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Abstract

Recently, many regression based conditional independence
(CI) test methods have been proposed to solve the problem of
causal discovery. These methods provide alternatives to test CI
by first removing the information of the controlling set from
the two target variables, and then testing the independence
between the corresponding residuals Res1 and Res2. When
the residuals are linearly uncorrelated, the independence test
between them is nontrivial. With the ability to calculate inner
product in high-dimensional space, kernel-based methods are
usually used to achieve this goal, but still consume consid-
erable time. In this paper, we investigate the independence
between two linear combinations under linear non-Gaussian
structural equation model. We show that the dependence be-
tween the two residuals can be captured by the difference
between the similarity of (Res1, Res2) and that of (Res1,
Res3) (Res3 is generated by random permutation) in high-
dimensional space. With this result, we design a new method
called SCIT for CI test, where permutation test is performed
to control Type I error rate. The proposed method is simpler
yet more efficient and effective than the existing ones. When
applied to causal discovery, the proposed method outperforms
the counterparts in terms of both speed and Type II error rate,
especially in the case of small sample size, which is validated
by our extensive experiments on various datasets.

Introduction
Independence and conditional independence (CI) are central
notions in statistical model building, as well as being a foun-
dational concept for much of statistical theory. In the problem
of causal discovery, independence and CI tests are usually
used for testing CIs among variables. In constraint-based
methods (Pearl and Mackenzie 2018), the CI relationship
x y y|Z allows us to separate x−y when constructing a proba-
bilistic model based on the joint distribution, which results in
a parsimonious representation (Zhang et al. 2011). By using
CI tests, constraint-based methods (Pearl 2009) can generally
return a partial directed acyclic graph (DAG) (Pearl 2009).
In the causal functional model (Velikova et al. 2014; Peters
et al. 2012; Zhang et al. 2016), there is a solution to infer
causal directions by testing the independence between the
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set of independent variables x and the corresponding residual
Rx→y (or the causal process of P(y|x)).

Without given any assumption or precondition, CI test-
ing is generally more difficult than independence testing.
Many existing methods are based on explicit estimation of
conditional densities or their variants such as ranks, kernel,
copulas, nearest neighbours and discretizing-based method-
s (Diakonikolas and Kane 2016). For example, the characteri-
zation of CI of Px|yZ=Px|Z can be used to test CI by measuring
the distance between two conditional densities (Su and White
2008). Due to the curse of dimensionality, inevitably the re-
quired sample size increases dramatically with the size of
controlling set Z, which makes accurate estimation of con-
ditional density or related quantity hard to be accomplished.
Assume that Z contains only one variable with a finite num-
ber of values {z1, ..., zk}, then x y y|Z iff x y y|Z=zi for each
value zi. Given a sample of size n, even if the data are dis-
tributed evenly on the values of Z, we must ensure that the
independence within each subset of the sample with the same
Z value by using only approximately n/k data points in each
subset. When Z is continuously distributed or contains several
variables, the observed values of Z are almost surely unique.
To extend the above procedure to the continuous cases, we
must consider the neighboring values of Z. However, it is
also difficult for us to find appropriate neighboring points.

As kernel functions are able to represent high order mo-
ments by calculating similarity of high-dimensional implicit
functions, a series of kernel-based CI tests were presented
to solve the above problems. In practice, mapping variables
into reproducing kernel Hilbert spaces (RKHSs) allows us
to infer properties of distributions like independence (Gret-
ton et al. 2006). Fukumizu et al. (2007) tested conditional
covariance by using Hilbert-Schmidt norm of conditional
cross-covariance operator, as the zero operator norm is equiv-
alent to x y y|Z when the RKHSs are characteristic kernels.
Daudin (1980) presented a characterization of CI that trans-
forms CI to a set of zero correlations of regression functions.
Concretely, x y y|Z if and only if for all ψ ∈ L2

xZ and φ ∈ L2
y

(L2
xZ and L2

y denote the spaces of square integrable function-
s of (x,Z) and y, respectively) such that E(ψ̃φ̃) = 0 where
ψ̃(x,Z) = ψ(x,Z) − rψ(Z) and φ̃(y,Z) = φ(y) − rφ(Z), where
rψ, rφ ∈ L2

Z are regression functions. To give an empirical
estimate of this characterization of CI, Zhang et al. (2011)
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developed a method called KCIT, which relaxes the spaces of
functions ψ, φ, rψ and rφ to RKHSs. (Doran et al. 2014) intro-
duced the PKCIT method that utilizes permutation to convert
the CI test problem into an easier two-sample test problem.
Strobl, Zhang, and Visweswaran (2017) used random Fouri-
er features to approximate KCIT. Lee and Honavar (2017)
employed a modified unbiased estimate of maximum mean
discrepancy to measure CI. Compared to discretization-based
CI testing methods, kernel methods exploit more complete
information of the data and incur less random error.

Recently, regression-based tests were proposed for CI test-
ing. Generally, these methods can be divided into two steps,
regression and independence test. An indispensable assump-
tion used by these methods is that any information of the con-
trolling set Z can be removed from x and y by regression. As
we know that this assumption is not always true but it works
well in general continuous cases. Especially, when the infor-
mation of Z can be totally removed from x and y by regres-
sion, regression-based CI tests generally works better than
kernel-based methods. Grosse-Wentrup et al. (2016) trans-
formed the CI of x y y|Z to independence between x − ψ(Z)
and (y,Z). (Zhang et al. 2017) used x − ψ(Z) y (y − φ(Z),Z)
to test x y y|Z. In the two methods, ψ (or φ) is obtained by
regressing x (or y) on Z, then CI test can be reduced to a set of
regression and independence tests. In practice, x − ψ(Z) y Z
is a strong condition, as x − E(x|Z) y Z ⇒ Z causes x in
many cases (Zhang and Hyvärinen 2009). On the other side,
when Z contains several variables, checking whether or not
P(x − ψ(Z)) is independent from the joint distribution P(y,Z)
or P(y − φ(Z),Z) tends to be prohibitively expensive. Note
that in the two methods, independent-residuals is just suffi-
cient but not necessary to meet CI. Flaxman, Neill, and Smola
(2016) showed that given structural faithfulness and Markov
assumptions (Pearl 2009), if Z causes x or y, x y y|Z is e-
quivalent to x − E(x|Z) y y − E(y|Z). Similarly, here a strong
condition that Z causes x or y is assumed, hence it is easy to
derive the corresponding causal relations. Moreover, faithful-
ness condition means that x y y|Z ⇒ x and y are d-separated
by Z, and Markov condition implies that y are d-separated
by Z ⇒ x y y|Z, so CI is relaxed to d-separation given the
faithfulness and Markov assumptions. However, CI is neither
sufficient nor necessary to d-separation. In practice, given the
faithfulness assumption, x−E(x|Z) y y−E(y|Z) and x y y|Z
have significant correlations. For example, in (Ramsey 2014),
the authors suggested to use x − E(x|Z) y y − E(y|Z) to test
x y y|Z under the faithfulness assumption. In (Zhang et al.
2017), the authors further conjectured that x−ψ(Z) y y−φ(Z)
can lead to x y y|Z under nonlinear and faithfulness condi-
tions, where ψ and φ are nonlinear functions, x, y and Z are
generated by nonlinear additive noise model. Zhang, Zhou,
and Guan (2018) showed that x − E(x|Z) y y − E(y|Z) is
sufficient to support x y y|Z if the data is generated by fol-
lowing the linear non-Gaussian structural equation model
(SEM) under the faithfulness assumption. As the residuals
can be easily calculated by linear regression, the performance
mainly depends on the independence test. Note that in this
case, cov(x − E(x|Z), y − E(y|Z)) = 0 often holds. Therefore,
it is difficult to detect the common component shared by
x − E(x|Z) and y − E(y|Z). To get the best performance, this

method (denoted by ReCIT) uses KCIT to achieve this goal,
but it is computationally rather demanding. In (Zhang et al.
2021), the authors used kurtosis to test independence, they
proved that in linear case with x 6y y, x − h ∗ y and x − h ∗ r
have different kurtosis, where h is the number of interpolation
points, k is the times of permutations. This methods works
very efficient in simple case. However, when the scenario be-
comes complicated with two residuals being very Gaussian,
it is easy to cause Type II error where the CI hypothesis is
not rejected although it is false.

In this work, we aim to test the independence between the t-
wo residuals Rx,Z = x−E(x|Z) and Ry,Z = y−E(y|Z) returned
by linear regression, where x =

∑l
i=1 aisi, y =

∑l
i=1 bisi,

z j =
∑l

i=1 cisi (∀z j ∈ Z) and s1,...,l are noise mutually inde-
pendent. We show that the dependence between residuals
can be captured by the difference between the similarity
of (Rx,Z ,Ry,Z) and that of (Rx,Z ,Rr) where Rr is an indepen-
dent copy of Ry,Z in high-dimensional space, denoted by
S [ψ(Rx,Z), ψ(Ry,Z)] and S [ψ(Rx,Z), ψ(Rr)]. We design an elab-
orate test criterion for measuring the difference between the
two S [∗], by kernel and permutation based methods. The
proposed method needs to calculate n × 1 similarity matrix
instead of the trace of product between two n × n matrices,
therefore it works more efficient. Extensive experiments show
that our method performs better on regression based CI test
than the counterparts, which can work faster and get a better
performance in causal discovery.

Similarity Based CI Test
In this work, we assume that the given variables are generated
by the linear non-Gaussian structural equation model (SEM),
which is defined as a tuple (S , P(X)) where S = {S 1, ..., S n}

is a collection of n equations, S i : xi=
∑

paxi +εi, i = {1, ..., n}
and paxi corresponds to the set of direct parents of xi in a
DAG G. The noise variables εi have a strictly positive density
with respect to the Lebesgue measure and are independent,
all of them have the same non-Gaussian distribution. SEM
reflects the data-generating processes of X in G. We say a
SEM is identifiable if it is asymmetrical in cause and effect
and is able to distinguish between them. In fact, linear SEM
is generally identifiable in non-Gaussian cases (Zhang and
Hyvärinen 2009).

Regression Based CI Test
Consider the task as follows: given two randomly selected
nodes x′ and y′, we want to test whether x′ and y′ are con-
ditionally independent given a set of variables Z. According
to the mechanism of regression based CI test, the CI test of
x′ y y′|Z can be relaxed to an independence test between two
residuals x = x′ − E(x′|Z) and y = y′ − E(y′|Z) in the linear
non-Gaussian case. As the residuals x and y can be easily
calculated by linear regression, the task turns to testing the
independence between x and y. Concretely, the two variables
(residuals) x and y are linear combinations of independent
noise si (i = 1, ..., l) such that x =

∑l
i=1 aisi, y =

∑l
i=1 bisi.

When x and y are correlated, we know x 6y y holds. However,
if x and y are uncorrelated, then it is difficult to check whether
x and y are independent or not. In what follows, we try to
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develop a low complexity method (compared to kernel-based
methods) to test independence between two residuals.

We know the mutual information of x and y is

I(x, y) =

"
p(x, y)log

p(x, y)
p(x)p(y)

dxdy (1)

Then, I(x, y) = 0 implies p(x, y) = p(x)p(y), i.e., x and y
are independent. In continuous case, we need to use some
methods to measure probability density. We first review how
the existing methods based on Hilbert-Schmidt independence
criterion (HSIC) work. Lets consider p(x, y) = p(x)p(y), then
for any ψ and φ, the square integrable function of x and y,
respectively, we have

C[ψ, φ]

=

"
p(x, y)ψ(x)φ(y)dxdy −

"
p(x)p(y)ψ(x)φ(y)dxdy

=Ex,y∼p(x,y)[ψ(x)φ(y)] − Ex∼p(x)[ψ(x)]Ey∼p(y)[φ(y)]
=0

(2)
Therefore, to solve this problem, we need to select enough ψ
and φ to see how close C[ψ, φ] is to zero. Consider

L =
∑
ψ,φ

(C[ψ, φ])2
(3)

if p(x, y) = p(x)p(y) holds, L = 0. We calculate (C[ψ, φ])2,

(C[ψ, φ])2

=Ex1,y1∼p(x,y),x2,y2∼p(x,y)[ψ(x1)ψ(x2)φ(y1)φ(y2)]
+ Ex1∼p(x),x2∼p(x),y1∼p(y),y2∼p(y)[ψ(x1)ψ(x2)φ(y1)φ(y2)]
− 2Ex1,y1∼p(x,y),x2∼p(x),y2∼p(y)[ψ(x1)ψ(x2)φ(y1)φ(y2)]

(4)

At this time, we can use kernel function to calculate the inner
product between any ψ and φ, then L can be changed to

L =Ex1,y1∼p(x,y),x2,y2∼p(x,y)[K(x1, x2)K(y1, y2)]
+ Ex1∼p(x),x2∼p(x),y1∼p(y),y2∼p(y)[K(x1, x2)K(y1, y2)]
− 2Ex1,y1∼p(x,y),x2∼p(x),y2∼p(y)[K(x1, x2)K(y1, y2)]

(5)

We need to multiply n × n kernel matrices, computing L is
expensive with complexity O(n3), n being the sample size.

CI Test Criterion Based on Similarity
In this section, we present a method for test CI based on
similarity. Consider three variables, x, y and r, where r is
an independent copy of y, that is y and r are independent
and identically distributed, r∼p(y). Intuitively, if x and y are
independent, then the similarity between ψ(x) and ψ(y) equals
to that between ψ(x) and ψ(r), denoted by S [ψ(x), ψ(y)] =
S [ψ(x), ψ(r)], where ψ is any square integrable function of
x, y and r. On the contrary, there must be some ψ such that
S [ψ(x), ψ(y)] , S [ψ(x), ψ(r)] if x and y are not independent.
Therefore, we can derive the following theoretical result,

Proposition 1. Given three random variables x, y and r,
where r is an independent copy of y, if x y y, then ∀ψ,
C[ψ(x), ψ(y), ψ(r)] = 0; if x 6y y, then almost surely ∃ψ such

that C[ψ(x), ψ(y), ψ(r)] , 0, where
C[ψ(x), ψ(y), ψ(r)]

=

"
p(x, y)S [ψ(x), ψ(y)]dxdy

−

"
p(x)p(r)S [ψ(x), ψ(r)]dxdr

=

$
p(x, y)p(r)(S [ψ(x), ψ(y)] − S [ψ(x), ψ(r)])dxdydr

=Ex,y∼p(x,y),r∼p(y)(S [ψ(x), ψ(y)] − S [ψ(x), ψ(r)]).
(6)

We therefore can derive a test criterion by following Equ. (2)-
(6) as

Lxyr =
∑
ψ

(C[ψ(x), ψ(y), ψ(r)])2
(7)

in which

(C[ψ(x), ψ(y), ψ(r)])2

=Ex,y∼p(x,y)(S [ψ(x), ψ(y)])2 + Ex∼p(x),r∼p(y)(S [ψ(x), ψ(r)])2

− 2Ex,y∼p(x,y)(S [ψ(x), ψ(y)])Ex∼p(x),r∼p(y)(S [ψ(x), ψ(r)])
(8)

We need to measure how close is Lxyr to zero. Next step, we
use kernel function to calculate the inner product between
ψ(x) and ψ(y) or ψ(r) w.r.t. a set of ψ(∗), then

Lxyr =
∑
ψ

(C[ψ(x), ψ(y), ψ(r)])2

=Ex,y∼p(x,y)(K(x, y))2 + Ex∼p(x),r∼p(y)(K(x, r))2

− 2Ex,y∼p(x,y)(K(x, y))Ex∼p(x),r∼p(y)(K(x, r))

(9)

Note that, the data we have is a finite sample (x, y) =
((x1, y1), (x2, y2), ..., (xn, yn)) from a pair of variables x and
y. Here we use permutation method to test the hypothesis of
independence: H0: x and y are independent, versus H1: x and
y are not independent. The idea behind it is that permuting
y removes any dependency between x and y. Therefore we
can compare Lxyr with Lxypr, where yp is the permutation p
applied to the sample y. We choose the number of permuta-
tions k, and create k permuted samples ypi , i = 1, ..., k. Then
if x and y are truly independent, permuting y will not change
much Lxyr, therefore we will not be able to reject the null
hypothesis (x and y are independent). On the other hand, if x
and y were not independent, we can reject the H0 with greatly
changed Lxyr.

In practice, permutation tests are particularly attractive
because of their simplicity and their ability to control Type
I error without any distributional assumptions (Berrett et al.
2020). Recall that our task is given two variables x and y, test
whether x and y are conditionally independent given a set of
variables Z. We use least square method to regress x on Z,
and denote the obtained residual by Rx,Z = x − E(x|Z) = x −
Z(ZT Z)−1ZT x. Similarly, we can get the residual of regressing
y on Z, Ry,Z = y−E(y|Z) = y− Z(ZT Z)−1ZT y. By subtracting
the two residuals, we obtain

Rx,Z − Ry,Z =Rx−y,Z

=(x − y) − Z(ZT Z)−1ZT (x − y)
=(1 − M)(x − y)

(10)
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where we simply denote the matrix Z(ZT Z)−1ZT by M. Sup-
pose the Gaussian Radial Basis Function (RBF) is used to
calculate inner product, then

L =LRx,Z Ry,Z Rr = (C[ψ(Rx,Z), ψ(Ry,Z), ψ(Rr)])2

=ERx,Z ,Ry,Z∼p(Rx,Z ,Ry,Z )(K(x, y))2 + ERx,Z∼p(Rx,Z ),Rr∼p(Ry,Z )(K(x, r))2

− 2ERx,Z ,Ry,Z∼p(Rx,Z ,Ry,Z )(K(x, y))ERx,Z∼p(Rx,Z ),Rr∼p(Ry,Z )(K(x, r))

=Ex,y,Z∼p(x,y,Z)(exp(−γ||(1 − M)(x − y)||2))2

+ Ex,y,Z∼p(x,y,Z),r∼p(y)(exp(−γ||x − Mx − r + Mpr y||
2))2

− 2E(∗)E(∗)
(11)

where Mpr is the permutation pr applied to M on row, as

Rr =(Ry,Z)pr = (y − My)pr = ypr − Mpr y = r − Mpr y
(12)

Consider the test criterion with permutation p

Lp =LRx,Z (Ry,Z )pRr = (C[ψ(Rx,Z), ψ((Ry,Z)p), ψ(Rr)])2

=Ex,Z∼p(x,Z),yp∼p(y)(exp(−γ||x − Mx − yp + Mpy||2))2

+ Ex,y,Z∼p(x,y,Z),r∼p(y)(exp(−γ||x − Mx − r + Mpr y||
2))2

− 2E(∗)E(∗)
(13)

We can see +Ex,y,Z∼p(x,y,Z),r∼p(y)(exp(−γ||x−Mx−r+Mpr y||
2))2

simultaneously exists in L and Lpi , therefore this term can be
removed, i.e.,

L =Ex,y,Z∼p(x,y,Z)(exp(−γ||(1 − M)(x − y)||2))2

− 2Ex,y,Z∼p(x,y,Z)(exp(−γ||(1 − M)(x − y)||2))

× Ex,y,Z∼p(x,y,Z),r∼p(y)(exp(−γ||x − Mx − r + Mpr y||
2))
(14)

and
Lpi =Ex,y,Z∼p(x,y,Z)(exp(−γ||x − Mx − ypi + Mpi y||

2))2

− 2Ex,y,Z∼p(x,y,Z)(exp(−γ||x − Mx − ypi + Mpi y||
2))

× Ex,y,Z∼p(x,y,Z),r∼p(y)(exp(−γ||x − Mx − r + Mpr y||
2))
(15)

Recall that
C[ψ(Rx,Z), ψ(Ry,Z), ψ(Rr)]

=ERx,Z ,Ry,Z∼p(Rx,Z ,Ry,Z ),Rr∼p(Ry,Z )(S [ψ(Rx,Z), ψ(Ry,Z)]

− S [ψ(Rx,Z), ψ(Rr)]) = E(S (A) − S (B))
(16)

C[ψ(Rx,Z), ψ((Ry,Z)p), ψ(Rr)] = E(S (C) − S (B)) (17)
As Equ. (16) and Equ. (17) share the term of S (B), L and Lpi

can be simply reduced to

L =Ex,y,Z∼p(x,y,Z)(exp(−γ||(1 − M)(x − y)||2)) (18)
and

Lpi =Ex,y,Z∼p(x,y,Z)(exp(−γ||x − Mx − ypi + Mpi y||
2)) (19)

Assume i = 1, ..., k, then P-value can be defined as

P − value =

∑
i 1{L < Lpi }

k
(20)

where 1 is indicator function. Then, given a significant value
α, if P-value≥ α, we accept H0: x and y are independent,
otherwise accept H1: x and y are not independent.

Implementation of Similarity Based CI Testing
As mentioned above, the difference between L and Lpi can be
used to test CI. With these theoretical results, we design a new
method for CI testing called Similarity based Conditional
Independence Test (SCIT in short). The details of SCIT are
given in Alg. 1. To test the CI of x y y|Z, we first apply k + 1
different permutations to y and obtain k + 1 permuted sam-
ples of y, the new variables are denoted by r and yp1 , ..., ypk

(Line 1). Then, we calculate k + 1 statistics L and Lp1 , ..., Lpk

according to Equ. (18) and Equ. (19). In this process, the
time is mainly spent on calculate M = Z(ZT Z)−1ZT , which
contains an inverse operation of matrix ZT Z. The matrix Mpi

can be easily obtained from M and permutation pi (Line 2).
In the final step, we calculate the P-value =

∑
i(L < Lpi )/k.

If P-value≥ α, we accept H0: x y y|Z, otherwise accept H1:
x 6y y|Z (Lines 3-8).

As SCIT is used for linear CI testing, therefore SCIT can
be directly applied to the PC algorithm for linear causality
discovery. For more details about using regression based CI
test in the PC algorithm, the readers can refer to (Zhang,
Zhou, and Guan 2018).

Discussion
Go back to Equ. (7), if the similarity S (·) is measured by
using Pearson correlation coefficient ρ(·), then∑

ψ

(C[ψx, ψy, ψr])2 , 0

⇔
∑
ψ

(Ex,y∼p(x,y)(S [ψx, ψy])2 + Ex∼p(x),r∼p(y)(S [ψx, ψr])2

− 2Ex,y∼p(x,y)(S [ψx, ψy])Ex∼p(x),r∼p(y)(S [ψx, ψr])) , 0

⇔
∑
ψ

Ex,y∼p(x,y)(ρ(ψx, ψy)2 , 0⇒ x 6y y.

(21)
Contrast to Daudin’s work on characterization of CI (Daudin
1980), SCIT searches for only one function ψ, which means
that Equ. (7) is sufficient but not necessary to support CI.
But in practice, by assuming that any ψ can be covered by
SCIT with a family of kernel functions, only in well-designed
situations where counterexamples will be found.

Algorithm 1: Similarity based conditional independence
test (SCIT)
Require: variables: x, y, Z; the number of counterparts: k;

significant value α.
Ensure: accept H0: x y y|Z or H1: x 6y y|Z.

1: create k + 1 permuted samples of y, the new variables are
denoted by r and yp1 , ..., ypk .

2: calculate k + 1 statistics L and Lp1 , ..., Lpk according to
Equ. (18) and Equ. (19).

3: calculate P-value =
∑

i 1{L<Lpi }

k
4: if P-value≥ α then
5: accept H0: x y y|Z.
6: else
7: accept H1: x 6y y|Z.
8: end if
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Performance Evaluation
We first compare SCIT with ReCIT (Zhang et al. 2019) and
KCIT (Zhang et al. 2011) by extensive simulated experiments,
in which SCIT, ReCIT are residual-based CI test methods,
ReCIT tests the independence between two residuals by us-
ing HSIC/KCIT. To the best of our knowledge, ReCIT is
one of the best residual-based CI testing methods in linear
cases, there are many comparisons between ReCIT and oth-
er CI testing methods like KCIT presented in the previous
works (Zhang et al. 2017; Zhang, Zhou, and Guan 2018).
We then illustrate the advantage of SCIT in causal skeleton
learning. We compare our method (SCIT + PC algorithm)
with the causal learning method PCReCIT over various causal
graphs. The experimental platform adopts Matlab R2021b,
Intel i7-11700K (3.60 GHz) CPU, Windows 10, and 32G
memory. The source code of SCIT package is available at
https://github.com/Causality-Inference/SCIT.

Effect of Controlling Set and Sample Sizes
As we know, CI test methods are mainly affected by the size
of the controlling set and the sample size, therefore we aim
to examine how the probabilities of Type I error (where the
CI hypothesis H0 is incorrectly rejected) and Type II error
(where the CI hypothesis is not rejected although it is false)
errors of SCIT change with the size of the conditioning set
Z (|Z| = 1, 2, ..., 5, respectively) by simulation. Here, we
consider two cases as follows.

In Case I, only one variable in Z, denoted by z1, is effective,
i.e., the other variables are independent of x, y, and z1. The
causal link is x → z1 → y, in which z1 = a ∗ x + εx, y =
b ∗ z1 + εy. The other variables x, z2, ..., z5 are independently
generated by following U(−1, 1), εx, εy ∼ U(−0.2, 0.2) and
a, b ∼ U(0.2, 1). The ground truth is x y y|z1∪S and x 6y y|S ,
where ∀S ⊆ Z\z1 .

In Case II, all variables in the conditioning set Z are effec-
tive in generating X and Y . The causal link is x→ Z → y, in
which zi = ai ∗ x + εi and y =

∑
i bi ∗ zi + εy. The setting of

coefficients ai, bi and noise terms εi, εy are similar to those
in Case 1. The ground truth is x y y|Z and x 6y y|S where
∀S ⊂ Z.

Recall that, the residuals can be easily recovered by linear
regression in this simple setting. To evaluate the robustness
of these methods, here we do not want the returned residuals
being very accurate. Therefore we test CI with small sample
size of 50 and 100. The significance levels are fixed at α =
0.05. Note that for a good testing method, the probability
of Type I error should be as close to the significance level
as possible, and the probability of Type II error should be
as small as possible. We check how the errors change when
increasing the dimensionality of Z and the sample size n. For
each parameter setting, we randomly repeat the testing 100
times and average their results.

Type I and II errors are calculated like this: take |Z| = 3
for example, in Case I, x is independent of y given (z1),
(z1, z2), (z1, z3) and (z1, z2, z3), then Type I error rate =1-
the number o f CIs/4. On the other side, x is not independent
of y given ∅, (z2), (z3) and (z2, z3), then Type II error rate =
the number o f CIs/4. Similarly, we can calculate Type I and
II error rate in Case II.
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Figure 1: (a) Type I and (b) Type II error rate in Case I; (c)
Type I and (d) Type II error rate in Case II.

The results are presented in Fig. 1. We can see that

1. As shown in Fig. 1(a) and (c), the Type I error rate of SCIT
is close to the significance level α = 0.05 (between 0.04
- 0.06). This because we use permutation test to control
Type I error rate;

2. As shown in Fig. 1(b), the Type II error rate of each
method keeps stable when crossing |Z| = {1, 2, ..., 5}. The
reason is that only one variable z1 is effective in Case I,
then the probability of rejecting CIs of x y y|z1 ∪ S for
any S ⊆ Z\z1 would be very close. We can see that SCIT
outperforms the other two methods in terms of Type II
error rate;

3. As shown in Fig. 1(d), the Type II error rate of each
method increases/changes with different sizes of Z. This
is because all the variables z1, ..., z5 are effective in Case
II, then the probability of rejecting CIs of x y y|S for
different S ⊆ Z would be various. In this case, SCIT also
achieves the best performance;

4. Increasing sample size can significantly reduce the Type II
error rate, while Type I error rate is generally not impacted
by sample size.

Efficiency Comparison
We compare the efficiency of SCIT, ReCIT and KCIT in
terms of elapsed time with the sample size increasing from
50 to 1000. As presented in Table 1, SCIT takes significantly
less time than the other methods. Recall that the same linear
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Sample Elapsed time (s)
SCIT ReCIT KCIT

50 0.001 ± 0.0001 0.001 ± 0.0001 0.16 ± 0.03
100 0.001 ± 0.0001 0.002 ± 0.0003 0.25 ± 0.05
200 0.002 ± 0.0001 0.005 ± 0.0012 0.45 ± 0.11
500 0.021 ± 0.0055 0.042 ± 0.0053 3.67 ± 0.75

1000 0.079 ± 0.0167 0.205 ± 0.0208 19.8 ± 5.06

Table 1: Efficiency comparison of SCIT, ReCIT and KCIT.

regression progress is performed in SCIT, ReCIT, therefore
the time-consuming difference among them depends on the
respective unconditional independence test methods. SCIT
is evidently faster, as it only needs to calculate similarity
vectors, while ReCIT needs to calculate the trace of product
of two n × n matrices.

Performance on Small Graphs
In this section, we evaluate SCIT, ReCIT and KCIT in more
complex scenarios. We generate data from a set of random
DAGs. For each DAG G, we first create four nodes v1, ..., v4,
and with probability 50% each possible edge is either present
or absent, and orient arrow between them from vi to v j only
for i < j. Then, each variable xi corresponding to each root n-
ode in G is generated by following U(−1, 1) and each variable
xi corresponding to leaf node is generated by

∑
i ai · paxi + ε

where ai ∼ U(0.2, 1) and ε ∼ U(−0.2, 0.2) independent
across paxi . For significance level 0.05 and sample sizes from
25 and 200, we simulate 100 DAGs and evaluate the perfor-
mance of the three methods PCS CIT , PCReCIT and PCKCIT on
discovering causal skeletons.

As shown in Fig. 2, we can see that when the sample size is
small (e.g. less than 50), PCS CIT performs significantly better
than other two methods. As the sample size increases, the
performance of PCS CIT close to that of PCReCIT and PCKCIT .
When the sample size up to 150, the Recall, Precision and F1
curves of the three methods tend to be overlapping. Therefore,
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Figure 2: Performance comparison among PCS CIT , PCReCIT
and PCKCIT with various sample sizes on causal skeleton
learning.
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Figure 3: Efficiency comparison with various sample sizes.
The elapsed time of PCKCIT is divided by 30, otherwise it is
difficult to see the gap between PCS CIT and PCReCIT .

PCS CIT performs significantly better in CI test in causal dis-
covery when the sample size is small, which is the frequently-
encountered case in reality.

Fig. 3 shows the elapsed time of PCS CIT , PCReCIT and
PCFRCIT with the sample size increasing from 25 to 200, it
is consistent with the result present in Table 1. SCIT can be
very efficient to test CI in causal discovery with small sample
size (n ≤ 1000).

Performance on Causal Discovery
In the experiments above, we compare SCIT and ReCIT in
terms of learning causal skeletons of small DAGs, the result
shows the two methods have almost the same accuracy when
sample size is more than 100, though SCIT works much more
efficient than the others. In this section, the two methods
will be evaluated on six causal graphs 1 that cover a variety
of applications, including biomedicine (Cancer and Asia),
expert systems (Child), insurance evaluation (Insurance),
medicine (Alarm) and agricultural industry (Barley). The
structural statistics of these causal networks are summarized
in Table 2.

To obtain the precise ground truth in every cases, the corre-
sponding data-generating process follows the previous work-
s (Cai, Zhang, and Hao 2013, 2017). As the residuals can be
easily recovered by linear regression with enough samples,
to evaluate the robustness of these methods, here we test CI
with small sample size of 25 and 200. In causal discovery,
partially correlation tests (Baba, Shibata, and Sibuya 2004)
are often used to speed up CI tests based on the criterion:
pcorr(x, y|Z) , 0 ⇒ x 6y y|Z. In order to evaluate these
methods independently, here we do not perform any partially
correlation test.

1http://www.bnlearn.com/bnrepository/

Dataset #Nodes #Arcs Max in-degree
Cancer 5 4 2

Asia 8 8 2
Child 20 25 2

Insurance 27 52 3
Alarm 37 46 4
Barley 48 84 4

Table 2: Statistics of six causal graphs
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Dataset Recall Precision F1
PCS CIT PCReCIT PCS CIT PCReCIT PCS CIT PCReCIT

Cancer 0.56 ± 0.17 0.40 ± 0.15 0.94 ± 0.14 0.91 ± 0.21 0.69 ± 0.15 0.54 ± 0.17
Asia 0.62 ± 0.11 0.53 ± 0.12 0.92 ± 0.11 0.95 ± 0.10 0.74 ± 0.10 0.67 ± 0.11

Child 0.51 ± 0.08 0.29 ± 0.08 0.82 ± 0.10 0.86 ± 0.11 0.62 ± 0.08 0.43 ± 0.09
Insurance 0.33 ± 0.05 0.19 ± 0.04 0.68 ± 0.08 0.76 ± 0.11 0.44 ± 0.06 0.31 ± 0.06

Alarm 0.39 ± 0.05 0.32 ± 0.04 0.78 ± 0.06 0.82 ± 0.06 0.52 ± 0.05 0.46 ± 0.05
Barley 0.31 ± 0.03 0.23 ± 0.03 0.74 ± 0.05 0.77 ± 0.07 0.43 ± 0.04 0.36 ± 0.04

Table 3: Performance of PCS CIT and PCReCIT with sample size = 25.

Dataset Recall Precision F1
PCS CIT PCReCIT PCS CIT PCReCIT PCS CIT PCReCIT

Cancer 0.93 ± 0.12 0.73 ± 0.18 0.94 ± 0.12 0.95 ± 0.11 0.93 ± 0.10 0.81 ± 0.13
Asia 0.90 ± 0.05 0.81 ± 0.09 0.88 ± 0.10 0.94 ± 0.07 0.89 ± 0.06 0.87 ± 0.07

Child 0.94 ± 0.03 0.88 ± 0.04 0.71 ± 0.05 0.82 ± 0.06 0.81 ± 0.05 0.85 ± 0.04
Insurance 0.72 ± 0.05 0.63 ± 0.07 0.43 ± 0.05 0.59 ± 0.03 0.54 ± 0.03 0.61 ± 0.03

Alarm 0.66 ± 0.05 0.62 ± 0.06 0.76 ± 0.03 0.78 ± 0.04 0.71 ± 0.04 0.69 ± 0.05
Barley 0.51 ± 0.03 0.48 ± 0.03 0.63 ± 0.02 0.63 ± 0.04 0.57 ± 0.02 0.55 ± 0.03

Table 4: Performance of PCS CIT and PCReCIT with sample size = 200.

The results are shown in Table 3 and Table 4. One can
see that the Precision is higher than the Recall in most
cases. We know Recall =

Discovered edges ∩ Actual edges
Actual edges and

Precision =
Discovered edges ∩ Actual edges

Discovered edges , the Type I error oc-
curred in SCIT and ReCIT would not affect PC(∗) much, that
is because if Type I error occurs, the CI test will continue to
test x and y given another controlling set Z. However, such
a traversal search strategy will be greatly affected by Type
II error. For example, assume that Type II error rate is ri
for each controlling set Zi, then the rate of rejecting all CI
hypothesis when they are really false is

∏
(1 − ri), and we

have
lim

k→+∞

∏
i=1,...,k

(1 − ri) = 0. (22)

Therefore, the performance of constraint-based causal discov-
ery is largely determined by the Type II error rate of CI tests.
Compare Table 3 with Table 4, one can see that increasing
samples can significantly reduce the Type II error rate, then
improve the Recall of the two methods.

On the other side, we can see PCS CIT outperforms PCReCIT
in most of cases in terms of F1, although their Precision are
very close to each other. As aforementioned, the Type I error
occurred in SCIT and ReCIT would not affect PC(∗) much,
therefore all of them obtain high Precision. Similarly, we
can see that the Recall of PCS CIT is slightly better than that
of PCReCIT . This result is consistent with the result presented
in Fig. 1(b),(d) and Equ. (22), the lower the rate of Type
II error, the higher the value of Recall. In addition, like the
results presented in Table 1 and Fig.3, PCS CIT works much
more efficient, it is very suitable for testing CI or discovering
causalities in low-sample scenarios. Similar to the results
presented in Fig.2, their accuracy will become very close
given sufficient samples, and PCS CIT will lose its advantage
on accuracy. Here we mainly consider the case of small
sample size which is the most significant advantage of SCIT.

Conclusion
In this paper, we propose a new and fast residual similari-
ty based conditional independence (CI) test method, called
SCIT, to support effective and efficient causality discovery
under the linear structural equation model (SEM) with non-
Gaussian noise variables. Concretely, we provide a simple
way to test the independence between two residuals Rx,Z=x-
E(x|Z) and Ry,Z=y-E(y|Z) returned by linear regression. We
show that the dependence between residuals can be captured
by the difference between the similarity S [ψ(Rx,Z), ψ(Ry,Z)]
and the similarity S [ψ(Ry,Z), ψ(r)] given a set of square inte-
grable functions ψ. Then kernel functions are used to calcu-
late the inner product, i.e., similarity. As the value of simi-
larity is not scale-free, we simply use permutation test to get
the P-value to accept or reject CI hypothesis. Our theoretical
analysis proves the correctness of the proposed method, and
extensive experiments verify the advantage of SCIT.

By assuming that any ψ can be covered by SCIT with a
family of kernel functions, only in well-designed situations
where counterexamples will be found. In practice, this as-
sumption does not always hold. So in the future, we will
explore how to implement SCIT using neural networks that
can approximate the function more accurately according to
the Universal Approximation Theorem.
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