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Abstract

Conventional convolution neural networks (CNN5s) trained on
narrow Field-of-View (FoV) images are the state-of-the art
approaches for object recognition tasks. Some methods pro-
posed the adaptation of CNNs to ultra-wide FoV images by
learning deformable kernels. However, they are limited by the
Euclidean geometry and their accuracy degrades under strong
distortions caused by fisheye projections. In this work, we
demonstrate that learning the shape of convolution kernels in
non-Euclidean spaces is better than existing deformable ker-
nel methods. In particular, we propose a new approach that
learns deformable kernel parameters (positions) in hyperbolic
space. FisheyeHDK is a hybrid CNN architecture combining
hyperbolic and Euclidean convolution layers for positions and
features learning. First, we provide intuition of hyperbolic
space for wide FoV images. Using synthetic distortion pro-
files, we demonstrate the effectiveness of our approach. We
select two datasets - Cityscapes and BDD100K 2020 - of per-
spective images which we transform to fisheye equivalents at
different scaling factors (analogue to focal lengths). Finally,
we provide an experiment on data collected by a real fisheye
camera. Validations and experiments show that our approach
improves existing deformable kernel methods for CNN adap-
tation on fisheye images.

Introduction

Fisheye cameras are designed with ultra-wide field of view
(FoV) lenses to offer wide images. They are commonly
used in many computer vision applications. In particular, au-
tonomous vehicles heavily rely on perception tasks such as
semantic segmentation and object detection from the envi-
ronment surrounding the vehicle for path and motion plan-
ning, driving policy, and decision making (Deng et al. 2020;
Yogamani et al. 2019). To optimize the load on autonomous
vehicles, only four fisheye cameras each with FoV up to
180° can be used to provide the total 360° scene coverage
(Yogamani et al. 2019). Automated drones (Hrabar et al.
2005), augmented reality (Schmalstieg and Hollerer 2017)
and surveillance (Kim et al. 2015) are other interesting ap-
plications of large FoV cameras. However, unlike pinhole
projection models of narrow FoV cameras (where straight
lines in 3D world are projected to straight lines in image
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plane), fisheye images suffer from non-linear distortion in
which straight lines are mapped to curvilinear (distorted
lines) to provide large FoV on a finite spatial support. Ac-
cording to (Kannala and Brandt 2006), fisheye distortion
does not obey one specific projection model. A general poly-
nomial mapping of fourth order was proven to be an ac-
curate approximation of fisheye camera model (Yogamani
et al. 2019; Yin et al. 2018). This model was used to synthe-
size fisheye effects on perspective images. It was also used
for calibration and distortion correction prior to fisheye im-
age recognition tasks. However, estimating the parameters
of the polynomial model of order four is an inverse problem
which is ill-posed, in practice, under the lack of information
and careful assumptions. In this paper, we address the chal-
lenge of ultra-wide FoV image recognition without the need
for distortion correction. A challenge that is quite recent in
computer vision research areas.

Convolutional neural networks (CNNs) have achieved
state-of-the-art results on perception tasks when trained
on perspective images. However, their performance signif-
icantly drops when applied on or transferred to fisheye im-
ages. Convolution networks rely on the translation invari-
ant property and use fixed kernel shapes over all image
plane. The translation invariance property makes their train-
ing harder on fisheye images because of the spatially varying
distortion. Therefore, some CNN model adaptation methods
based on kernel adaptation and learning were proposed to
solve recognition tasks from large FoV images. Our work
is inspired by the deformable kernel learning concept (Dai
et al. 2017; Jeon and Kim 2017) which aims to learn lo-
cal offset fields prior to convolution units in standard CNNs.
Here, we propose a novel method that learns deformable ker-
nels in hyperbolic spaces for wide FoV images; we gener-
alize the original concept to provide a flexible solution for
non-linear offsets.

Motivation We are motivated by learning CNNs aware to
the geometric distortions tied to wide FOV cameras such as
fisheye. We assume an existing analogy between hyperbolic
space, more particularly the Poincaré Ball Model, and fish-
eye projections. The poincaré ball is a stereographic pro-
jection of the hyperbolic space on a disk in image plane
(Fig. 2). The poincaré ball is a conformal mapping that pre-
serves angles between distorted lines. We can thus obtain
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Figure 1: Learning deformable kernels in hyperbolic space
for adapting CNN:ss to large FoV (fisheye) images. Image and
input feature maps are represented on a graph and mapped to
the poincaré disk for learning positions in a (k X k) receptive
field K, at every spatial location x.

a one to one correspondance (bijective mapping) between
Euclidean and hyperbolic spaces for kernel sampling. Our
intuition is to learn local displacements of deformable ker-
nels on diffeomorphisme using geodesic (Poincaré) metric
of non-Euclidean space to better capture smooth non-linear
distortions of fisheye effects.

Contributions In this work, we introduce FisheyeHDK,
a hybrid neural network that combines hyperbolic and Eu-
clidean convolution layers to learn the shape and weights
of deformable kernels (Fig. 1), respectively. We build de-
formable kernel functions on top of existing convolution lay-
ers of Euclidean CNNs. Using synthetic fisheye data, we
conduct extensive experiments and ablation studies to illu-
minate the intuition behind our approach and demonstrate its
effectiveness. The data generation process implies convert-
ing narrow FoV datasets (perspective images) to distorted
ones using fisheye polynomial model controlled by setting
the focal length-like parameter at arbitrary values generat-
ing different severity levels of distortion. For this task, we
selected Cityscapes ! and BDD100K ? datasets with pixel-
level annotations. Through our experiments we provide in-
depth analysis on the effect of learning deformable kernels
in both Euclidean and hyperbolic spaces. We show that our
method improves the performance of CNN semantic seg-
mentation by an average gain of 2% on synthetic distor-
tions. We also provide experimental results on a set of real-
world images collected from fisheye camera and show that
our method has better accuracy than baseline methods (more
than 3%).

Related Works

Fisheye augmentation Recent research works have
started studying how to directly adapt existing state-of-the-
art object recognition models to fisheye images. In the con-
text of object detection, Goodarzi et al. (Goodarzi et al.
2019) have optimized a standard CNN detector for fisheye
cameras through data augmentation in which synthetic fish-
eye effect was generated on training data using radial distor-

Uhttps://www.cityscapes-dataset.com/
“https://bdd-data.berkeley.edu/
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Figure 2: The stereographic projection of the second half
sphere from north pole is analogue to the projection of hy-
perboloid on poincaré disk.

tion. Ye et al. (Ye et al. 2020) have recently learned a univer-
sal semantic segmentation CNN on urban driving images us-
ing a seven degrees of freedom geometric transformation as
fisheye augmentation. Although, fisheye augmentation and
fine-tuning are the simplest model adaptation techniques,
there exist a fundamental limitation in applying these tech-
niques with CNNs. The spatially variant (non-linear) dis-
tortion caused by large FoVs breaks the translation invari-
ance property of the standard CNNs designed on regular grid
structures (Yogamani et al. 2019).

Kernels adaptation Some works proposed to transfer pla-
nar CNNs on sphere assuming that fisheye lens produces
spherical images (Coors, Condurache, and Geiger 2018;
Su and Grauman 2019). To minimize distortion, SphereNet
(Coors, Condurache, and Geiger 2018) adapts the sampling
locations of convolution kernels using projection on sphere
and tangent plane. Kernel Transformer Network (Su and
Grauman 2019) uses equirectangular projection of spheri-
cal images to adapt the shape of the kernel based on match-
ing activation maps between perspective and equirectangular
images. These methods originally proposed for FoV cam-
eras of 360° in which the resulted image can be perfectly
projected on a sphere. The problem with fisheye cameras is
that the FoV can vary between 180° and 280°. This makes
the sphere adaptation not an optimal solution for fisheye im-
ages as reported by (Yogamani et al. 2019). Fisheye im-
age could be the result of one of four projections: Stere-
ographic, Equidistant, Equi-solid and Orthogonal (Kannala
and Brandt 2006) based on the large FoV lens properties. An
inverse mapping to a region on the sphere requires knowing
a priori the FoV and center of distortion.

Learning deformable kernels Instead, learning de-
formable kernels is a projection-free concept which is
generic and applicable to FoVs smaller than 360°. Our work
is related to this line of research. Deformable Convolution
Network (DCN) is originally proposed by (Dai et al. 2017)
and applied on perspective images to improve recognition
tasks. The DCN augments standard convolution layers with
learnable 2D offsets to sample deformable kernels for con-
volution operations. Here, kernels are sampled at each lo-
cation in the spatial support of input features. Later, (Deng



et al. 2020) have directly applied this idea on fisheye images
for semantic segmentation. However, to preserve the spatial
correspondence between input images and the predicted se-
mantic maps, they proposed a slight modification. They re-
stricted offsets learning only in the neighbour locations of
the kernel’s center which kept unlearnable. This modified
version of deformable convolution was called RDC (Deng
et al. 2020). We argue that fixing the center of the kernel
cannot resolve the fundamental limitation inherit in learn-
ing offsets in Euclidean space for wide FoV images. Com-
pared to them, our method is more generic and flexible. It
learns those kernels in hyperbolic space, more particularly,
Poincaré ball model of hyperbolic space, and show that this
model better captures fisheye effect than Euclidean meth-
ods. A new insight that could inspire future research on non-
perspective cameras. The shape of convolution kernels is
learnable and change flexibly over the spatial support, which
makes CNN model adaptation applicable on large to ultra-
wide FoV cameras. We provide a figure illustrating these
effects on a toy example in supplementary material (Ahmad
and Lecue 2022).

Review of Hyperbolic Geometry and the
Poincaré Ball

An d-dimensional hyperbolic space, denoted H, is a ho-
mogenous, simply connected, n-dimensional Riemannian
manifold with a constant negative curvature c. Analogous to
sphere space (which has constant positive curvature), hyper-
bolic space is a space equipped with non-Euclidean (hyper-
bolic) geometry in which distances are defined by geodesics
(shortest path between two points). Hyperbolic space has
five isometric models: the Klein model, the hyperboloid
model, the Poincaré half space model and the Poincaré ball
model (Cannon et al. 1997). A mapping between any two
of these models preserves all the geometric properties of the
space. In this work, we choose the Poincaré ball model due
to its conformal mapping properties (w.r.t. Euclidean space)
and analogy to fisheye distortion. The Poincaré ball model
is defined by the Riemannian manifold (D9, gP¢), where
D¢ := {x € RY|z|| < 1/y/c} is an open ball of radius
1/4/c and its Riemannian metric is given by gPc = (\¢)2g®
such that A, := ﬁ and g% = 1, denotes the Euclidean
metric tensor (the dot product). The induced distance be-
I = y?

tween two points x,y € DY is given by
142 >
Ve ( (1*C||13H2)(1*0Hy||2)(1)

In hyperbolic space, the natural mathematical operations
between vectors, such as vectors addition, subtraction and
scalar multiplication are described with Mobius operations
(Ungar 2008). The Mobius addition of z and y in D¢ is de-
fined as

dID)c (SL’, y) =

(1 + 2c(z,y) + cllyl®)z + (1 = cllz]*)y
14 2¢(z, y) + [ |ly]?

T By = )
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and the Mobius scalar multiplication of z € D4\ {0}, ¢ > 0,
by a € R is defined as

T

1
a ®c = —= tanh (a tanh™! \/EHx”) )
c

NG

Note that subtraction can be obtained by z ®. (—1 ®. y) =
z ®. —y. When ¢ goes to zero, one recovers the natural Eu-
clidean operations. The bijective mapping between the Rie-
mannian manifold of the Poincaré ball (Dg) and its tangent
space (Euclidean vectors 7,D9 = R?) at given point is de-
fined by the exponential and logarithmic maps. To do so,
Ganea et al. (Ganea, Becigneul, and Hofmann 2018) derived
a closed-form of the exponential map exp¢ : T,D¢ — DY
and its inverse log$, : D¢ — T, D4 for v # 0 and y # x such
that

]

expl(v) = = B, <tanh (ﬁA”’;}”) \ﬁvz}H)
4)
c 2 — —T @c y
logg (y) = NGT tanh™" (Vel| — = @c y]) T—z oyl
(5)

As reported by (Ganea, Becigneul, and Hofmann 2018), the
maps have nicer forms when £ = 0. This makes the map-
ping between Euclidean and hyperbolic spaces obtained by
expg and logg more useful in practical point of view.

Proposed Approach

In this section, we introduce the proposed FisheyeHDK ap-
proach. Our method does not require a ground truth infor-
mation of fisheye geometry but updates the parameters of
deformable kernels from optimizing CNN features through
back-propagation. During training, hyperbolic deformable
kernels are mapped to the Euclidean space and used in CNN
layers to compute the output feature map (see Fig. 3). Sec-
tion explains how the input features are encoded in hy-
perbolic space to implement the HDK network. Section
presents the architecture of the HDK network and CNN im-
plementation with deformable kernels.

Input Representations for HDK Network

To leverage spatial information with feature vectors in hy-
perbolic space we represent input feature maps as graphs.
Images can naturally be modeled as a graph. The simplest
graph model is defined on regular grid, where vertices cor-
respond to pixels encoding features information and edges
represent their spatial relations. This representation, how-
ever, requires considerable computations and memory for
large grids. To alleviate such complexity and reduce inputs
dimensionality, we downsampled the resolution of spatial
grids by a factor of 2™ (m = 2 as default). This allowed
faster computations with insignificant effect on the perfor-
mance, and enabled generating the graph from input fea-
tures online. We used CUDA implementations and the open
source library Pytorch-geometric 3 to generate graphs from

*https://github.com/rusty 1s/pytorch_geometric



Euclidean space

Hyperbolic space

Euclidean space

Graph embedding of features

L

A

Features

¢ Features*
map 1

R Hyperbolic) )

Mbobius
conv
(Wh, brn)

Logo
map

_

(2N) (N=kernel size)

Weighting matrix
(Adjacency)

| A
&) I‘~ CNN Layer

Positions Field

Figure 3: FisheyeHDK convolution layer. HDK network is one hyperbolic convolution layer predicting the positions in a
deformable kernel of size (k x k) for each point of the spatial support. Conventional (Euclidean) convolution is applied between

the weights sampled at predicted positions and input feature map.

grid feature maps. Consequently, the input to the HDK net-
work are: vertices matrix V' € RV*? where N is the num-
ber of vertices and d is the feature dimension, and adjacency
matrix A of size N X N encoding the spatial information.
We refer to supplementary material for more details about
image to graph generation.

FisheyeHDK Architecture

To implement FisheyeHDK, we build a hybrid architecture
combining non-Euclidean (hyperbolic) convolution layers
for kernel’s positions learning and Euclidean convolution
layers for features learning. Euclidean convolution layers
belong to a conventional CNN model chosen from exist-
ing architectures. These layers apply convolution on an in-
put feature map using deformable kernels sampled from the
output of hyperbolic layers as shown in Figure 3. Hyperbolic
convolution layers use preceding feature maps converted to
graph to learn the shape of deformable kernels in hyperbolic
space. We describe in the following the hybrid components
of the proposed architecture.

HDK network comprises one hyperbolic convolution
layer. Euclidean feature vectors are projected on hyperbolic
space using Exp. map as described in Eq. (6):

H, = expg(Fy), 6)

where F), is the Euclidean feature vector, and H,, is its pro-
jection on hyperbolic space for a give vertex v. A Mobius
layer performs linear transformations on feature vectors in-
side Poincaré Ball (Egs. (2) and (3)). Mobius features are
mapped to the Euclidean space using the Log mapping as
shown in Fig. 3, and the spatial information encoded by
the adjacency matrix are aggregated with projected features
on the tangent (Euclidean) space using an aggregation layer
such as

K =logg (W, ®@. H) ®: bp) © A, @)

where ©® denotes element-wise product, W}, and by, are hy-
perbolic weights and bias vectors, K is a dense map of de-
formable kernels representing the positions inside (k x k)
window at every point of the grid. We used the open source
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library geoopt # to build the HDK network. Additional de-
tails about the HDK network are provided in supplementary
material (Ahmad and Lecue 2022).

Experiments

In this section, we present our experiments on the task of se-
mantic segmentation. For the sake of generalization to other
recognition tasks, we focus on the encoder components of
the CNN model and demonstrate the effectiveness of hy-
perbolic deformable kernels versus their Euclidean counter-
parts for large FoV images. We tested our approach on three
datasets. Two datasets of perspective images were trans-
formed to fisheye using the general fisheye model. We rely
on the model used in the open source library OpenCV °.
The third dataset are real-world images collected by a fish-
eye camera.

Datasets

Cityscapes are perspective images with pixel-level anno-
tations collected from urban German cities. The dataset
comprises 5000 images divided into train, validation and test
sets (2975, 500 and 1525 images respectively). Annotations
consist of 30 classes but only 19 are defined as valid. The
test set is provided without annotation maps, therefore we
only used train and validation sets. The validation set was
used as the test set and the original training set was split
in two (0.9/0.1 ratio) for training and validation purposes.
Their original resolution is (1024 x 2048) pixels. Three fish-
eye datasets were generated from perspective cityscapes im-
ages using the following focal lengths: 200, 125 and 50. Im-
ages and ground truth maps are resized to (512x1024) pixels
in all three datasets.

BDD100K A large-scale divers dataset recently released
for perception tasks in autonomous driving. It was collected
from divers and complex environments in US cities. The
dataset for the segmentation task is composed of 10000
perspective images with fine-grained pixel-level annotations

*https://github.com/geoopt/geoopt
Shttps://docs.opencv.org/3.4/db/d58/group__calib3d__fisheye.
html



# First layers (1) # Last layers (1)
Method =1 T=3 [=6[7T=1 [=3 [=6[T=all
RDC (Deng et al. 2020) | 57.9 58.0 579 | 57.8 57.7 579 | 56.8
FisheyeHDK (Ours) 58.3 58.4 58.5 | 58.5 59.6 59.3 | 58.0

Table 1: Test results of Mean intersection over union (mloU (%)) on distorted cityscapes with f = 200. Deformable kernels
are applied on ResNet101 module. First and last layers are convolutions starting from conv1 and layer4.1.conv3, respectively.

(including 40 object classes). Images and annotations are di-
vided into train, validation and test sets (7000, 1000, 2000,
respectively). Their original resolution is (720 x 1280) pix-
els. Annotations are not provided in the test set. Similar to
Cityscapes, we use the validation set as test set and split
the original train set into two sets: 6500 for training and
500 for validation. For the experiments conducted on this
dataset, we generated two fisheye datasets using smaller fo-
cal lengths set to the values of 75 and 50. Images and ground
truth maps are resized to (700 x 1024) pixels.

Real data A dataset collected using real fisheye cameras
mounted in a driving vehicle. The dataset comprises 800
real-world images with pixel-level annotations similar to
Cityscapes. Annotations include few set of classes which
are: person, car, train, truck, traffic light, cyclist, motorcycle
and bus. The resolution of fisheye images is (512 x 1024)
pixels. We randomly split the dataset into three sets: 680
for training, 20 for validation and 100 images for testing.
We kept the original resolution of images during all train-
ing phases. We apply data augmentation by randomly left-
right flipping and by randomly changing color information
(brightness, contrast, hue and saturation) during training.

Implementation Details

Training protocol Without loss of generality, we built
hyperbolic deformable kernel components on top of the
DeepLabV3 architecture. Any alternative semantic segmen-
tation network can work. We trained the model on 2 GPUs
using synchronized batch-norm. We implemented the pixel-
wise weighted cross-entropy as a loss function. For base-
lines, we used Stochastic Gradient Decent (SGD) optimizer
with momentum 0.9 and weight decay 5 x 10~%. The learn-
ing rate was initialized to 1 x 10~ for the encoder and
1 x 102 for the decoder; both are updated using the “poly”
learning rate policy. Our approach comprises both Euclidean
and hyperbolic parameters. For hyperbolic parameters, we
adopted the Riemannian SGD (RSGD) (Bonnabel 2013)
with a learning rate (1 x 10~2) since they are manifold pa-
rameters and used usual SGD for the Euclidean parameters.
We provide more details on optimization in supplementary
material (Ahmad and Lecue 2022). We initialized the en-
coder and decoder parameters of the CNN layers with Im-
ageNet weights. We initialized the hyperbolic weights 1},
using the Xavier uniform distribution and hyperbolic biases
by, with zeros for HDK layers. Euclidean deformable kernel
weights were initialized by zeros as in (Deng et al. 2020).
For the synthetic fisheye dataset, we set the training batch
size to 16 and the validation batch size to 4. For real fisheye
data, we set the batch size to 8 during training and validation.
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Cityscapes Dataset
Distortion mloU/mAcc (%)
level (f) Rect+Se§ RegCNN\ RDC \ Ours
50 16.3/25.8| 45.8/61.2| 48.6/60.8| 49.8/61.5
125 44.6/51.9| 51.3/70.0| 54.3/69.4| 55.9/70.0
200 54.4/62.1| 53.6/71.8| 57.7/71.6| 59.6/72.1
BDD100K Dataset
mloU/mAcc (%)
50 6.9/12.3 | 30.2/40.6| 40.2/52.7] 40.5/53.0
75 16.9/24.7| 38.9/51.7| 42.8/57.6| 44.0/56.6

Table 2: Effect of distortion on the performance of segmen-
tation model augmented with deformable kernels in last 3
layers of ResNet101. Smaller is f, stronger is the distortion.
We report the results on the test sets of dataset transformed
to fisheye.

Method train/val test time | Size
speeds (on | (on one | (MB)
epoch) image)

RegCNN 634.3/33s | 0.270s | 237.9

RDC (Deng et al. 2020) | 656/34s 0.278s 238.9

FisheyeHDK-4 680/44s 0.318s 238.0

FisheyeHDK-8 650/35s 0.288s 238.0

Table 3: Comparative results using cityscapes dataset (2677
train images, 298 val images) converted to fisheye. All net-
works are trained on 2 Nvidia Tesla P100 GPUs each with
16Gb memory. Images resolutions is (512 x 1024) pixels

In all experiments, we trained the models for 100 epochs. We
used per-class accuracy and the standard mean Intersection-
Over-Union (mloU) as evaluation metrics for validation (af-
ter each epoch) and testing on test sets after training. We re-
port evaluation metrics on the “valid” classes provided with
Cityscapes and BDD100K datasets. Void class, correspond-
ing to unsegmented or irrelevant objects, and image’s bor-
ders resulted from fisheye transformation were ignored.

Baseline Models

We compare our approach with conventional CNN mod-
els, and with existing deformable convolution methods (Dai
et al. 2017; Deng et al. 2020). We choose one as both learn
offsets in same way and our preliminary tests did not show
significant differences (see supplementary material in (Ah-
mad and Lecue 2022) for details). We report in this paper
the experiments conducted on the RDC method (Deng et al.



Per-Class IoU / Per-Class Accuracy (%)

Method traffic light  person car truck bus train motorcycle mloU/mAcc
Rect+Seg - 26.7/29.2 57.5/70.6 - - - - 42.5/49.9
RegCNN 65.6/88.6 86.7/88.3 77.8/93.4 72.7/79.7 58.6/1.00 25.8/26.3 69.7/69.8 65.3/78.0
RDC (Deng et al. 2020) | 64.5/83.6 96.5/97.8 78.9/94.0 69.4/75.6 71.8/99.0 79.4/85.9 73.3/73.8 76.3/87.2
FisheyeHDK 63.0/91.5 96.2/97.4 83.6/95.2 81.7/85.4 71.7/99.0 81.9/83.2 82.9/83.1 80.1/90.8

Table 4: Per-class accuracy and IoU (%) on the test set of real fisheye images.

2020). Even though deformable convolutions can be built on
any state-of-the-art CNN architecture, we limit our imple-
mentations to one CNN semantic segmentation model and
focus on the effect of hyperbolic and Euclidean deformable
kernels. We re-implement the RDC approach on fisheye
datasets that we generated with different focal length values
using same training protocols. As a baseline CNN segmenta-
tion model, we choose the DeepLabV3 architecture in which
deformable kernels are applied in the backbone component
of the encoder (ResNet101). We report additional results on
other backbone architectures in supplementary material. Ac-
cordingly, two baseline models were used for comparisons:
a regular CNN without deformable kernels (RegCNN) and a
deformable one based on (Deng et al. 2020). Additional to
these baselines, we compared with fisheye undistortion tech-
nique (based on inverted equidistant projection) prior to a
standard pre-trained segmentation network (Rect+Seg). The
segmentation network is a DeepLapV3 trained on original
cityscapes images.

Ablation Study

We investigate the effect of using deformable kernels in
CNN for distorted images. Then, we analyze the distortion
level’s impact on the CNN model’s performance with an em-
phasize on the segmentation task. Finally, we analyze the
efficiency of our approach compared to baselines.

Connection of deformable kernels and distortion In this
study, we answer the question: “which CNN layers needed
to be deformable to learn better representations from dis-
torted inputs?”’. We hypothesize that low-level and high-
level features are strongly correlated with fisheye distortion.
Low-level layers capture spatial information such as dis-
torted edges and lines, while high-level features represent
semantic information of distorted objects. Typically, distor-
tion is more visible in low-level features, however, it is un-
clear to what extent deformable kernels used only on first
layers would improve learning in the following convolution
layers. In baseline methods (Dai et al. 2017; Deng et al.
2020), convolutions with deformable kernels were limited
to the few last layers of the CNN. To provide a deeper un-
derstanding on the relation between deformable kernels and
fisheye distortion, we experiment all layers with emphasize
on low-level and high-level layers. Therefore, both HDK and
RDC networks were added prior to the CNN layers of the
backbone module. We started with low-level layers and pro-
gressively added deformable kernels to [ convolutional lay-
ers, (I = {1, 3,6}), then we did the same protocol on the last
layers and finally on all layers. For this analysis, we used
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perspective cityscapes dataset transformed to fisheye with
f = 200. Table 1 shows the mloU results of the segmen-
tation model. As expected, augmenting low-level and high-
level convolution layers with learned positions improves the
performance better than using deformable kernels in all lay-
ers. According to these results, we can apply deformable
convolution on few low-level or high-level layers and have
almost similar performance. In the next of our experiments,
we select as default the backbone variant with deformable
convolution in the last three layers. Moreover, Table 1 shows
that HDK networks improve the performance of the model
compared to their Euclidean counterparts.

Distortion effect on CNN performance The level of dis-
tortion in large FoV images depends on fisheye lenses. Se-
vere geometric distortions result from using lenses with
small focal length (f) to compensate wide FoV angles (0)
when rays (R) projected on finite image plane (R = f.6). In
this experiment, we test our approach and the baseline meth-
ods on perspective datasets transformed to fisheye using dif-
ferent distortion levels: f € {50, 75,125,200}. Table 2 re-
ports the quantitative results of the performance of segmen-
tation model. Figure 4 shows qualitative results of different
methods. As expected regular CNN is the worst-performing
on distorted images. Our approach improves regular CNN
better than RDC approach on both datasets (Cityscapes and
BDD100K). Undistortion has bad influence on segmentation
performance and leads to a loss of FoV.

Efficiency and model size As mentioned in Section ,
HDK inputs are represented as structure of graph with NV
nodes and (N x N) adjacency matrix. Feature maps should
be converted to graph during training which adds additional
computational cost to the model. The training speed de-
creases significantly when deformable kernels applied on
high spatial resolutions. To keep efficiency comparable to
regular CNN and RDC, we tested the performance versus
training speed using two downsampling factors 2™ with
m [2, 3]. We refer to these networks by FisheyeHDK-
4 and FisheyeHDK-8, respectively. Table 3 lists the com-
parative results with baseline methods. Our method is ef-
ficient and more accurate than the deformable convolution
network when spatial inputs are downsampled by a factor
of 4. Our method becomes significantly slower when using
lower downsampling (m = 1). This is due to the computa-
tional cost needed to compute adjacency and upsample the
kernels field up to the spatial resolution of the features input.
Furthermore, strong downsampling leads to loss of informa-
tion which could degrade the performance of our approach.
Our approach does not significantly increase the size of the
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Figure 4: Qualitative results of different segmentation methods. On BDD100K dataset, we considered the road label as a void

class.

baseline CNN architecture compared to the RDC. As illus-
trated in Table 3, all methods are close to the baseline CNN
when deformable kernels applied on the last three layers.
However, this result changes when deformable kernels net-
works are used prior to all backbone layers. Our model re-
mains relatively light 238.5MB (+0.25%), while the model
size of the of RDC method increases to 243.3MB (+2.2%).
In supplementary (Ahmad and Lecue 2022), we provide a
comparison between inference times of both methods.

Evaluation on Real Data

Given the small size of this dataset, we applied transfer
learning of feature weights from the baseline segmenta-
tion model trained on perspective cityscapes to real fish-
eye dataset and trained FisheyeHDK network for only 20
epochs. Deformable kernel network parameters were initial-
ized as explained in Section , and used only in the last 3
layers of the backbone module. Table 4 shows the quantita-
tive results of per-class metrics (accuracy and IoU). The av-
eraged metrics show that our method outperforms the base-
line methods. On real fisheye distortion, the results prove
that deformable kernel methods are better than using regu-
lar kernels in conventional CNN models. Segmentation after
undistortion seems highly affected by the loss of FoV on
this dataset. Some classes are ignored because they become
less representative after undistortion. It is worth noting, for
future work, that the small size of data reflects the reality
of our world where the access and cost of annotating data
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is crucial. Further improvements and validations of our ap-
proach would consider this bottleneck.

Conclusion

In this work, we introduced FisheyeHDK, a method that
adapts regular CNN models on large FoV images based
on deformable kernel learning. We proposed a novel ap-
proach that learns the shape of deformable kernels (posi-
tions) in hyperbolic space and demonstrated its effective-
ness on synthetic and real fisheye datasets. For the first time,
we empirically demonstrated that hyperbolic spaces could
be a promising approach for deformable kernel sampling
and CNN adaptation to ultra-wide FoV images. Our goal is
to provide new insights and inspire future research on non-
Euclidean (hyperbolic) geometry for learning deformations
from ultra-wide FOV images. We do not intend, in this work,
to providing high metrics analogue to perspective images in-
stead to show that deformable kernels learned in Euclidean
space are not the optimal solution for fisheye images. We
keep further improvements to future work and we will ex-
plore the feasibility of using our approach in object detec-
tion models. An exciting line of research is to examine the
capability of FisheyeHDK model to adapt faster to different
tasks without retraining the Euclidean part (features) of the
network. That could be crucial due to the lack of annotated
fisheye data.
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