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Abstract

Despite the recent success of end-to-end deep neural net-
works, there are growing concerns about their lack of log-
ical reasoning abilities, especially on cognitive tasks with
perception and reasoning processes. A solution is the neu-
ral symbolic learning (NeSyL) method that can effectively
utilize pre-defined logic rules to constrain the neural archi-
tecture making it perform better on cognitive tasks. How-
ever, it is challenging to apply NeSyL to these cognitive tasks
because of the lack of supervision, the non-differentiable
manner of the symbolic system, and the difficulty to prob-
abilistically constrain the neural network. In this paper, we
propose WS-NeSyL, a Weakly Supervised Neural Symbolic
Learning model for cognitive tasks with logical reasoning.
First, WS-NeSyL employs a novel back search algorithm to
sample the possible reasoning process through logic rules.
This sampled process can supervise the neural network as
the pseudo label. Based on this algorithm, we can backprop-
agate gradients to the neural network of WS-NeSyL in a
weakly supervised manner. Second, we introduce a proba-
bilistic logic regularization into WS-NeSyL to help the neu-
ral network learn probabilistic logic. To evaluate WS-NeSyL,
we have conducted experiments on three cognitive datasets,
including temporal reasoning, handwritten formula recogni-
tion, and relational reasoning datasets. Experimental results
show that WS-NeSyL not only outperforms the end-to-end
neural model but also beats the state-of-the-art neural sym-
bolic learning models.

Introduction
Like human cognition, cognitive tasks include two pro-
cesses: information perception and logical reasoning. As
the example of a cognitive instance in Figure 1, to an-
swer the question, we should first perceive subjects and kin-
ships from the text and then make logical reasoning accord-
ing to the logical rule of Mother(x, y) ∧ Mother(y, z) →
Grandmother(x, z). Although end-to-end deep neural net-
works (DNNs) have achieved great success recently (De-
vlin et al. 2019), they cannot complete these cognitive tasks
in accordance with effective cognitive processes (Ribeiro,
Guestrin, and Singh 2019; Sen and Saffari 2020; Sugawara
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Context: Kristin and her son Justin went to visit her mother

Carol on a nice Sunday afternoon. They went out for a movie 

together and had a good time.

Question: How is Carol related to Justin?

Answer: Grandmother. 

Mother GrandmotherMother

Kristin JustinCarol Kristin Justin Carol

∧ →

Figure 1: An example of a cognitive problem. To solve the
problem, we are required to perceive information (colorful
words) from the texts on the top of the figure and then reason
out the result based on the bottom logic.

et al. 2020). This is because DNNs can hardly master sys-
tematic knowledge without the supervision of the reasoning
process and apply symbolic rules to make logical reason-
ing. In response to the problem, an expected solution is neu-
ral symbolic learning (NeSyL), which introduces a symbolic
system to guide the neural network by cascading them. As
a result, NeSyL can combine the extraordinary perception
ability of the neural network and the stable logical reason-
ing ability of the symbolic system (Dai et al. 2019).

Previous studies of NeSyL (Si et al. 2019; Weber et al.
2019; Chen et al. 2020) focused more on solving the inter-
action between the neural network and the symbolic sys-
tem. These studies solved the problem of gradient barri-
ers to a certain extent. However, there are still three chal-
lenges that hinder the application of NeSyL to different cog-
nitive tasks. Firstly, most cognitive tasks involve complex
reasoning processes, which lack the ground truth to super-
vise (Weber et al. 2019; Chen et al. 2020). Secondly, due to
the non-differentiable nature of the symbolic system, avail-
able NeSyL methods usually use non-generalizable strate-
gies to integrate neural networks and symbolic systems (We-
ber et al. 2019; Chen et al. 2020), which hinders the reuse of
these methods on cognitive tasks with different logic rules.
Thirdly, even if the two modules can interact with each other,
the deterministic constraints of the logic rules cannot con-
strain the probabilistic reasoning process of the neural net-
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work effectively (Manhaeve et al. 2018).
In this paper, we propose a Weakly Supervised Neural

Symbolic Learning model (WS-NeSyL) to solve above
problems on cognitive tasks. Aiming at the first two chal-
lenges, we propose a weakly supervised framework to train
the neural network without the supervision of the reasoning
process or the non-generalizable explicit symbolic system.
Specifically, inspired by Sinha et al. (2019), WS-NeSyL in-
cludes a back search algorithm to sample “the most likely”
reasoning process as the pseudo label to train the neural
network in a weakly supervised manner. Based on such
a back search algorithm, WS-NeSyL does not need to la-
bel the reasoning process for each instance and can back-
propagate gradients to the neural network without an ex-
plicit symbolic system. To meet the last challenge, we in-
troduce a probabilistic logic regularization into WS-NeSyL
to further constrain the probabilistic reasoning process of
the neural network based on the probabilistic logic theory
of DeepProbLog (Manhaeve et al. 2018). Different from
DeepProbLog, WS-NeSyL imposes local logic constraints
instead of the global loss. Therefore, it can benefit the model
in learning probabilistic logic and reducing the negative im-
pact of noisy pseudo labels.

We verify our methods on three cognitive tasks: the tem-
poral reasoning task of multi-hop TimeBank-Dense (Cas-
sidy et al. 2014) (MHTBD), the handwritten formula recog-
nition task of multi-hop HWF (Sinha et al. 2019) (MH-
HWF), and the relational reasoning task of CLUTRR (Sinha
et al. 2019). Results show that WS-NeSyL outperforms the
baseline end-to-end neural network and neural symbolic
learning models on all three datasets. In particular, WS-
NeSyL can prevent overfitting through the weakly super-
vised framework and the regularization, and has good abili-
ties of perception and reasoning on different cognitive tasks.

Overall, our contributions are as follows:
• We propose a novel weakly supervised framework, WS-

NeSyL, for cognitive tasks with logical reasoning. WS-
NeSyL employs a back search algorithm that can sam-
ple the reasoning process without the ground truth, which
benefits the neural network in learning logic rules.

• We introduce a probabilistic logic regularization to the
proposed method, WS-NeSyL, to match the probabilis-
tic characteristic of the neural network, which benefits
the further integration of the neural network and the rule
system based on the pseudo label.

• We have experimented on three cognitive datasets: tem-
poral reasoning, relational reasoning, and handwritten
formula recognition datasets. Results show that the pro-
posed WS-NeSyL achieves the best performance on all
three datasets compared with previous end-to-end neural
model and other NeSyL methods.

Related Work
Cognitive Task
Generally, cognitive tasks contain two processes of percep-
tion and reasoning to benchmark the cognitive ability of
models. Theorem proving (Alvandi and Watt 2019; Zhelez-
niakov, Zaytsev, and Radyvonenko 2021) and handwritten

formula recognition (Dai et al. 2019; Sinha et al. 2019) are
typical cognitive tasks that require perceiving mathemati-
cal symbols from pictures and calculate results based on
mathematical theorems. CLEVR (Johnson et al. 2017; Sam-
pat et al. 2021) also provides a benchmark that introduces
logical reasoning to visual question answering. Sinha et al.
(2019) define CLUTRR benchmarks with robustness and
generalization evaluations to measure models’ perception
and reasoning abilities, respectively. Besides, LogiQA (Liu
et al. 2020) and ReCLor (Yu et al. 2020) provide more
complex reasoning scenarios by considering commonsense
and domain knowledge. In order to complete these cog-
nitive tasks, information perception and logic/knowledge-
based reasoning should be solved simultaneously.

Neural Symbolic Learning
Many early studies focus on implicit neural symbolic inte-
gration methods that map inputs and rules to the same vector
space for cognitive tasks. Most of these studies adopt logic
theories, such as fuzzy logic (Zadeh 1965; Hájek 1998), to
revise neural architectures (Donadello, Serafini, and d’Avila
Garcez 2017; Marra et al. 2020; Wang et al. 2020), enhance
representations (Sourek et al. 2018; Li and Srikumar 2019;
Dong et al. 2019; Qu and Tang 2019; Dumancic et al. 2019),
and optimize loss functions (Xu et al. 2018). However, these
studies cannot make full-featured logical reasoning and usu-
ally lack generalization and interpretability (Dai et al. 2019).
Recently, explicit NeSyL methods cascade the neural net-
work and the symbolic system to guide the neural network
to understand the inference logic (Evans and Grefenstette
2018; Si et al. 2019; Yang, Yang, and Cohen 2017; Weber
et al. 2019; Chen et al. 2020; Dai et al. 2019; Tsamoura,
Hospedales, and Michael 2021). On this basis, Manhaeve
et al. (2018) further propose a probabilistic theory to de-
scribe the neural reasoning process. However, these solu-
tions require well-constructed symbolic reasoners and ad-
ditional annotations, which can only be applied to limited
cognitive tasks. Inspired by Li et al. (2020), we propose a
weakly supervised neural symbolic learning method, WS-
NeSyL, without explicit reasoners and additional annota-
tions. WS-NeSyL can also achieve competitive performance
on different cognitive tasks.

Problem Setting
We can simplify a cognitive task to a problem of outputting
a hypothesis reasoning function f that maps the raw in-
put x and the pre-defined limited set of logic rules R =
{r1, r2, · · · , rl} to the output y (f(x,R) = y). In fact, each
logic rule r can be written as a form of conjunctive implica-
tion: r : b1 ∧ b2 ∧ · · · ∧ bm → h1 ∧ h2 ∧ · · · ∧ hn, where b
and hmean the literal and the atom respectively. Actually,R
is a set that contains all possible rules not just deterministic
rules. As a result, other logic forms, such as disjunction ∨
and equivalence ≡ should also be included in R. For exam-
ple, if we know b1∨ b2 → h1∨h2, we should add four rules
to R: b1 → h1, b1 → h2, b2 → h1, and b2 → h2.

Based on the above description, the objective of the cog-
nitive task is to find a target function fθ that satisfies Eq. 1,
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Figure 2: Variable dependency of NeSyL. The intermediate
variable z is used to describe the reasoning process and is
determined by the neural network (θ represents trainable pa-
rameters) based on the raw input x. Meanwhile, rulesR also
constrain the form of z. The output y is inferred by the sym-
bolic system based on R and z.

where D is the set of observations and fθ is usually formu-
lated by a neural network.

∀(x, y) ∈ D(fθ(x,R) = y) (1)

From Eq. 1, it is hard to describe how x and R interact
to infer y in detail. Therefore, NeSyL includes the reasoning
process through an intermediate variable z represented by
symbols. Variable dependency of NeSyL is shown in Fig-
ure 2. Based on the relations among x, R, z, and y, the ob-
jective of NeSyL is to acquire the neural network fθ that sat-
isfies Eq. 2, where ` and � imply syntactic consequence and
semantic consequence. Most previous studies (Weber et al.
2019; Manhaeve et al. 2018) adopt the ground truth or a spe-
cific symbolic reasoner to supervise the intermediate z, but
our proposal method weakly supervises z based on R.

∀(x, y) ∈ D(z = fθ(x), R ` z,R ∪ z � y) (2)

Methodology
In this section, we first describe the neural architecture of
the WS-NeSyL. Next, we introduce two essential mech-
anisms in WS-NeSyL: weakly supervised learning with a
back search algorithm and probabilistic logic regularization.

Neural Perception and Reasoning
As Figure 2, the neural network is used to map the input x
to a normalized probability distribution of the intermediate
variable z. Most previous studies adopt the reasoning proofs
as z so that the neural network is only regarded as a percep-
tion module (Li et al. 2020; Gontier et al. 2020). We regard
z as the whole reasoning process described by the sequence
of rules. In a word, we adopt the neural network as both the
perception module and the reasoning module. Therefore, al-
though the specific network architecture depends on the task,
neural perception and reasoning can be described by a uni-
fied encoder-decoders framework with one encoder and two
decoders, as shown in Figure 3. This framework can process
multi-hop logical reasoning such as b1∧b2 → h1∧b3 → h2.
Note that we assume that the perception process of literal is
independent, but we will add the available information as
inputs to prevent repeated perception in practice.

Dec-P Dec-P Dec-R Dec-P Dec-REnc

x

b1 b2 h1 h2b3

b1,b2 h1,b3

Figure 3: Neural perception and reasoning framework of
encoder-decoders. For the example of multi-hop reasoning
b1 ∧ b2 → h1 ∧ b3 → h2, Enc is the encoder that encodes
the raw input (texts or graphs). Dec-P is the perception de-
coder to perceive information (b1, b2, and b3) from x, while
Dec-R is the reasoning decoder to reason out the conclusion
(h1 and h2) based on the perceived information.

Weakly Supervised Learning
In practice, it is challenging to obtain the ground truth of
the intermediate reasoning process z, so we cannot train
the model in a supervised manner. Alternatively, we adopt
a weakly supervised method to train the neural model.

Based on the definition of the cognitive task, the final ob-
jective is to maximize the probability pθ(y|x,R), where θ
represents parameters to be optimized. When introducing
the intermediate variable z, we can rewrite the probability in
Eq. 3 by marginalizing over z according to the dependency
in Figure 2, where pθ(z|x,R) is calculated by the neural net-
work, and p(y|z,R) is generated by the symbolic system
without parameters.

pθ(y|x,R) =
∑
z

pθ(y, z|x,R)

=
∑
z

p(y|z,R)pθ(z|x,R) (x ⊥ y|z)
(3)

Based on the maximum likelihood estimation, the deriva-
tion of the log-likelihood (L) can be calculated by Eq. 4.

∇θL = ∇θ log pθ(y|x,R) =
∇θpθ(y|x,R)
pθ(y|x,R)

=
∑
z

p(y|z,R)pθ(z|x,R)∑
z′ p(y|z′, R)pθ(z′|x,R)

∇θ log pθ(z|x,R)

=
∑
z

q(z|x, y,R)∇θ log pθ(z|x,R)

= Ez∼q(z|x,y,R)[∇θ log pθ(z|x,R)]

(4)

From Eq. 4, the key point to compute the derivation is
to calculate the posterior distribution z ∼ q(z|x, y,R). Ac-
cording to the Eq. 2, q(z|x, y,R) is non-zero only when z
satisfies R ` z and R ∪ z � y. Therefore, q(z|x, y,R) can
be written as Eq. 5 shows, where Z = {z|R ` z,R∪z � y}.

q(z|x, y,R) =


0 z 6∈ Z

pθ(z|x)∑
z′∈Z pθ(z

′|x) , z ∈ Z
(5)

Although the expression of the distribution can be given
directly, it is complicated to calculate q(z|x, y,R) due
to the summation

∑
z∈Z pθ(z|x). An alternative way is

to sample z∗ from the posterior distribution q(z|x, y,R)
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Algorithm 1: n-Step Metropolis-Hastings Sampler.
Input: Probability pθ(·|x); Q(·|z); Step n; Z.
Output: Sampled z∗

1 Initialize z(0) = argmaxz(pθ(z|x));
2 if z(0) 6∈ Z then
3 for t = 1 to n do
4 One-Step Sample z ∼ Q(·|z(t));
5 if t == 1 then
6 z(t+1) = z
7 else
8 Sample u ∼ U(0, 1);
9 α = min{ pθ(z|x)Q(z(t)|z)

pθ(z
(t)|x)Q(z|z(t)) , 1};

10 if u ≤ α and z 6= ∅ then
11 Accept: z(t+1) = z
12 else
13 Reject: z(t+1) = z(t)

14 end
15 end
16 end
17 else
18 return z(0)
19 end
20 return z∗ = z(n)

through Metropolis-Hastings (M-H) sampling (Metropolis
et al. 1953; Hastings 1970). Sample z∗ is used as the pseudo
label to train the neural network. We will introduce the n-
step M-H sampler and the 1-step sampler, respectively.

Metropolis-Hastings Sampler. To sample z∗ from
q(z|x, y,R), we regard π(z) = p(z|x)∑

z′∈Z p(z
′|x) , z ∈ Z as

the desired stationary distribution, and define a proposal
distribution Q. According to the Metropolis-Hastings
algorithm, when given the current state zi and the next
sampled state zj , we need to determine whether to accept
zj based on a specific acceptance ratio α. The acceptance
ratio α can be calculated by π and Q, shown in Eq. 6. In
the equation, the summation term happens to be offset, so
the calculation is simplified. We can find that if zi does not
satisfy logical constraints, we always accept the new sample
zj because p(zi|x) = 0. In practice, we set the initial α
as 1 (t = 1) when the neural network cannot generate a
possible z ∈ Z. Furthermore, to ensure the convergence of
the Markov chain, the sampling process will iterate n times,
the whole algorithm of which is shown in Alg. 1. The only
remaining problem is to design Q and perform one-step
sampling z ∼ Q(·|z(t)).

α(zi, zj) = min{π(zj)Q(zi|zj)
π(zi)Q(zj |zi)

, 1}

=


1 zi 6∈ Z

min{p(zj |x)Q(zi|zj)
p(zi|x)Q(zj |zi)

, 1}, zi ∈ Z

(6)

1-Step Sampler. We propose a random back search algo-
rithm (one-step sampler) to constructQ and sample ẑ, which

Algorithm 2: 1-Step Sampler.
Input: Initial z; Ground Truth y; Rules R.
Output: Sampled ẑ

1 Counstruct tree: root = CONSTRUCTTREE(z);
2 Select atoms: H = SELECTHEADS(list(root));
3 Update root: UPDATE(H, y);
4 while H 6= ∅ do
5 Hiter = list();
6 for h in H do
7 Sample B ∼ U(R|h);
8 Update child nodes: UPDATE(h.child, B);
9 Hiter = Hiter + SELECTHEADS(h.child);

10 end
11 H = Hiter

12 end
13 return ẑ = REDUCETOSEQUENCE(root)

is shown in Alg. 2. In detail, we first construct a tree in re-
verse based on z (CONSTRUCTTREE). Then, the value of
root node is updated by the ground truth y (UPDATE). Next,
we uniformly sample and update (UPDATE) the values of
child nodes B, and update atoms (SELECTHEADS) itera-
tively. Finally, the new root can be reduced to the sequence
ẑ with the same length of z (REDUCETOSEQUENCE). To
further improve the efficiency of the sampling, we sample
m intermediate variables and select the most probable one
through pθ(z|x). Based on such an algorithm, although it is
still complex to compute the distribution matrix Q, Q(zi|zj)

Q(zj |zi)
can be calculated by Eq. 7 directly. G(h,R) is a function
to count how many rules in R that can imply h. hki and hkj
represent atoms in two z.

Q(zi|zj)
Q(zj |zi)

=

∏
h∈{hkj |h

k
j 6=h

k
i }
G(h,R)∏

h′∈{hki |h
k
i 6=h

k
j }
G(h′, R)

(7)

Probabilistic Logic Regularization
Based on the back search algorithm, z∗ is sampled as the
pseudo label to train the neural network. As a result, the
loss function can be computed by the cross-entropy loss
CE(z, z∗). However, pseudo labels are noisy in the weakly
supervised situation, so they cannot fully constrain the neu-
ral network through the cross-entropy loss. Therefore, we
introduce a probabilistic logic regularization (PLR) to soften
the reasoning process through probabilistic logic.

We assume that if input x is determined and contains the
logic of b1 ∧ b2 → h, then p(h|x) = p(b1|x)p(b2|x) = 1.0.
Based on the assumption, we imposs a constraint for each
rule through conjunctive sentential decision diagrams (Dar-
wiche 2011) adopt gradient semiring (Kimmig, den Broeck,
and Raedt 2011; Manhaeve et al. 2018) to constrain the
probabilistic logic, which is regarded as PLR. The gradient
semiring is shown in Eq. 8, where p means pθ(·|x).

(ph,
∂ph
∂θ

) = (pb1pb2 , pb1
∂pb2
∂θ

+ pb2
∂pb1
∂θ

) (8)

Based on the gradient semiring of each node in a com-
plete conjuntive sentential decision diagram, the potential
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Model Accuracy (%)
End2End 62.0 ± 0.0

DeepProbLog 63.5 ± 1.1

NGS 58.5 ± 0.0

WS-NeSyL
λ = 0 67.5 ± 0.0

λ = 0.2 68.3 ± 0.9

λ = 0.5 71.1 ± 0.1

λ = 0.8 72.9 ± 3.1

Table 1: Performance on MHTBD. λ is the hyper-parameter
to reflect the proportion of PLR.

probabilistic constraint is ∀h ∈ H, ph =
∏
b∈B pb, where

B = {b|b ∧ b∗ → h, b ∈ z∗}, H = {h|b∗ → h, h ∈ z∗},
h can be either an atom or a conjunction of atoms,and b∗
is the conjunction of arbitrary literals. We use the differen-
tiable mean square error to describe the constraint and PLR
(R) can be defined by in Eq. 9.

R =
∑
h∈H

MSE(
∏
b∈B

pb, ph) (9)

As a result, the final objective function (L) is shown in
Eq. 10, where λ (0 ≤ λ ≤ 1) is a hyper-parameter to adjust
the proportion of the cross-entropy loss and PLR.

L = (1− λ)× CE(z, z∗) + λ×R (10)

Experiments
Experimental Settings

Datasets. We experiment on three datasets: multi-hop
TimeBank-Dense (MHTBD), multi-hop HWF (MHHWF),
and CLUTRR (Sinha et al. 2019). MHTBD is a multi-hop
version of TimeBank-Dense (Cassidy et al. 2014) with in-
tegrated multi-hop temporal reasoning instances, which in-
cludes a complex perception process (extracting informa-
tion from text) but a simple reasoning process (with seven
rules). In contrast, MHHWF, a multi-hop CV task modi-
fied on HWF (Sinha et al. 2019), has a simple perception
process (recognizing handwritten digits from graphs) but
a complex reasoning process since its mathematical opera-
tions are discretized into discrete logical rules. CLUTRR, a
multi-hop relational reasoning dataset, includes a relatively
complex perception process and reasoning process. Based
on its original setting, it contains two generalization tasks
and four robustness tasks. Generalization tasks are to bench-
mark the reasoning ability by forcing the model to be trained
on low-hop instances (2-3/2-4 hops) and tested on high-hop
inference (up to 10-hop reasoning). Robustness tasks are to
evaluate the perception ability by training and testing mod-
els with different types of information organization (clean,
supporting, irrelevant, and disconnected). In practice, we re-
group the relationship defined in CLUTRR based on the
work of Minervini et al. (2020).

Model Training: k = 2-4
In. Out. Test

Pretrained 77.9 ± 0.3 50.0 ± 0.2 56.2 ± 0.1

DeepProbLog 90.2 ± 0.7 68.7 ± 0.7 73.5 ± 0.6

NGS 97.4 ± 0.2 91.5 ± 0.5 92.8 ± 0.4

WS-NeSyL
λ = 0 97.7 ± 0.4 93.7 ± 0.6 94.6 ± 0.5

λ = 0.2 98.4 ± 0.5 95.2 ± 0.4 95.9 ± 0.4

λ = 0.5 98.5 ± 0.2 96.2 ± 0.5 96.7 ± 0.4

λ = 0.8 97.4 ± 0.5 92.9 ± 0.9 93.9 ± 0.7

Table 2: Results on MHHWF. In. and Out. represent in-
domain and out-of-domain tests, respectively. k is the num-
ber of hops of logical reasoning. λ is the hyper-parameter to
represent the proportion of PLR.

Baselines. We adopt three baselines in this work, includ-
ing the end-to-end neural network (End2End) and two Ne-
SyL models: DeepProbLog (Manhaeve et al. 2018) and
NGS (Li et al. 2020). In particular, we replace End2End with
a pretrained model (Pretrained) based on a small amount
of annotated data for MHHWF as End2End does not work.
We adopt the same setting as Li et al. (2020) for NGS and
only replace logical rules, while we adopt a different setting
from Manhaeve et al. (2021) for DeepProbLog. For a fair
comparison, we select the Bi-LSTM encoder and two LSTM
attentional decoders on MHTBD and CLUTRR (Sinha et al.
2019), and use the CNN encoder and Multilayer Perceptrons
decoders on MHHWF (Sinha et al. 2019) for baselines.

Results on MHTBD
Results on MHTBD are shown in Figure 1. WS-NeSyL out-
performs all baselines more than three points. End2End and
DeepProbLog can achieve better performances than NGS,
while NGS almost fails on MHTBD. Compared with de-
terministic models, probabilistic models (including Deep-
ProbLog and WS-NeSyL) perform better on MHTBD. Con-
sidering WS-NeSyL models, WS-NeSyL (λ = 0.8) achieves
the best performance with an accuracy of 72.78%. Even
when λ = 0 (without PLR), WS-SyNeL can also achieve
a competitive performance (67.40%). In general, when the
task has a simple reasoning process, WS-NeSyL can effec-
tively use the back search algorithm to generate the reason-
ing process z, which is helpful for the neural network to per-
ceive information from texts.

Results on MHHWF
Results on MHHWF are shown in Table 2. WS-NeSyL
beats all baselines with a maximum accuracy of 96.70%,
which performs well on both in-domain and out-of-domain
evaluations. Besides, NGS has relatively good performance
(92.84%), while the performance of DeepProbLog drops
significantly (73.48%). Due to the complicated reasoning
process in MHHWF, it is challenging for DeepProbLog to
constrain probabilistic logic rules accurately. In addition,
weakly supervised methods (NGS and WS-NeSyL) have ad-
vantages as they can effectively select logic rules. Further-
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Model Training: k = 2-3 Training: k = 2-4
In. Out. Test In. Out. Test

End2End 76.1 ± 3.0 35.0 ± 0.5 40.2 ± 0.3 59.2 ± 3.9 37.4 ± 0.4 42.0 ± 0.8

DeepProbLog 76.4 ± 3.3 31.9 ± 1.2 37.4 ± 1.3 67.1 ± 2.9 37.0 ± 0.7 43.3 ± 1.2

NGS 70.0 ± 2.1 16.7 ± 7.1 23.3 ± 6.4 60.1 ± 9.6 36.7 ± 3.8 41.7 ± 4.2

WS-NeSyL
λ = 0 68.8 ± 2.6 37.0 ± 0.3 41.0 ± 0.3 62.8 ± 7.4 40.2 ± 3.6 45.0 ± 2.1

λ = 0.2 70.8 ± 3.6 37.6 ± 0.9 41.8 ± 1.2 60.5 ± 4.6 41.2 ± 1.7 45.3 ± 0.6

λ = 0.5 69.2 ± 2.4 38.0 ± 1.3 41.8 ± 1.0 59.2 ± 1.5 41.2 ± 1.1 45.0 ± 1.0

λ = 0.8 67.3 ± 3.5 38.5 ± 0.9 42.1 ± 0.6 58.9 ± 3.7 41.3 ± 0.6 45.0 ± 0.7

Table 3: Generalization results on CLUTRR. In. and Out. represent in-domain and out-of-domain tests, respectively. k is the
number of hops of logical reasoning. λ is the hyper-parameter to represent the proportion of PLR.

Model Training: Clean Training: Supporting
C S I D Test C S I D Test

End2End 72.5 ± 1.8 68.1 ± 5.4 72.1 ± 4.7 65.6 ± 7.2 69.6 ± 3.5 71.2 ± 3.2 72.7 ± 5.0 75.8 ± 3.1 66.6 ± 3.1 71.6 ± 2.6

DeepProbLog 74.9 ± 3.9 55.7 ± 4.5 65.8 ± 4.1 68.2 ± 5.2 66.3 ± 3.3 75.5 ± 3.9 74.3 ± 1.6 75.5 ± 2.0 69.4 ± 4.2 73.7 ± 1.5

NGS 77.7 ± 10 64.9 ± 9.0 71.4 ± 9.8 71.2 ± 9.6 71.4 ± 8.3 67.2 ± 7.0 68.3 ± 2.9 67.3 ± 5.9 58.7 ± 5.8 65.4 ± 4.2

WS-NeSyL
λ = 0) 71.2 ± 4.6 72.9 ± 2.9 75.2 ± 4.4 69.6 ± 3.8 72.2 ± 3.0 76.2 ± 2.9 73.6 ± 3.0 77.6 ± 2.7 70.5 ± 3.3 74.5 ± 1.3

λ = 0.2 71.6 ± 4.5 76.3 ± 3.4 76.3 ± 3.5 69.6 ± 3.5 73.4 ± 2.0 77.1 ± 3.7 76.7 ± 2.7 75.0 ± 2.0 69.7 ± 3.6 74.7 ± 1.0

λ = 0.5 74.5 ± 2.9 78.5 ± 2.3 77.8 ± 1.2 71.5 ± 3.7 75.6 ± 1.2 78.7 ± 3.4 75.9 ± 3.1 77.2 ± 0.5 73.9 ± 3.5 76.4 ± 1.6

λ = 0.8 79.0 ± 3.9 81.5 ± 3.7 81.8 ± 2.6 78.9 ± 2.8 80.3 ± 2.0 78.1 ± 4.0 79.0 ± 2.5 79.7 ± 3.4 74.8 ± 3.0 77.9 ± 1.8

Model Training: Irrelevant Training: Disconnected
C S I D Test C S I D Test

End2End 48.8 ± 3.1 49.9 ± 2.5 52.5 ± 3.2 41.3 ± 2.6 48.2 ± 1.8 40.7 ± 2.7 40.3 ± 2.6 43.1 ± 4.9 41.2 ± 3.0 41.3 ± 1.9

DeepProbLog 54.6 ± 3.8 55.9 ± 3.5 60.0 ± 2.6 53.8 ± 6.5 56.1 ± 3.1 61.8 ± 5.0 55.2 ± 3.1 63.5 ± 1.9 64.5 ± 2.7 61.3 ± 2.4

NGS 52.0 ± 6.1 52.8 ± 2.7 55.3 ± 2.6 45.8 ± 5.7 51.5 ± 3.6 54.5 ± 8.5 53.9 ± 8.1 58.2 ± 9.4 58.6 ± 9.3 59.4 ± 10

WS-NeSyL
λ = 0 57.4 ± 3.6 56.8 ± 2.1 62.3 ± 2.5 50.4 ± 4.0 56.8 ± 2.2 62.1 ± 3.0 57.9 ± 3.8 57.0 ± 5.1 59.3 ± 3.7 59.1 ± 2.1

λ = 0.2 56.5 ± 1.3 54.8 ± 5.0 62.9 ± 2.2 54.2 ± 1.5 57.1 ± 1.0 58.4 ± 2.5 60.6 ± 2.1 57.0 ± 4.0 62.0 ± 1.0 59.3 ± 1.2

λ = 0.5 56.8 ± 3.3 56.5 ± 4.4 66.7 ± 2.5 52.7 ± 5.1 58.3 ± 1.4 58.7 ± 1.1 61.5 ± 5.5 60.8 ± 3.3 63.6 ± 3.9 61.4 ± 2.7

λ = 0.8 59.6 ± 3.5 56.8 ± 1.8 65.7 ± 6.3 58.5 ± 2.5 60.2 ± 2.6 68.3 ± 6.3 62.7 ± 6.0 62.8 ± 6.9 63.3 ± 4.0 64.3 ± 4.2

Table 4: Robustness results on CLUTRR. C/S/I/D represent tests with Clean/Supporting/ Irrelevant/Disconnected instances. λ
is the hyper-parameter to represent the proportion of PLR.

more, the sampling mechanism of WS-NeSyL is more stable
than NGS’s in logical reasoning, so the performance of WS-
NeSyL is better than NGS. In conclusion, WS-NeSyL can
adapt to cognitive tasks with the complex reasoning process.

Results on CLUTRR
Generalization Results. Generalization results on
CLUTRR are shown in Table 3. WS-NeSyL outperforms all
baseline models on both two evaluations, with maximum
total accuracies of 42.07% (λ = 0.8) and 45.28% (λ = 0.2),
respectively. In particular, WS-NeSyL performs better on
out-of-domain evaluations (38.47% and 41.26%) because
the weak supervision prevents overfitting of WS-NeSyL on
the in-domain data. End2End does not show a significant
difference in the performance on two tasks (40.16% and
41.99%) compared with the other three NeSyL models,
although the second task provides more information about
the reasoning process. This is evidence that End2End does

not predict according to the reasoning process logically.
Although NGS adopts a weakly supervised method, it can
hardly learn the correct reasoning patterns on the first task
(23.34%). One reason is that NGS cannot deal with the
uncertainty in the logical reasoning, such as the disjunction
rule of Grandfather ∧ Son → Father ∨ Uncle. Con-
sidering DeepProbLog, although the probabilistic logic can
better describe the reasoning process of the neural network,
the probabilistic loss alone is not enough to constrain the
neural network efficiently. Overall, WS-NeSyL maintains
relatively good reasoning ability even on cognitive tasks
with complex perception and reasoning processes.

Robustness Results. Robustness results on CLUTRR are
shown in Table 4. WS-NeSyL outperforms all three base-
lines on four tasks with accuracies of 80.28%, 77.90%,
60.21%, and 64.25%, respectively, as the back search mech-
anism can further enhance the perception ability of WS-
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NeSyL by modifying the logic. End2End performs well on
two noiseless tasks (69.63% and 71.60%), but the perfor-
mance drops significantly on two noisy tasks (48.15% and
41.32%, respectively). DeepProbLog keeps stable perfor-
mance as its symbolic reasoner is equivalent to providing
the supervised label of the reasoning proof z. In conclu-
sion, WS-NeSyL not only has extraordinary logical reason-
ing ability but also has better perception ability than other
baselines under the same setting of the neural architecture.

Analysis of PLR
We further explore the impacts of PLR on different datasets.
On the one hand, PLR brings significant improvements on
tasks benchmarking the perception ability (MHTBD and ro-
bustness evaluations of CLUTRR). Specifically, PLR brings
at most a 5.38-point improvement on MHTBD and 7.11-
point, 3.44-point, 3.44-point, and 5.16-point improvements
on four robustness evaluations of CLUTRR, respectively.
Meanwhile, with the increase of λ, the performance has
always shown an upward trend. On the other hand, PLR
does not bring significant improvements on those tasks that
mainly evaluate the reasoning ability (MHHWF and gener-
alization evaluations of CLUTRR). In particular, the perfor-
mance of WS-NeSyL with PLR even drops when λ = 0.8,
which is worse than WS-NeSyL without PLR.

Based on our analysis, PLR essentially provides local
constraints for specific rules in the pseudo label. As a re-
sult, PLR can still provide reasonable constraints even un-
der the noisy pseudo label as the logic rules always hold.
On those tasks to benchmark the perception ability, PLR can
alleviate negative influences of noisy pseudo labels on the
neural network and benefit the correction of misperceived
information. However, PLR essentially cannot provide suf-
ficient constraints for the model to make the final prediction.
This can be illustrated by setting λ = 1. WS-NeSyL will de-
generate into weakly supervised DeepProbLog and cannot
learn anything on any datasets. As a result, PLR alone can-
not constrain the logical reasoning process on those tasks
with more complex reasoning processes. In particular, when
WS-NeSyL owns a strong perception ability (on MHHWF),
an excessive proportion of PLR may even make the model
unable to learn the reasoning efficiently.

Case Study and Error Analysis
To further understand WS-NeSyL, we perform a case study
on CLUTRR and analyze the main error of WS-NeSyL. The
case in Figure 4 gives a confusing example from CLUTRR.
Although WS-NeSyL can predict the correct answer, it can-
not completely recognize the whole reasoning chain cor-
rectly. In detail, we can observe that WS-NeSyL actually
extracts words from the context but does not understand
the true meaning of these kinships and the relationships
of different kinships (such as the reversed relationship of
Daughter(x, y) and Father(y, x)). This means that the
back search algorithm cannot correct such kind of percep-
tion error whose intermediate results match the logic rules.
This is evidence that WS-NeSyL’s ability to correct mis-
perceived information is still limited. Furthermore, if WS-

Milton is buying his daughter② Irene a brand new car for her 

birthday. Margaretta was excited because today she was going to the 

zoo with her uncle ④ Samuel. Samuel took his daughter⑤ Adeline to 

cheer practice. Guadalupe went to the mall, because she wanted to 

look for a present for her daughter①, Irene. Margaretta wanted to 

visit an art museum, so she asked her father③, Milton to take her.

What is the relationship between Adeline and Guadalupe?

Query: (Guadalupe, Milton)

daughter ① ∧ father ②→

husband

Query: (Guadalupe, Margaretta)

husband ∧ daughter ③→ daughter

Query: (Guadalupe, Samuel)

daughter ∧ uncle ④→ brother

Query: (Guadalupe, Adeline)

brother ∧ daughter ⑤→ niece

Query: (Guadalupe, Milton)

daughter ① ∧ daughter ②→

granddaughter

Query: (Guadalupe, Margaretta)

granddaughter ∧ father ③→ son

Query: (Guadalupe, Samuel)

son ∧ uncle ④→ brother

Query: (Guadalupe, Adeline)

brother ∧ daughter ⑤→ niece

Prediction Target

Figure 4: Case Study of WS-NeSyL on CLUTRR. Shaded
relations are mispredicted results.

NeSyL perceives the wrong information, it may cater to the
logic rules instead of modifying the information perceived.

Discussions
Comparing WS-NeSyL with NeSyL Mehtods
Although WS-NeSyL and NGS (Li et al. 2020) both adopt
back search algorithms to weakly supervised the neural
model, NGS cannot deal with uncertainty in logical reason-
ing, but WS-NeSyL can by nature due to its probabilistic
framework. Besides, NGS adopts an approximate M-H sam-
pler without a complete proposal distribution Q, so it essen-
tially conducts one-step sampling and cannot meet the sta-
ble distribution condition in complex cognitive tasks. WS-
NeSyL provides a multi-step sampler with a well-designed
proposal distribution Q.

Inspired by DeepProbLog (Manhaeve et al. 2018), WS-
NeSyL adopts the same probabilistic logic theory as Deep-
ProbLog. However, WS-NeSyL imposes logical constraints
locally, but DeepProbLog adopts a global probabilistic logic
loss. Therefore, WS-NeSyL is capable of constraining local
logical relations more refined than DeepProbLog.

Limitations of WS-NeSyL
There are two limitations of WS-NeSyL: (1) It is not flexible
enough to automatically select different types of logic rules;
(2) WS-NeSyL is difficult to cold start in complex logical
reasoning scenarios because the model is hard to converge
in weakly supervised manners. Therefore, it is challenging
to apply WS-NeSyL to tasks with multiple inferences.

Conclusions and Future Work
In this paper, we propose WS-NeSyL that effectively en-
hances the perception and logical reasoning abilities to solve
cognitive problems. Although WS-NeSyL has some limita-
tions, experiments on three datasets have shown the power-
ful performance of WS-NeSyL. Future work will locate on
applying NeSyL to more complex reasoning scenarios with
multiple inferences through logic disentangling.
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