the posterior over the latent variable T can be com-
puted using the Bayes theorem (Bishop 2006) as

p(T |y, X;θθθ) =
p(y|T,X;θθθ)p(T |αp, βp)∫∞

0
p(y|T,X;θθθ)p(T |αp, βp)dT

(1)

However, the posterior cannot be computed in a closed form
as the end-time T appears as a complex non-linear function
in the likelihood. Consequently, the marginal likelihood term
in the denominator of (1) also cannot be computed. Hence,
we resort to approximate inference techniques such as the
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variational inference (Blei, Kucukelbir, and McAuliffe 2017)
to obtain an approximate posterior over the T .

Variational Inference

In our approach, we choose Gamma distribution as the vari-
ational posterior over T (due to positive real valued T )
with variational parameters αq and βq, thus q(T |αq, βq) =
Gamma(T |αq, βq). We derive the variational lower bound or
evidence lower bound (ELBO) for our setting as follows.

log(p(y|X;θθθ) ≥ Eq(T |αq,βq)[log(p(y|T,X;θθθ))]−
KL((q(T |αq, βq)||p(T |αp, βp))). (2)

We learn the variational posterior parameters by maximising
the lower bound. The KL term in (2) can be computed in
closed form (Bauckhage 2014) as

αq log βq − αp log βp + log(Γ(αp))− log(Γ(αq))

+ (ψ(αq)− logβq)(αq − αp) +
Γ(αq + 1)

Γ(αq)

βp
βq

− αq

where ψ is a digamma function. We approximate the compu-
tation of the expectation term in the ELBO by discretizing
the space of T into a uniform grid and use S samples of T
from the uniform grid to approximate the expectation as

Eq(T |αq,βq)[log(p(y|T,X,θθθ))]

=
N∑
i=1

S∑
s=1

log(p(yi|Ts,xi, θθθ))q(Ts|αq, βq),
(3)

where, Ts ∼ Uniform(T |a, b). We decided to use the uni-
form grid approximation rather than Monte Carlo approxima-
tion because of two reasons. Firstly, the latent variable T is a
scalar quantity and consequently this approach will not suffer
from the sampling inefficiency typically associated with high
dimensional variables which motivate the use of Monte Carlo
sampling techniques. Secondly, uniform grid approximation
allows us to consider the variational distribution q(T |αq, βq)
explicitly in the objective function and makes sampling inde-
pendent of the parameters to be estimated. This will ease the
estimation of variational parameters using gradient descent.
We maximize ELBO and back-propagate the gradients to
estimate both the variational and model parameters (θθθ).

Let S̄ = {T1, T2, . . . , TS} be the S end-times sampled
from the uniform distribution. During forward propagation,
intermediate feature vectors are computed using an adaptive
numerical technique such as Dopri5 (Kimura 2009)) until
TS . The feature vectors at Ti ∈ S̄ obtained using the adaptve
numerical technique and interpolation are used to compute
the approximate log probability of training samples (3) and
consequently in (2) to obtain ELBO. We note that this can
be computed efficiently by ordering the sampled times (in
ascending order) and obtaining the features vectors at these
times in a single forward pass.

Algorithm 1: Forward pass in LT-NODE, computing predic-
tive probability for datapoint x.

%Sample S end-times from the variational posterior
q(T |αq, βq), Initialize S̄ = {}
while |S̄|≤ S do

Sample Ts ∼ q(T |αq, βq)
S̄ = S̄ ∪ Ts

Sort S̄ in increasing order
Transform input using the downsampling: hx(0) = d(x)
initialize : t = 0 , prob_vec = 0
for Ts in S̄
hx(Ts) = ODESolve(f,hx(t), t, Ts)
t = Ts
for y = 1, . . . , C
sample_prob_vec(y) = gy(hx(t), θθθg)

prob_vec = prob_vec+ sample_prob_vec
return prob_vec = prob_vec

S

The model parameters and variational parameters learnt
by maximizing ELBO are used to predict the test data. First,
we sample the end-times from the learnt variational poste-
rior q(T |αq, βq). The sampled end-times are ordered, and
predictions are done efficiently using a single forward pass
through the model in a similar manner as discussed for train-
ing. We compute the predictive probability of a test data point
x to be classified to a class y as 1

S

∑S
s=1 p(y|Ts,x, θθθ), where

Ts ∼ q(T |αq, βq). LT-NODE provides good uncertainty es-
timates with only 2 additional parameters (αq and βq). A
schematic representation and a detailed algorithm of the pro-
posed LT-NODE are shown in Figure 1 and Algorithm 1.

Adaptive Latent Time Neural Ordinary
Differential Equations

LT-NODE computes a posterior distribution over end-time
T which helps to model uncertainty as well as aid in model
selection. However, end-time T is treated as a global latent
variable and the distribution over T is assumed to be same
for all the data points. Though this gives a good uncertainty
estimate, NODE modelling capability can be improved by
considering the end-time to be different across different data
points. Massaroli et al. (2020) showed that a NODE with
input specific depth will be able to model complex problems
such as solving concentric annuli and reflection tasks. To
improve the modelling capability, we propose a variant, adap-
tive latent time NODE (ALT-NODE), which allows each data
point to have input specific distribution over end-time.

In ALT-NODE, we assume that every data point is associ-
ated with a latent variable Ti denoting the end-time associ-
ated with the data point. We assume the same Gamma prior
over Ti with parameters αp and βp as before. The likelihood
p(yi|T,xi, θθθ) is also defined as in LT-NODE. Here, we will
be learning a separate posterior distribution over Ti associ-
ated with each data point. As in LT-NODE, the posterior
cannot be computed tractably, and we resort to variational in-
ference to obtain an approximate posterior. For ALT-NODE,
we associate a separate variational posterior q(Ti) with each
Ti. Due to the nature of Ti, we assume q(Ti) to be Gamma
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Figure 1: Representation of the LT-NODE. Posterior over end-
times is Gamma distributed, and assume t3, t4, and t5 are the
end-times sampled from the Gamma. The representations at
these times are passed through the FCNN and the output is
averaged to get the final predictive probability.

distributed with parameters αqi and βqi. Treating the varia-
tional parameters as free form distribution can lead to a few
drawbacks. Firstly, the number of variational parameters to
learn increases linearly with number of data points which is
costly when number of data points is high. Secondly, it does
not allow us to perform inference over new data points.

We use an amortized variational inference (Gershman and
Goodman 2014; Kingma and Welling 2014) approach to
address these drawbacks. The amortized VI assumes the vari-
ational parameters associated with the Ti can be obtained as
a function of the input data points. It introduces an inference
network, typically a parametric function such as neural net-
works, which can predict the variational parameters from the
input data. Now, instead of learning the variational parame-
ters, one can learn the parameters of the inference network
from the variational lower bound. Learning of the inference
network allows statistical strength to be shared across data
points and helps in predicting the variational parameters for
a new data point. Therefore, we introduce an inference net-
work r(xi;ϕ) which predicts the variational parameters αqi

and βqi associated with Ti. Consequently, we denote the
variational distribution over Ti, to be parameterized by the
inference network parameters ϕ and is conditioned on xi, i.e.,
q(Ti|xi, ϕ). We learn the inference network parameters ϕ
and model parameters θ by maximizing the variational lower
bound for ALT-NODE which is derived as follows

N∑
i=1

[Eq(Ti|xi,ϕ)[log(p(yi|Ti,xi;θθθ))]−

KL((q(Ti|xi, ϕ)||p(Ti|αp, βp)))]. (4)
We follow the approximation used in LT-NODE to evaluate
the expectation term in the objective function (4). The KL
divergence term can be obtained in closed form as before,
but the variational parameters is a function of the inference
network r(x) parameterized by ϕ. We developed an effi-
cient approach to perform single forward pass computation
through the ALT-NODE similar to LT-NODE for training and
prediction 1.

1Details in supplementary(Anumasa and Srijith 2021b)

Experiments
We conduct experiments to evaluate the uncertainty and ro-
bustness modelling capabilities of the proposed approaches2,
LT-NODE and ALT-NODE using synthetic and real-world
data sets. The approaches are compared against standard
NODE (Chen et al. 2018) and baselines which were recently
proposed to model uncertainty in the NODE models, such as
NODE-GP (Anumasa and Srijith 2021a) and SDE-Net (Kong,
Sun, and Zhang 2020). We also consider a baseline Uni-
NODE which does not learn any posterior over T but only
considers randomness over T by sampling it from a uniform
distribution during training and testing. This baseline is a
variant of (Ghosh et al. 2020) where the model considered a
noisy end-time during training but not during testing.

Synthetic Data Experiments
We consider a 1D synthetic regression dataset (Foong et al.
2019) to demonstrate the uncertainty modeling capability of
the proposed models 3. This dataset contains two disjoint
clusters of training points. We expect the models to exhibit
high variance in-between and away from these training data
points. Figure 2 provide the predictive mean and standard
deviation obtained with the proposed models and baselines.
In this 1-D regression problem, LT-NODE model as shown
in Figure 2(a) captures the uncertainty well with high vari-
ance on in-between and away data points on the left, and the
variance grows smoothly. Infact, it is found to have highest
in-between variance. ALT-NODE in Figure 2(b) also cap-
tures the uncertainty well, and due to the input conditioned
posterior it is able to fit and learn the trends in data better
than LT-NODE. We find that SDE-Net in Figure 2(c) ex-
hibits some uncertainty but the variance does not increase
as we move away from training data regime. NODE-GP in
Figure 2(d) gives a good uncertainty modelling capability
with a high variance on both in-between and away OOD
data. But we show later that on high-dimensional image data,
NODE-GP fails to model the uncertainty due to the inability
of GPs to model high dimensional data. We also conducted
experiments to demonstrate the importance of learning a pos-
terior distribution over T . In Figure 2(e), we can observe that
Uni-NODE which does a random sampling of T was not able
to fit the data unlike other models but having a randomness
over T provided some uncertainty modeling capability in the
away data region.

Image Classification
We conduct experiments to study uncertainty modelling and
robustness capability of the proposed models on image clas-
sification problems. We consider popular data sets used in
image classification such as CIFAR10 (Krizhevsky and Hin-
ton 2009), SVHN (Netzer et al. 2011), MNIST (LeCun et al.
1998) and Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017).
To measure their uncertainty modelling capability, we use

2https://github.com/srinivas-quan/LTNODE
3We learn variational posterior by maximizing the ELBO

with Gamma(2, 0.5) as prior, for e.g., LT-NODE learnt
Gamma(1.27, 0.98) as the approximate posterior on the synthetic
data, more details in the supplementary.
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Figure 2: Results on 1-D synthetic regression data (Foong et al. 2019). Mean prediction is denoted by dotted blue line and shaded
region represents mean ± std. deviation. We also provide average entropy (E) computed in the OOD interval (−0.5, 0.5). (a)
LT-NODE (E:2.42) exhibits a good uncertainty modelling capability followed by (d) NODE-GP (E:1.22) and (b) ALT-NODE
(E:1.17). (c) SDE-Net (E:−0.31) exhibits some uncertainty, but it remains stagnant in the OOD regime. (e) Uni-NODE (E:−0.65)
exhibits some uncertainty but does not fit the data well.
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Figure 3: Performance under varying degrees of rotation in CIFAR10 (top) and SVHN (bottom). LT-NODE and ALT-NODE
show better uncertainty modelling capability with higher LL values and lower Brier and ECE scores as we increase the rotation.
Confidence distribution plots on rotated (45 degrees) images are shown in (d), (e), (i) and (j). (d) and (i) shows the accuracy, and
(e) and (j) shows the count of predictions (y axis value multipled by 1000) done with confidence above a threshold τ on X-axis.
The proposed models perform better than baselines giving higher accuracies and lower counts on high confident predictions.

several metrics such as Error, log-likelihood (LL), Bier score
and expected calibration error (ECE). Error (1− accuracy),
LL are the standard metrics used in image classification. LL
consider the probability distribution over outputs and can
measure the uncertainty modelling capability of the models
(higher the better). Brier score (Blattenberger and Lad 1985),
ECE (Naeini, Cooper, and Hauskrecht 2015) are calibration
metrics which tells us if the predictive probability of the
model for a class label is close to the true proportion of those
classes in the test data. Both the measures consider predictive
probability and consequently can be used to measure uncer-
tainty in predictions (lower values of Brier score, ECE are
preferred). All the models follow the same architecture as
standard NODE. Additional networks are required for SDE-
Net for diffusion and ALT-NODE for inference, both using 3
convolution layers followed by a fully connected layer. The
plots show mean and standard deviation obtained by training
the models with 5-different initializations.

Performance Under Rotation4 We use CIFAR10 and
SVHN data sets for studying the performance of the proposed
models under rotation of images (Ovadia et al. 2019). The
performance of the models degrades quickly with increase in
amount of rotation applied on the image test data and can be
seen in Figure 4(a) and (f). We want our models to be least
overconfident when there is a significant shift in the data. To
study this, in Figure 3 we plot the performance of the models
in terms of LL, Brier score and ECE. LT-NODE and ALT-
NODE have better Brier score, LL and ECE values compared
to the baselines, demonstrating their improved uncertainty
modelling capability. We consider confidence distribution for
the methods when prediction is done on SVHN and CIFAR10
rotated by 45 degrees. We plot the accuracy (Figure 3 (d) and
(i)) and count of test data points (Figure 3 (e) and (j)) when
predictions are done with confidence above a threshold τ . In
general, we want the counts of points predicted with high

4Additional experiments on dataset shift are in supplementary
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Figure 4: Error of the models under varying degrees of rota-
tion in CIFAR10 (a) and SVHN (b). Entropy histogram (c
and d) of the models for OOD experiments. For (c) training
is done on CIFAR10 and testing on SVHN, while for (d)
viceversa. Error obtained by the models under FGSM attack
against varying ϵ (stepsize) on various data sets (e) MNIST
(f) Fashion-MNIST (g) CIFAR10 and (h) SVHN.

confidence to be lower and accuracy to be higher as we are
dealing with a corrupted data. We can observe that this is the
case with the proposed approaches, beating baselines in both
rotated CIFAR10 and SVHN. Accuracy of the proposed mod-
els are the highest with high confident predictions, making
them more reliable. We have found that ALT-NODE perfor-
mance is better than all the models. Learning input specific
distribution helps in capturing uncertainty better. LT-NODE
performed better than all except ALT-NODE, showing that
learning a distribution over end-times in general improves
uncertainty modeling capability.

Performance on Out of Distribution Data We conduct
experiments to study the performance of the models on out-
of-distribution (OOD) data by training them on either CI-
FAR10 or SVHN and testing them on the other. We ex-

pect a good model to exhibit a high uncertainty on the test
data set which is measured using the entropy score. En-
tropy measures the spread of the predictive probability across
the classes and expects a higher entropy (higher spread) on
OOD data. We analyse the entropy histogram of the mod-
els for the OOD data in Figure 4(c) and (d). We can ob-
serve that for the case where models trained on CIFAR10
and tested on SVHN (Figure 4 (c)), the proposed models
have a better entropy histogram. They have higher number
of points with high entropy and vice-versa compared to the
baselines, reflecting their superior uncertainty modelling ca-
pability on OOD data. In summary, the average entropy val-
ues on OOD data (SVHN) when trained on CIFAR10 are,
NODE: 0.572 ± 0.062, SDE-Net: 0.792 ± 0.354, NODE-
GP: 0.495± 0.0298, Uni-NODE: 0.668± 0.040, LT-NODE:
1.074 ± 0.078, ALT-NODE: 1.444 ± 0.050. Our proposed
models having the higher entropy values, exhibiting higher
uncertainty over OOD data. In Figure 4 (d) (training on
SVHN and testing on CIFAR10), although SDE-Net hav-
ing larger number of points on the ends of the histogram
spectrum, our proposed models have the better average en-
tropy values, NODE: 0.617±0.021, SDE-Net: 1.421±0.078,
NODE-GP: 0.885± 0.034, Uni-NODE: 0.808± 0.111, LT-
NODE: 1.537 ± 0.067, ALT-NODE: 1.723 ± 0.034. ALT-
NODE is found to give best results in this setting as well.

Robustness Evaluation Deep learning models are prone
to adversarial attacks (Goodfellow et al. 2016; Szegedy et al.
2013). To check robustness of models, we conduct experi-
ments to evaluate their performance under FGSM (Goodfel-
low, Shlens, and Szegedy 2014) attack on MNIST, F-MNIST,
CIFAR10 and SVHN. Figures 4(e),(f),(g), and (h) shows
the robustness of the models in terms of error against in-
creasing perturbation strength ϵ of FGSM attack. The pro-
posed models LT-NODE and ALT-NODE performed well
with low error on all the data sets except SVHN, demon-
strating their robustness against adversarial attack. We want
a model to exhibit low error but show uncertainty while
making a prediction on adversarial input. We provide the
entropy values computed by the models trained on CIFAR10
and tested on adversarial images generated with strength
0.2 : ALT-NODE:0.99, LTNODE:0.81,SDE-Net:0.76,Uni-
NODE:0.42,NODE:0.44,NODE-GP: 0.33. LT/ALT-NODE
models have the highest entropy values demonstrating their
robustness and uncertainty modelling capabilities.

Conclusion
We proposed a novel method to model uncertainty in NODE
by learning a distribution over latent end-times. The proposed
approaches can compute uncertainty efficiently in a single
forward pass and helps in end-time selection in NODE. The
proposed models, LT-NODE and ALT-NODE were shown to
have good uncertainty modelling and robustness capabilities
through experiments on synthetic and real-world data image
classification data. We expect to further improve their per-
formance by considering a multi-modal variational posterior
distribution as a future work. The proposed NODE models
could bring advances in computer vision applications like au-
tonomous driving where uncertainty modeling is important.
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