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Abstract

Relation prediction in knowledge graphs is dominated by em-
bedding based methods which mainly focus on the trans-
ductive setting. Unfortunately, they are not able to han-
dle inductive learning where unseen entities and relations
are present and cannot take advantage of prior knowledge.
Furthermore, their inference process is not easily explain-
able. In this work, we propose an all-in-one solution, called
BERTRL (BERT-based Relational Learning), which leverages
pre-trained language model and fine-tunes it by taking rela-
tion instances and their possible reasoning paths as training
samples. BERTRL outperforms the SOTAs in 15 out of 18
cases in both inductive and transductive settings. Meanwhile,
it demonstrates strong generalization capability in few-shot
learning and is explainable. The data and code can be found at
https://github.com/zhw12/BERTRL.

Introduction

Knowledge graphs (KGs) are essential in a wide range of
tasks such as question answering and recommendation sys-
tems (Ji et al. 2020). As many knowledge graphs are substan-
tially incomplete in practice, knowledge graph completion
(KGC) becomes a must in many applications (Nickel et al.
2016).

Embedding-based methods such as TransE (Bordes et al.
2013), Complex (Trouillon et al. 2017), ConvE (Dettmers
et al. 2018), RotatE (Sun et al. 2019) and TuckER (Balaze-
vié, Allen, and Hospedales 2019), achieve the state-of-the-art
performance on a few KGC benchmarks. However, the draw-
backs of these approaches are obvious as they are limited to
the transductive setting where entities and relations need to
be seen at training time. In reality, new entities and relations
emerge over time (inductive setting). The cost of retraining
may be too high for dynamically populated knowledge graphs.
In addition to the inductive setting, explainability, few-shot
learning and transfer learning cannot be easily solved by
these specialized embedding methods.

Logical induction methods partially meet the aforemen-
tioned need by seeking probabilistic subgraph patterns
(GralL(Teru, Denis, and Hamilton 2020), CoMPILE(Mai
et al. 2021), and TACT (Chen et al. 2021)), logical rules
(AMIE (Galarraga et al. 2013), RuleN (Meilicke et al. 2018))
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or their differentiable counterparts (NEURAL-LP (Yang,
Yang, and Cohen 2017), DRUM (Sadeghian et al. 2019)).
The following shows a logical rule which is explainable, can
be generalized, and can handle unseen entities,

(z, president_of,y) A (z, capital_of, y)
(1)

These logical rules introduce inductive ability for predict-
ing missing links in KG. For example, once the rule in (1) is
learned, the model can generalize to other president, capital
and country.

Despite the compelling advantage of the existing logical
induction methods, their inductive learning power is limited
as it only exploits the structural information while ignoring
the textual information associated with entities and relations,
and furthermore, prior knowledge carried in these texts. This
weakens the model’s usability when only small knowledge
graphs are available — a typical few-shot setting. Moreover,
none of them can handle unseen but relevant relations in KG
completion.

In this work, we propose an all-in-one solution, called
BERTRL (BERT-based Relational Learning), a model that
combines rule-based reasoning with textual information and
prior knowledge by leveraging pre-trained language model,
BERT (Devlin et al. 2019). In BERTRL, we linearize the
local subgraph around entities in a target relation (h,r,t)
into paths p: (hv To, 61)7 (ela 1, 62)7 RN} (ena T'n, t)’ input
(h,r,t) : p to BERT, and then fine-tune. BERTRL is differ-
ent from KG-BERT (Yao, Mao, and Luo 2019) where only
relation instance (h,r,t) is fed to BERT. While this differ-
ence looks small, it actually lets BERTRL reason explicitly
via paths connecting two entities. KG-BERT’s prediction is
mainly based on the representation of entities and relations:
Knowledge graph is memorized inside BERT and reasoning
is implicit. In BERTRL, knowledge is dynamically retrieved
from the knowledge graph during inference: Reasoning is
conducted explicitly, which enables BERTRL to achieve ex-
plainability and much higher accuracy. Table 1 illustrates the
difference among these approaches.

Our approach naturally generalizes to unseen entities. It
also has the potential to handle some unseen relations. Em-
pirical experiments on inductive knowledge graph comple-
tion benchmarks demonstrate the superior performance of
BERTRL in comparison with state-of-the-art baselines: It

— (z,work_at, z).



Transductive Inductive Setting Prior
Method Setting Unseen | Unseen | Reasoning Knowledge Explainable
Entities | Relations | with context
TuckER v X X X X X
RuleN v v X v X v
GralL v v X v X X
KG-BERT v v v X v X
BERTRL (ours) v v v v v v

Table 1: Comparison of BERTRL with other relation prediction algorithms on their capability of handling the transductive
setting, unseen entities in the inductive setting, their potential of dealing with unseen relations, usage of prior knowledge,
the explainability of their inference process, and whether they can reason with the context of entities in the knowledge graph
explicitly. BERTRL and KG-BERT are provided with knowledge graph, entity names and relation names. We take TuckER as a

representative of embedding-based methods.
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Figure 1: The BERTRL pipeline.

achieves an absolute increase of 6.3% and 5.3% in Hits@ 1
and MRR on average. In a few-shot learning scenario, it
can even achieve a maximum of 32.7% and 27.8% absolute
Hits@1 and MRR improvement.

In the transductive setting, BERTRL performs competi-
tively with the state-of-the-art embedding methods and sur-
passes the inductive learning counterparts. In few-shot learn-
ing (partially transductive), BERTRL again introduces a
larger margin over the baselines.

Finally, we analyze how BERTRL performs in unseen re-
lation prediction, its explainability, its training and inference
time, and conduct an ablation study on a few design choices.

Proposed Approach

Problem Formulation. Knowledge graph consists of a set of
triples {(h;, r;,t;)} with head, tail entities h;,t; € £ (the set
of entities) and relation r; € R (the set of relations). Given
an incomplete knowledge graph G, the relation prediction
task is to score the probability that an unseen relational triple
(h,r,t) is true, where h and ¢ denote head and tail entities and
r refers to a relation. (h,r,t) is also called target relational
triple.

Our model scores a relational triple in two steps: (Step 1)
Extracting and linearizing the knowledge G (h, t) surround-
ing entities h and ¢ in G; (Step 2) Scoring the triple with
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G (h, t) by fine-tuning the pre-trained language model BERT.

Model Details

Step 1: Knowledge Linearization. The knowledge G(h,t)
surrounding entities h and ¢ in a knowledge graph G provides
important clues for predicting missing links between h and
t. G(h,t) could be exploited in various ways: It could be
any subgraph around h and ¢t and even not necessarily be
connected. However, the different choices of G(h,t) will
affect the model complexity and its explainability. RuleN
(Meilicke et al. 2018) uses all the paths connecting h and ¢
up to k length. GralL(Teru, Denis, and Hamilton 2020) uses
a subgraph that merges all of these paths, aiming to leverage
structural information. In order to use pre-trained language
models like BERT, we need to linearize G(h, t) as £(G(h, t))
and concatenate it with (h, 7, t) as valid input to BERT,

(h,r,t) : L(G(h,1)). 2)

Our intuition is that BERT shall have the capability of learn-
ing signals in G(h, t) that could be correlated with (h, r,t),
and BERT shall be able to handle noisy and erroneous inputs.

Subgraph. One straightforward linearization of a subgraph
would be concatenating text of its edges one by one sepa-
rated by a delimiter such as a semicolon. This formalism has



two major issues. First, local subgraphs could be very large:
The size grows exponentially with respect to their diame-
ters. Hence concatenated edges may not fit into the available
BERT models. Second, the subgraph edges are unordered,
which might incur additional cost for BERT to learn orders
and produce correct scoring. We will show experiment of
subgraph-based linearization design in ablation study.

Paths. Another linearization method is collecting all of
the paths up to length %k connecting h and t. We call
them reasoning paths. Each reasoning path between h
and t consists of a sequence of triples h — ¢t
(h7 To, 61)7 (ela T1, 62)7 seey (en; Tny t)

There are two ways of leveraging reasoning paths: One
called combined paths, puts all the paths together as one in-
put to BERT, thus allowing the interaction across different
path units. The other called individual paths, takes each path
as a separate input to BERT. Each reasoning path induces
the target triple individually with a certain confidence score,
and the final result is an aggregation of individual scores. In
practice, the first method generates one sample concatenat-
ing all paths, while the second one separates each path into
individual training samples.

Intuitively, the combined paths representation is more ex-
pressive as it could consider all the paths together and should
perform better. The individual paths representation might
generate many false associations as most of the paths are
irrelevant to the target triple. Surprisingly, we found BERT is
robust to those false associations taken in the training stage
and is able to pick up true ones. We suspect that the individual
paths representation has simpler training samples and likely
most relation predictions can be achieved by one path in the
existing KGC benchmarks.

Our final design takes the individual paths representation.
The performance of different designs is presented in ablation
study.

In order to better leverage the knowledge learned in a
pre-trained language model, we adopt a natural language tem-
plate (Schick and Schiitze 2020) to transform target triple and
reasoning path into a "somewhat natural" sentence. Take Fig-
ure 1 as an example. It could be “[CLS] Question: Franklin
Roosevelt work at what ? Is the correct answer Washington
D.C. ? [SEP] Context: Franklin Roosevelt president of USA;
Washington D.C. capital of USA;” Each individual path will
form a training/inference instance.

Step 2: BERT Scoring. In BERTRL, since we take individ-
ual paths as a linearization approach, each pair of triple and
reasoning path is scored individually. For each target triple,
one or a few reasoning paths would indicate the truth of the
triple. This forms a multi-instance learning problem (Carbon-
neau et al. 2018), where predictions need to be aggregated
for a bag of instances. We take a simplified realization - train-
ing individually and applying maximum aggregation of bag
scoring at inference time.

BERTRL uses a linear layer on top of [CLS] to score
the triple’s correctness, which can be regarded as a binary
classification problem. It models the probability of label y
(y € {0,1}) given the text of triple (h, r,t) and the text of
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reasoning path h — ¢,

p(ylh,r t,h —t). 3)

At inference time, the final score of a target triple (h,r,t)
is the maximum of the positive class scores over all of its
reasoning paths:
score(h,r,t) = maxp(y = 1|h,r,t,h 5 t). 4
P
The path corresponding to the maximum score can be used

to explain how the prediction is derived. We leave a more
sophisticated aggregation function for future study.

Training Regime
In order to train BERTRL, both positive and negative ex-
amples are needed. We follow the standard practice to view
existing triples in KG as positive. Then, for each positive
triple, we do negative sampling to sample m triples corrupt-
ing its head or tail. Specifically, we randomly sample entities
from common k-hop neighbors of head and tail entities, and
make sure negative triples are not in KG. We do not include
empty reasoning path examples in training, and always give
a minimum confidence score for empty path in inference.
When constructing reasoning paths for a triple, we hide
the triple in KG and find other paths to simulate missing
link prediction. As the maximum length of the reasoning
paths increases, the number of paths may grow exponentially.
Many paths are spurious and not truly useful for inducing the
triple. We do path sampling at training time to get at most n
paths between target entities and take shorter paths first.
Finally we use cross entropy loss to train our model:

L =— Z (yT lng‘r + (1 - yT) IOg(l _p7)>7

T

(&)

where y, € {0,1} indicates negative or positive label, and
7 € DT UD™. The negative triple set D~ is generated by
previously mentioned method that corrupts head entity h or
tail entity ¢ in a positive triple (h,r,t) € D' with a sampled
entity b’ or t/, i.e.,

D~ ={(W,rt) ¢ Dt U (h,rt)¢DT}.  (6)

Experiments

We evaluate our method on three benchmark datasets:
WNI18RR (Dettmers et al. 2018), FB15k-237 (Toutanova
etal. 2015), and NELL-995 (Xiong, Hoang, and Wang 2017),
using their inductive and transductive subsets introduced by
GralL(Teru, Denis, and Hamilton 2020) !. WN18RR is a
subset of WordNet, a KG contains lexical relations between
words. FB15k-237 is a subset of Freebase, a large KG of
real-world facts. NELL-995 is a dataset constructed from
high-confidence facts of NELL, a system constantly extract-
ing facts from the web. The statistics of these datasets are
given in Table 2; the details of the variants will be given later.

Through experiments, we would like to answer the follow-
ing questions about BERTRL: (1) How does it generalize
to relation prediction with unseen entities in the inductive

"https://github.com/kkteru/grail



split #relations  #nodes  #links
train 9 2,746 6,670
WNI18RR ind-test 8 922 1,991
train-1000 9 1,362 1,001
train-2000 9 1,970 2,002
train 180 1,594 5,223
FBISK-237 i d-test 142 1093 2,404
train-1000 180 923 1,027
train-2000 180 1,280 2,008
train-rel50 50 1,310 3,283
train-rel100 100 1,499 3,895
train 88 2,564 10,063
NELL-995 - test 79 2086 5521
train-1000 88 893 1,020
train-2000 88 1,346 2,011

Table 2: Statistics of the three datasets and their variants.

setting? (2) How does it perform in the traditional transduc-
tive setting? (3) Does it work well in few-shot learning? (4)
Does it have the potential to generalize to unseen relations?
(5) How its reasoning path explains prediction? (6) What is
the training and inference time? (7) How important is the
knowledge linearization design?

Baselines and Implementation Details. We compare
BERTRL with the state-of-the-art inductive relation predic-
tion methods GralL(Teru, Denis, and Hamilton 2020), CoM-
PILE(Mai et al. 2021) and RuleN (Meilicke et al. 2018).
GralL and CoMPILE use graph neural network to reason over
local subgraph structures, while COMPILE emphasizes graph
directionality. RuleN explicitly derives path-based rules and
shows high precision. We use the public implementation pro-
vided by the authors and adopt the best hyper-parameter set-
tings in their work. Differentiable logical rule learning meth-
ods like NeurLP (Yang, Yang, and Cohen 2017) and DRUM
(Sadeghian et al. 2019) are not included, as their performance
is not as good as GralL,, CoMPILE and RuleN. For the trans-
ductive setting, we pick one of the state-of-the-art embedding
methods, TuckER (Balazevi¢, Allen, and Hospedales 2019)
and path-based method MINERVA (Das et al. 2018), as rep-
resentatives for evaluation. For TuckER, we use implemen-
tation in LibKGE (Broscheit et al. 2020) with the provided
best configuration in the library. For MINERVA, we use the
official implementation and best configuration provided by
authors.

We also compare against a BERT-based KGC method KG-
BERT (Yao, Mao, and Luo 2019), where only relation triple
(h,r,t) is fed to BERT. This is a special case of BERTRL
with an empty reasoning path. In our experiments, we do
not feed additional description other than entity and relation
names as KG-BERT (Yao, Mao, and Luo 2019) did. The de-
scriptions such as Wikipedia and WordNet synsets definitions
often directly contain the missing entities, making knowl-
edge graph completion leans to relation extraction rather than
graph reasoning. Therefore, in this work, we keep a relatively
pure knowledge graph setting as many graph embedding
algorithms do. The extra requirement of names are readily
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available in most scenarios. In practice, both BERTRL and
KG-BERT can be extended to accept additional information
as this is what BERT is designed for.

Both BERTRL and KG-BERT were implemented in Py-
Torch using Huggingface Transformers library (Wolf et al.
2020). We fine-tune BERT-base for BERTRL and KG-BERT
with Adam optimizer. The best learning rate and training
epoch are selected based on validation set. Learning rate Se-
5 is set for BERTRL and 2e-5 for KG-BERT, and training
epoch is 2 and 5 respectively. We sample 10 negative triples
in negative sampling, and 3 reasoning paths in path sampling,
and keep increasing the size does not improve performance.

Evaluation Task. Following GralL(Teru, Denis, and Hamil-
ton 2020), our default evaluation task is to predict (h,r,?)
and (?,r,t): specifically, ranking each test triple among 50
other negative candidates. The negative triples are not in KG
and generated by randomly replacing head (or tail) entity of
each test triple. The sampling is going to speed up the evalu-
ation process. The performance will be lower if the ranking
is done among the full entity set.

Metrics. We evaluate models on Hits@1 and Mean Recipro-
cal Rank (MRR). Hits@ 1 measures the percentage of cases in
which positive triple appears as the top 1 ranked triple, while
MRR takes the average of the reciprocal rank for positive
triples.

Inductive Relation Prediction

We first evaluate the model’s ability to generalize to unseen
entities. In a fully inductive setting, the entities seen in train-
ing and testing are completely disjoint. For all the methods,
we extract paths from the target head entity to the tail entity
with length up to 3 or the subgraph containing these paths.

Datasets. We conduct our experiment using the inductive
subsets of WN18RR, FB15k-237, and NELL-995 introduced
by (Teru, Denis, and Hamilton 2020). Each subset consists of
a pair of graphs train-graph and ind-test-graph. The former is
used for training, and the latter provides an incomplete graph
for relation prediction. frain-graph contains all the relations
present in ind-test-graph. However, their entity sets do not
overlap. In GralL, WN18RR, FB15k-237, and NELL-995
each induces four random inductive subsets (v1, v2, v3 and
v4). We pick one subset for each (WN18RR v1, FB15k-237
vl and NELL-995 v2). For each inductive dataset, we did
stratified sampling on frain-graph to create few-shot variants.
The links are down-sampled to a number around 1,000 and
2,000, while keeping an unchanged proportion of triples for
each relation. The few-shot training graph train-1000 and
train-2000 contain all relations in its full setting, thus cover-
ing the relations in test-graph as well. The statistics of these
variants are shown in Table 2.

Results. BERTRL significantly outperforms the baselines in
most settings as shown in Tables 3 and ??, particularly by
around 10 absolute Hits@1 and MRR points in FB15k-237
and NELL-995. These two KGs have more relations and are
associated with open-world knowledge (learned by BERT)
compared with WN18RR. Methods like GralL., CoOMPILE
and RuleN are not able to incorporate such prior knowledge.



WNI18RR FB15k-237 NELL-995
1,000 2,000 6,678 (full) 1,000 2,000 5,223 (full) 1,000 2,000 10,063 (full)
RuleN 0.649 0.737 0.745 0.207 0.344 0415 0.282 0.418 0.638
GralL 0.516 0.769 0.769 0.273 0351 0.390 0.295 0.298 0.554
CoMPILE 0.550 0.593 0.617 0.222  0.327 0.402 0.174 0.225 0.639
KG-BERT 0.364 0.404 0.436 0.288 0.317 0.341 0.236  0.236 0.244
BERTRL 0.713 0.731 0.755 0.441 0.493 0.541 0.622 0.628 0.715
Table 3: Inductive results (Hits@1)
WNI18RR FB15k-237 NELL-995
1,000 2,000 6,678 (full) 1,000 2,000 5,223 (ful) 1,000 2,000 10,063 (full)
RuleN 0.681 0.773 0.780 0.236  0.383 0.462 0.334 0495 0.710
GralL 0.652  0.799 0.799 0.380 0.432 0.469 0.458 0.462 0.675
CoMPILE 0.650 0.691 0.715 0.315 0416 0483 0.310 0.383 0.748
KG-BERT 0.471 0.525 0.547 0.431 0.460 0.500 0.406 0.406 0.419
BERTRL 0.765 0.777 0.792 0.526 0.565 0.605 0.736 0.744 0.808

Table 4: Inductive results (MRR)

In the few-shot setting, BERTRL stays robust and outper-
forms the baselines by an even larger margin. When more
links are dropped in training graph, BERTRL achieves more
performance gain over the baselines. BERTRL enjoys all
sources of knowledge: structural (reasoning paths), textual
(embedding), and prior knowledge (pre-trained language
model). They all play an important role in knowledge graph
completion.

In both settings, BERTRL performs better than KG-BERT,
the version without reasoning paths inputted. It shows that
incorporating paths allows pre-trained language models to
gain explicit reasoning capability. On the other hand, with the
triple information alone, KG-BERT is able to make a certain
amount of correct inferences, suggesting that prior knowledge
stored in pre-trained language models can be leveraged to do
knowledge graph completion as manifested in (Yao, Mao, and
Luo 2019). BERTRL combines explicit reasoning capability,
prior knowledge, and language understanding all together in
one model and has significant advantages.

Transductive Relation Prediction

BERTRL can also be applied in the transductive setting and
be compared with the baselines.

Datasets. To evaluate the transductive performance, we train
these models on frain-graph introduced in the inductive set-
ting and test on links with the same set of entities. We use
a list of test triples with 10% size of train-graph. In a few-
shot setting, we reuse the few-shot train-graph used in the
inductive setting and tested on the aforementioned test links.
At testing time, full train-graph is used to collect knowledge
around target entities (otherwise, the setting will be close
to the inductive one). The few-shot setting makes datasets
partially transductive, as some entities become unseen when
links are dropped randomly. For TuckER and MINERVA, we
assign a minimum score for both positive and negative triples
containing unseen entities.
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Results. Tables 5 and 6 show that BERTRL outperforms the
baselines in most of full and few-shot settings. It performs
competitively with TuckER in the full setting and surpasses
RuleN and GralL. It implies that BERTRL’s strong perfor-
mance is not limited to inductive learning. In the few-shot
setting, train-graph becomes sparse and unseen entities ap-
pear in testing. BERTRL again largely outperforms all the
methods, which once more demonstrates the advantage of
simultaneously exploiting all knowledge sources.

Unseen Relation Prediction

As BERTRL leverages a pre-trained language model, it has
the potential to predict unseen relations in a zero-shot setting,
which is not possible for traditional inductive learning meth-
ods like RuleN and GralL. In this section, we examine how
BERTRL can generalize for unseen relations.

Datasets. We create down-sampled training datasets from
full FB15k-237 train-graph, and test on ind-test-graph.
Specifically, we sample 50 and 100 relations weighted by
their proportion in train-graph. Triples with sampled rela-
tions are collected to create graphs train-rel50 and train-
rel100. Each relation in FB15k-237 has a multi-level hierar-
chy, e.g., /film/language. Words are shared in different rela-
tions, which helps the generalization to unseen relations.

Results. Table 8 shows Hits@1 results. Both KG-BERT and
BERTRL make some correct predictions even without seeing
the relations in training. Furthermore, Table 7 shows the
best and worst performed unseen relation prediction on train-
rel50. The relation names are simplified.

For each unseen relation, we manually identified a relevant
relation in training set. The best performing relations often
have close meaning counterparts in training, while the worst
performing relations do not. This phenomenon indicates that
in zero-shot setting, BERTRL generalizes to unseen relations
through similar text. We suspect that knowledge captured by
pre-trained language models also helps zero-shot learning.



Transductive Transductive (Few-shot)
WNI8RR FBI15k-237 NELL-995 WNI8RR FB15k-237 NELL-995
6,670 5,223 10,063 1,000 2,000 1,000 2,000 1,000 2,000
RuleN 0.646 0.603 0.636 0.548 0.605 0.374 0.508 0.365 0.501
GralL 0.644 0.494 0.615 0.489 0.633 0.267 0352 0.198 0.342
MINERVA  0.632 0.534 0.553 0.106 0.248 0.170 0324 0.152 0.284
TuckER 0.600 0.615 0.729 0.230 0415 0407 0529 0392 0.520
BERTRL 0.655 0.620 0.686 0.621 0.637 0.517 0.583 0.526 0.582
Table 5: Transductive results (Hits@1)
Transductive Transductive (Few-shot)
WNI8RR FBI15k-237 NELL-995 WNI18RR FB15k-237 NELL-995
6,670 5,223 10,063 1,000 2,000 1,000 2,000 1,000 2,000
RuleN 0.669 0.674 0.736 0.567 0.625 0.434 0577 0453 0.609
GralL 0.676 0.597 0.727 0.588 0.673 0375 0453 0.292 0.436
MINERVA  0.656 0.572 0.592 0.125 0.268 0.198 0364 0.182 0.322
TuckER 0.646 0.682 0.800 0.258 0.448 0457 0.601 0436 0.577
BERTRL 0.683 0.695 0.781 0.662 0.673 0.618 0.667 0.648 0.693
Table 6: Transductive results (MRR)
Explainability are meaningful to humans. We randomly sampled 100 test

As stated in introduction, rules like (1) are explainable to
humans. BERTRL achieves certain explainability by lever-
aging reasoning paths and implicitly memorizes these rules
through training. For a prediction task (h,r, ?), BERTRL is
going to generate many instances for different tail entity ¢
by concatenating triple (h, 7, ¢) with each path h — ¢. Those
with the highest scores are chosen as the answer. We can
regard the path chain as the explanation of deriving (h,r,t).
We conduct manual case study using FB15k-237 dataset as
an example. The texts are simplified.

The following KG completion query (Chris, acts_in_film,
?) is to find what film the actor Chris acts in. The instance
ranked highest by BERTRL consists of target triple (Chris,
acts_in_film, Jackie Brown), reasoning path (Chris, nomi-
nated_for_same_award_with, Robert); (Robert, acts_in_film,
Jackie Brown); and an assigned score 0.95. It could be nat-
urally explained as follows: Chris likely acts in film Jackie
Brown, since Robert shares the same award nomination with
Chris and also acts in Jackie Brown.

We then examined the percentage of the explanations that

triples from FB15k-237 and ask human annotators to check
their top-1 path chains highly scored by BERTRL. Human
judges found that 84% of the path chains make sense, indi-
cating strong explainability.

Model Efficiency

Running Time. The training time of BERTRL gradually
increases as the number of training triples grows. The
inference time of BERTRL relates to test-graph rather than
training data size, but it is much slower than light-weight
rule-based methods like RuleN. In practice, the running time
is highly implementation and device dependent. It can be
further improved with more efficient transformer library and
better device.

Generative Models. In classification models like BERTRL
and KG-BERT, each candidate triple needs to be feed into
BERT at least once. This may lead to an efficiency problem
for large scale candidate sets. An additional light-weight
method to filter the candidate sets may become a performance
bottleneck. One potential solution is to leverage pre-trained

Unseen relation Hits@

1 Similar seen relation

/film/film_format 1.000 /film/genre, /film/language
/person/spouse_s./marriage/spouse 1.000 /person/spouse_s./marriage/type_of_union
/pro_athlete/teams./sports_team_roster/team  1.000 /football_player/current_team./sports_team_roster/team
/artist/origin 0.000 -

/record_label/artist 0.100 -

/ethnicity/languages_spoken 0.250 /person/languages

Table 7: Examples of the best and worst performing unseen relation prediction of BERTRL, trained on a 50 relations subset of

FB15k-237.
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100 relations

0.450
0.500

50 relations

KG-BERT 0.266
BERTRL 0.485

Table 8: Unseen relation prediction results (Hits@1)

1,000 2,000 full
Subgraph (edge list) 0.361 0.398 0.463
Combined paths 0.351 0.461 0.505
5 sampled individual paths 0.466 0.490 0.532
10 sampled individual paths  0.449  0.505 0.500
BERTRL (individual paths)  0.441 0.493 0.541

Table 9: Ablation study of BERTRL variants (Hits@1)

generative models such as BART (Lewis et al. 2019) and TS
(Raffel et al. 2020) instead of BERT. The generative model is
fed head entity and relation (h, ) and generates the missing
tail entity ¢. By building a prefix tree of all possible entities,
and constraining beam search to decode tokens within that
tree (De Cao et al. 2020), we could enforce the model to only
generate KG entities.

Ablation Study

Table 9 shows the effect of different design choices in
BERTRL, mainly knowledge linearization and path sampling.
We use the FB15k-237 inductive dataset and its few-shot
subset for evaluation.

Combined Paths. As discussed in the approach section, com-
bined paths is one way linearizing structural knowledge. Al-
though it includes more information in one input, it does
not outperform individual paths. This indicates that BERT
struggles to learn from complex input when training data is
limited, which might be explained by Occam’s razor.

Subgraph (Edge List). Edge list is the worst performing
linearization option. Linking entities in the input and then
recognizing patterns could be more challenging for BERT
than reasoning along paths where edges are ordered by their
connection.

Path Sampling. We evaluate the performance of path sam-
pling by randomly selecting n paths between entities. Path
sampling could speed up training as the training data becomes
small. The performance is still good even when the number
of sampled paths is very small, indicating BERTRL is robust
to the size of the training set.

Related Work

Transductive Models. Most existing knowledge graph com-
pletion methods are embedding based, such as TransE (Bor-
des et al. 2013), Complex (Trouillon et al. 2017), ConvE
(Dettmers et al. 2018), RotatE (Sun et al. 2019) and TuckER
(BalaZevi¢, Allen, and Hospedales 2019). These methods
learn low-dimensional embedding of entities and relations
to capture relational information of the graph. They are nat-
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urally transductive and need expensive retraining for new
nodes in inductive setting.

Methods like R-GCN (Schlichtkrull et al. 2018), DeepPath
(Xiong, Hoang, and Wang 2017), MINERVA (Das et al. 2018)
and DIVA (Chen et al. 2018), learn to aggregate information
from local subgraph and paths. However, they cannot be
directly applied to the inductive setting as entity/node specific
embeddings are needed.

Inductive Models. In contrast to the transductive setting,
probabilistic rule learning AMIE (Galarraga et al. 2013) and
RuleN (Meilicke et al. 2018) could apply learned rules to
unseen entities. NeuralLP (Yang, Yang, and Cohen 2017) and
DRUM (Sadeghian et al. 2019) learn differentiable rules in an
end-to-end manner. GralL(Teru, Denis, and Hamilton 2020),
CoMPILE(Mai et al. 2021) and TACT (Chen et al. 2021) in-
ference through graph neural networks. These methods are in
nature inductive as they learn entity irrelevant rules or models
and conduct reasoning with knowledge graph information
only. Besides these studies, there are methods learning to
generate inductive embedding for unseen nodes. Some ap-
proaches (Hamilton, Ying, and Leskovec 2017; Bojchevski
and Giinnemann 2018) rely on the node features which may
not be easily acquired in many KGs. Others (Wang et al.
2019; Hamaguchi et al. 2017) generate embedding for unseen
nodes by learning to aggregate neighborhood embeddings
using GNNSs or estimate embedding under translational as-
sumption (Dai et al. 2020). However, those paradigms require
a certain number of known entities and cannot be applied to
entirely new graphs.

Pre-trained Language Models. Pre-trained language mod-
els, such as BERT (Devlin et al. 2019), GPT-2 (Radford et al.
2019), BART (Lewis et al. 2019), TS5 (Raffel et al. 2020)
and GPT-3 (Brown et al. 2020) revolutionize recent natural
language processing studies. LAMA (Petroni et al. 2019)
shows that no-tuned pre-trained language models themselves
already capture some factual knowledge.

KG-BERT (Yao, Mao, and Luo 2019) leverages BERT in
knowledge graph completion. It feeds target triple texts to
BERT and learns to predict the triple existence. The simple
representation suffers in the inductive setting. it does not learn
a general reasoning mechanism like GralL. and BERTRL.

Conclusion

We proposed BERTRL, a pre-trained language model based
approach for knowledge graph completion. By taking rea-
soning path and triple as input to a pre-trained language
model, BERTRL naturally handles unseen entities and gains
the capability of relational reasoning. In few-shot learning,
it outperforms competitive baselines by an even larger mar-
gin. It has the potential to generalize to unseen relations in
a zero-shot setting. It not only achieves the state-of-the-art
results in inductive learning, but also shown to be effective in
transductive learning. Overall, this work opens a new direc-
tion of combining the power of pre-trained language model
and logic reasoning.
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