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Abstract

Statistical samples, in order to be representative, have to be
drawn from a population in a random and unbiased way. Nev-
ertheless, it is common practice in the field of model-based
diagnosis to make estimations from (biased) best-first sam-
ples. One example is the computation of a few most probable
fault explanations for a defective system and the use of these
to assess which aspect of the system, if measured, would
bring the highest information gain. In this work, we scru-
tinize whether these statistically not well-founded conven-
tions, that both diagnosis researchers and practitioners have
adhered to for decades, are indeed reasonable. To this end,
we empirically analyze various sampling methods that gen-
erate fault explanations. We study the representativeness of
the produced samples wrt. their estimations about fault ex-
planations and how well they guide diagnostic decisions, and
we investigate the impact of sample size, the optimal trade-off
between sampling efficiency and effectivity, and how approx-
imate sampling techniques compare to exact ones.

1 Introduction
Suppose we intend to predict the outcome of an election and
conduct a poll where we ask only, say, university professors
for whom they are going to vote. By this strategy, we will
most likely not gain insight into the real sentiment in the
population wrt. the election. The problem is that professors
are most probably not representative of all people. In model-
based diagnosis, however, such kind of samples are often
used as a basis for making decisions that rule the efficiency
of the diagnostic process.

Model-based diagnosis (Reiter 1987) deals with the de-
tection, localization and repair of faults in observed systems
such as programs, circuits, knowledge bases or physical de-
vices. One important prerequisite to achieve these goals is
the generation of diagnoses, i.e., explanations for the faulty
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system behavior in terms of potentially faulty system com-
ponents. A sample of diagnoses can be (i) directly analyzed,
e.g., to manually discover or make estimations about the
actual fault (Stern et al. 2013; Rodler et al. 2019), to aid
proper algorithm choice (Slaney 2014), or to support users
in test case specifications or repair actions (Kalyanpur 2006;
Meilicke 2011; Schekotihin, Rodler, and Schmid 2018), or
(ii) used as an input or guidance to diagnostic algorithms.
We focus on (ii) in this work.

An important class of diagnostic algorithms that are
guided by a set of precomputed diagnoses are sequential di-
agnosis approaches (de Kleer and Williams 1987; de Kleer
and Raiman 1993). They use a sample of diagnoses to com-
pute informative system measurements that allow to effi-
ciently and systematically rule out spurious diagnoses un-
til a single or highly probable one remains. Since achieving
(global) optimality of the sequence of measurements is in-
tractable in general (Pattipati and Alexandridis 1990), state-
of-the-art sequential diagnosis methods usually rely on lo-
cal optimization (de Kleer, Raiman, and Shirley 1992) using
one out of numerous heuristics (Moret 1982; de Kleer and
Williams 1987; Shchekotykhin et al. 2012; Rodler 2018) as
optimality criteria. These heuristics can be seen as functions
that, based on a given sample of diagnoses, map measure-
ment candidates to one numeric score each, and finally se-
lect the one measurement with the best score. In most cases,
these functions use two features of the sample, i.e., the

(F1) diagnoses’ probabilities, and
(F2) diagnoses’ predictions of the measurement outcome,

which allow to estimate the probabilities and diagnosis elim-
ination rates of the measurement outcomes.

Literature offers a range of techniques to generate sam-
ples of diagnoses, among them ones that return a specific
sample (de Kleer and Williams 1987; Reiter 1987; Rodler
2020a) (which includes exactly a predefined subset of all
diagnoses), and others that compute an unspecific sample,
e.g., in a heuristic (Abreu and Van Gemund 2009), stochastic
(Feldman, Provan, and Van Gemund 2008) or simply unde-
fined way (Shchekotykhin et al. 2014) (where no guarantee
can be given wrt. diagnosis selection for the sample).

Many existing sequential diagnosis approaches draw on
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samples of the specific type in that they build upon best-
first samples, such as maximum-probability or minimum-
cardinality diagnoses (de Kleer and Williams 1989; de Kleer
1991; de Kleer and Raiman 1995; Gonzalez-Sanchez et al.
2011; Shchekotykhin et al. 2012; Zamir, Stern, and Kalech
2014; Rodler and Herold 2018; Rodler 2022). While perhaps
often being motivated by the desideratum to know the most
preferred or likely candidate(s) at any stage of the diagnos-
tic process, e.g., to allow for well-founded stopping criteria,
the use of such non-random samples is highly questionable
from the statistical viewpoint.

In this work we challenge the validity of the following
statistical law in the domain of model-based diagnosis:

A randomly chosen unbiased sample from a population
allows (on average) better conclusions and estimations
about the whole population than any other sample.

The particular contributions are: We
• analyze real-world diagnosis cases and gain insight into

the quality of three specific (best-first, random and, as a
baseline, worst-first) and three unspecific (approximate
best-first / random / worst-first) sample types.

• assess a sample type’s quality based on (i) its theoretical
representativeness, i.e., how well it allows to estimate as-
pects (F1) and (F2) that determine the heuristic score of
measurements, and (ii) its practical representativeness,
i.e., its performance achieved in a diagnosis session wrt.
time and number of measurements.

• investigate the impact of the (i) sample size, (ii) particular
used heuristic, and (iii) tackled diagnosis problem on the
sample’s representativeness.1

The remainder of this work is organized as follows: Sec. 2
provides theoretical foundations and a problem motivation.
The conducted evaluations (dataset, sample types, sampling
techniques, evaluation criteria, research questions, experi-
ment settings, and results) are discussed in Sec. 3. Research
limitations are addressed in Sec. 4, before we conclude with
Sec. 5. Finally, Appendix A explains one of the used sam-
pling techniques in more detail.

2 Basics and Problem Motivation
We outline the basics of model-based diagnosis, based on the
framework of (Rodler 2015) which is more general (Rodler
and Schekotihin 2018) than Reiter’s theory (Reiter 1987).2

Diagnosis Problem Assume a diagnosed system, consist-
ing of a set of components {c1, . . . , ck} and described by
a finite set of logical sentences K ∪ B , where K (possibly

1While our evaluations particularly aim at better understanding
the effect of different sample types in the common model-based di-
agnosis setting where a precomputed sample of diagnoses serves as
guidance for diagnostic decisions, the investigation of other tech-
niques which forgo the sampling of diagnoses, e.g., by using prob-
abilistic logical or graphical models, such as (Pearl 1988; Srinivas
1994; Mengshoel et al. 2010; Siddiqi and Huang 2011; Domingos
et al. 2016), is beyond the scope of this work.

2This framework allows to represent things that must not be
true for a diagnosed system, which is helpful, e.g., for diagnosing
knowledge bases or ontologies (Shchekotykhin et al. 2012).

faulty sentences) includes knowledge about the behavior of
the system components, and B (correct background knowl-
edge) comprises any additional available system knowledge
and system observations. More precisely, there is a one-to-
one relationship between sentences si ∈ K and compo-
nents ci, where si describes (only) the nominal behavior of
ci (weak fault model (Feldman, Provan, and Van Gemund
2009)). E.g., if ci is an AND-gate in a circuit, then si :=
out(ci) = and(in1(ci), in2(ci)); B in this case might con-
tain sentences stating, e.g., which components are connected
by wires, or observed circuit outputs. The inclusion of a
sentence si in K corresponds to the (implicit) assumption
that ci is healthy. Evidence about the system behavior is
captured by sets of positive (P ) and negative (N ) measure-
ments (de Kleer and Williams 1987; Reiter 1987; Felfernig
et al. 2004). Each measurement is a logical sentence; pos-
itive ones p ∈ P must be true and negative ones n ∈ N
must not be true. The former can be, depending on the con-
text, e.g., observations about the system, probes or required
system properties. The latter model properties that must not
hold for the system, e.g., if K is a biological knowledge base
to be debugged, a negative test case might be “every bird can
fly” (think of penguins). We call 〈K ,B ,P ,N 〉 a diagnosis
problem instance (DPI).
Example 1 (DPI) Assume a DPI stated in propositional
logic with K := {s1 : A → ¬B, s2 : A → B, s3 :
A → ¬C, s4 : B → C, s5 : A → B ∨ C}. The “sys-
tem” (here the knowledge base K itself) comprises five
“components” c1, . . . , c5, and the “normal behavior” of ci
is given by the respective sentence si ∈ K . No background
knowledge (B = ∅) or positive measurements (P = ∅) are
given from the start. But, there is one negative measurement
(N = {¬A}), which stipulates that ¬A must not be an en-
tailment of the correct system. Note, however, that K (i.e.,
the assumption that all “components” are normal) in this
case does entail ¬A (e.g., due to the sentences s1, s2) and
thus some sentence (“component”) in K must be faulty.

Diagnoses If the system description along with the posi-
tive measurements (under the assumption K that all compo-
nents are healthy) is inconsistent, i.e., K ∪ B ∪ P |= ⊥, or
some negative measurement is entailed, i.e., K ∪B ∪P |= n
for some n ∈ N , some healthiness assumption(s) of com-
ponents, i.e., some sentences in K , must be retracted. We
call such a set of sentences D ⊆ K a diagnosis for the DPI
〈K ,B ,P ,N 〉 iff (K \D)∪B ∪P 6|= x for all x ∈ N ∪{⊥}.
We say that D is a minimal diagnosis for dpi iff there is no
diagnosis D ′ ⊂ D for dpi . The set of minimal diagnoses is
representative of all diagnoses under the weak fault model
(de Kleer, Mackworth, and Reiter 1992), i.e., the set of all
diagnoses is equal to the set of all supersets of minimal diag-
noses. Thus, diagnosis approaches usually restrict their fo-
cus to only minimal diagnoses. We call a diagnosis D∗ the
actual diagnosis iff all elements of D∗ are in fact faulty and
all elements of K \D∗ are in fact correct.
Example 2 (Diagnoses) For our DPI from Ex. 1 we have
four minimal diagnoses, given by D1 := [s1, s3], D2 :=
[s1, s4], D3 := [s2, s3], D4 := [s2, s5]. E.g., D1 is a minimal
diagnosis as (K \ D1) ∪ B ∪ P = {s2, s4, s5} is consistent
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and does not entail the negative measurement ¬A.

Diagnosis Probabilities If useful meta information is
available that allows to assess the likeliness of failure for
system components, the probability of diagnoses (of being
the actual diagnosis) can be derived. Specifically, given a
function p that maps each sentence (system component)
s ∈ K to its failure probability p(s) ∈ (0, 1), the proba-
bility p(D) of a diagnosis D ⊆ K (under the common as-
sumption of independent component failure) is computed as
p(D) :=

∏
s∈D p(s)

∏
s∈K\D(1 − p(s)). Each time a new

measurement is added to the DPI, probabilities of diagnoses
are updated using Bayes’ Theorem (de Kleer and Williams
1987).3

Example 3 (Diagnosis Probabilities) Recall the DPI from
Ex. 1 and let 〈p(s1), . . . , p(s5)〉 = 〈.1, .05, .1, .05, .15〉.
Then, the probabilities of all diagnoses from Ex. 2 are
〈p(D1), . . . , p(D4)〉 = 〈.0077, .0036, .0036, .0058〉. E.g.,
p(D1) is calculated as .1 ∗ (1− .05) ∗ .1 ∗ (1− .05) ∗ (1−
.15). The normalized diagnosis probabilities would then be
〈.37, .175, .175, .28〉. Note, this normalization makes sense
if only a proper subset of all diagnoses is known.

Measurement Points We call a logical sentence a mea-
surement point (MP) if it states one (true or false) aspect of
the system under consideration. E.g., if the system is a dig-
ital circuit, the statement out(ci) = 1, which states that the
output of gate ci is high, is an MP. In case of the system be-
ing, say, a knowledge base, ∀X(bird(X)→ canF ly(X)) is
an MP. Assuming an oracle orcl (e.g., an engineer for a cir-
cuit, or a domain expert for a knowledge base) that is knowl-
edgeable about the system, one can send to orcl MPs m and
orcl will classify each m as either a positive or a negative
measurement, i.e., m 7→ orcl(m) where orcl(m) ∈ {P ,N }.

Measurements to Discriminate among Diagnoses MPs
are useful for identifying the actual diagnosis among multi-
ple diagnoses for a DPI. Hence, given a set of diagnoses D
for a DPI to discriminate between, the MPs m of particular
interest are those for which each classification orcl(m) is in-
consistent with some diagnosis in D (de Kleer and Williams
1987; Rodler 2015). We call such MPs informative (wrt. D).
In other words, each outcome of a measurement for some in-
formative MP will invalidate some diagnosis.

Each MP m partitions any set of (minimal) diagnoses D
into subsets D+

m, D−m and D0
m:

• Each D ∈ D+
m is consistent only with orcl(m) = P

(diagnoses predicting positive outcome),
• each D ∈ D−m is consistent only with orcl(m) = N

(diagnoses predicting negative outcome), and
• each D ∈ D0

m is consistent with both outcomes
orcl(m) ∈ {P ,N } (uncommitted diagnoses).

3We adopt this way of modeling diagnostic uncertainty as it is
widely used in model-based diagnosis, and because conformance
with existing frameworks is important for the meaningfulness, sig-
nificance and applicability of our results to the literature. Never-
theless, note that more flexible approaches to uncertainty in model-
based diagnosis have been proposed, cf., e.g., (Lucas 2001).

Thus, an MP m is informative iff both D+
m (diagnoses in-

validated if orcl(m) = N ) and D−m (diagnoses invalidated if
orcl(m) = P ) are non-empty sets.

(Estimated) Properties of Measurement Points Since
not all informative MPs are equally utile, the consideration
of additional properties of MPs enables a more fine-grained
preference rating of MPs. In fact, if D includes all diagnoses
for the given DPI, the partition 〈D+

m,D
−
m,D

0
m〉 allows to

determine, for each measurement outcome c ∈ {P ,N }, its
diagnosis elimination rate er(orcl(m) = c) as well as its
probability p(orcl(m) = c) (Rodler 2018):

er+m := er(orcl(m) = P) =
|D−

m|
|D|

er−m := er(orcl(m) = N ) =
|D+

m|
|D|

p+
m := p(orcl(m) = P) = P+

m + 1
2
P 0
m

p−m := p(orcl(m) = N ) = P−m + 1
2
P 0
m

where PX
m :=

∑
D∈DX

m
p(D) for X ∈ {+,−, 0}.

In practice, the calculation of all diagnoses is often in-
feasible and diagnosis systems rely on a subset of the min-
imal diagnoses D to estimate these properties of MPs. In
the following, we denote by êr+m,D and êr−m,D the esti-
mated elimination rate for positive and negative measure-
ment outcome for MP m computed based on D. Simi-
larly, we refer by p̂+

m,D and p̂−m,D to the estimated proba-
bility of a positive and negative measurement outcome for
m and D. Importantly, these estimated values depend on
both the MP m and the used sample D of diagnoses. Note
that all four estimates attain values in [0, 1] for any MP
m, and in (0, 1) if the MP m is informative. Moreover,
p̂+
m,D + p̂−m,D = 1 and êr+m,D + êr−m,D ≤ 1 where the

difference 1− (êr+m,D + êr−m,D) is the rate of uncommitted
diagnoses, which are not affected by the measurement at m.
Example 4 (Measurement Points & Properties) Assume our
DPI from Ex. 1 and let all minimal diagnoses be known, i.e.,
D = {D1, . . . ,D4} (cf. Ex. 2). Then, e.g., m1 := A→ C is
an informative MP wrt. D since D+

m1 = {D1,D3} 6= ∅ and
D−m1 = {D2,D4} 6= ∅. E.g., D1 ∈ D+

m1 because (K \D1)∪
B ∪ P = {s2, s4, s5} ⊃ {A→ B,B → C} |= m1 and thus
m1 can be no negative measurement under the assumption
D1. Similarly, D2 ∈ D−m1 due to (K \ D2) ∪ B ∪ (P ∪
{m1}) = {s2, s3, s5,m1} ⊃ {A → ¬C,A → C} |= ¬A
where ¬A is a negative measurement; hence, m1 can be no
positive measurement under the assumption D2. In contrast,
e.g., m2 := B is a non-informative MP because D+

m2 = ∅.
Assuming the (normalized) probabilities from Ex. 3, we

obtain probabilities p̂+
m1,D = .545, p̂−m1,D = .455 and elim-

ination rates êr+m1,D = .5, êr−m1,D = .5 for m1. Note: (1) If
we have at hand a different sample D, the estimations for
one and the same MP might vary substantially. E.g., suppose
D = {D1,D2,D3}; then p̂+

m1,D = .758, p̂−m1,D = .242 and
êr+m1,D ≈ 0.33, êr−m1,D ≈ .67. (2) Smaller (larger) samples
will tend to provide a sparser (richer) selection of MP candi-
dates. E.g., m1 becomes non-informative if D = {D1,D3},
and thus might be disregarded by diagnosis systems.
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Evaluating Measurement Points by Heuristics To quan-
titatively assess the preferability of different MPs, state-of-
the-art diagnosis systems rely on heuristics that perform a
one-step-lookahead analysis of MPs (de Kleer, Raiman, and
Shirley 1992). A heuristic h is a function that maps each MP
m to a real-valued score h(m) (Rodler 2016), where h(m)
quantifies the utility of the expected situation after knowing
the outcome for MPm. The MP with the best score as per the
used heuristic is then chosen as a next query to the oracle.

Well-known heuristics incorporate exactly the two dis-
cussed features, i.e., the estimated elimination rates and esti-
mated probabilities, into their computations (Rodler 2018).
So, different heuristics correspond to different functions of
these estimates, e.g.: (1) information gain (ENT) (de Kleer
and Williams 1987) uses solely the probabilities and prefers
MPs where P 0

m = 0 and |p̂+
m,D−p̂

−
m,D| is minimal; (2) split-

in-half (SPL) (Shchekotykhin et al. 2012) considers only the
elimination rates and favors MPs with êr+m,D + êr−m,D = 1

and minimal |êr+m,D − êr−m,D| (Rodler 2016); (3) risk opti-
mization (RIO) (Rodler et al. 2013) takes into account both
features by computing a dynamically re-weighted function
of ENT and SPL; (4) most probable singleton (MPS) (Rodler
2016, 2018) also regards both features by giving preference
to MPs that maximize the probability of a maximal elimina-
tion rate. For details on heuristics see (Rodler 2016, 2018)
for theoretical analyses and (Shchekotykhin et al. 2012;
Rodler et al. 2013; Rodler and Schmid 2018; Rodler and
Eichholzer 2019) for empirical evaluations.
Example 5 (Heuristics) Reconsider our DPI from Ex. 1 and
the MP m1 from Ex. 4, and let D = {D1, . . . ,D4}. Further,
let m3 := A ∧ ¬B → C. Note, m3 is informative (wrt. D),
D+

m3 = {D1,D2,D3}, D−m3 = {D4}, and the estimations
p̂+
m3,D = .72, p̂−m3,D = .28 and êr+m3,D = .25, êr−m3,D =

.75. Hence, given the two MP candidates {m1,m3}, the
heuristic SPL would select m1 (since a half of the known
diagnoses are eliminated for each outcome). Similarly, ENT
would prefer m1 to m3 (because for m1 roughly a half of
the probability mass is eliminated for each outcome).

However, assume a used sampling technique outputs the
sample D = {D2, D3,D4}. In this case, we obtain the prob-
ability estimates p̂+

m1,D = .28, p̂−m1,D = .72 as well as
p̂+
m3,D = .55, p̂−m3,D = .45. So, using ENT, the chosen MP

would be m3 (the worse MP, as shown above). If sampling
would yield D = {D2,D4}, then m1 would not even be an
informative MP (wrt. D) on the one hand, and m3 would be
the (theoretically) optimal MP as per SPL on the other hand.
This example shows the dramatic impact the used sampling
technique can have on diagnostic decisions.

Sequential Diagnosis aims at generating a sequence of in-
formative MPs such that a single (highly probable) diagno-
sis remains for the given DPI, while minimizing the num-
ber of MPs needed (oracle inquiries are usually expensive).
A generic sequential diagnosis process iterates through the
following steps until (the Bayes-updated) p(D) for some
D ∈ D exceeds a probability threshold σ:
(S1) Generate a sample of minimal diagnoses D for the

current DPI.

(S2) Choose a (heuristically optimal) informative MP m
wrt. D (using a selection heuristic h).

(S3) Ask the oracle orcl to classify m.
(S4) Use the classification orcl(m) to update the DPI, by

adding m to the positive measurements if orcl(m) =
P , and to the negative measurements if orcl(m) = N .

3 Evaluation
We conducted extensive experiments on a dataset of real-
world diagnosis cases (Sec. 3.1) to study six different di-
agnosis sample types (Secs. 3.2 and 3.3) wrt. the accuracy
of estimations and diagnostic efficiency (Sec. 3.4). The ex-
periments (Sec. 3.6) target five specific research questions
(Sec. 3.5) and their results are analyzed in detail (Sec. 3.7).

3.1 Dataset
In our experiments we drew upon the set of real-world di-
agnosis problems from the domain of knowledge-base de-
bugging shown in Tab. 1. Note, every model-based diag-
nosis problem (according to Reiter’s theory (Reiter 1987))
can be represented as a knowledge-base debugging problem
(Rodler and Schekotihin 2018), which is why considering
knowledge-base debugging problems is without loss of gen-
erality. To obtain a representative dataset we chose it in a
way it covers a variety of different problem sizes, theorem
proving complexities, and diagnostic metrics (number and
size of diagnoses, number of components). These metrics
are depicted in the columns of Tab. 1. In order to implement
the random sampling of diagnoses, another requirement to
the dataset was that all the used problems allow the compu-
tation of all minimal diagnoses within tolerable time for our
experiments (single digit number of minutes).

3.2 Sample Types
We examined the following types of diagnosis samples:
(T1) best-first (bf ),
(T2) random (rd ),
(T3) worst-first (wf ),
(T4) approximate best-first (abf ),
(T5) approximate random (ard ), and
(T6) approximate worst-first (awf ).

By “best-first” / “worst-first”, we mean the most / least prob-
able minimal diagnoses. Types T3 and T6 serve as baselines.
We refer to T1, T2 and T3 as specific sample types because
we know the properties of the sample (exactly the k best
or worst diagnoses, or k unbiased random ones) in advance
by employing (tendentially more expensive) sampling tech-
niques that guarantee these properties. On the other hand,
we call T4, T5 and T6 unspecific sample types and adopt
(usually less costly) heuristic techniques to provide them.
Throughout, we denote a sample of type Ti including k min-
imal diagnoses by STi,k.

3.3 Sampling Techniques
The methods we used to generate the samples for a given
DPI dpi = 〈K ,B ,P ,N 〉 are:
T1: We used uniform-cost HS-Tree (Rodler 2015, Sec. 4.6)
and stopped it after k diagnoses were computed. Due to the
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KB K |K | expressivity 1) #D/min/max 2)

University (U) 3) 50 SOIN (D) 90/3/4
IT 4) 140 SROIQ 1045/3/7
UNI 4) 142 SROIQ 1296/5/6
MiniTambis (M) 3) 173 ALCN 48/3/3
Transportation (T) 3) 1300 ALCH(D) 1782/6/9
Economy (E) 3) 1781 ALCH(D) 864/4/8
DBpedia (D) 5) 7228 ALCHF (D) 7/1/1
Cton (C) 6) 33203 SHF 15/1/5
1): Logical expressivity (Baader et al. 2007); the higher it is, the

higher is the complexity of consistency checking (diagnosis
computation) for this logic.

2): #D/min/max denotes the number/the minimal size/the maxi-
mal size of minimal diagnoses for the DPI resulting from K .

3): Hardest problems from evaluations in (Shchekotykhin et al.
2012), which were also used, e.g., in (Horridge, Parsia, and
Sattler 2009; Ji et al. 2014).

4): Problems studied in (Rodler et al. 2019; Rodler 2020a).
5): Faulty version of DBpedia ontology, see bit.ly/2ZO2qYZ.
6): Problem used in scalability tests in (Shchekotykhin et al.

2012).

Table 1: Experiment dataset (sorted by 2nd column).

best-first property of the algorithm, it is guaranteed (Rodler
2015, Prop. 4.17) that these are the k diagnoses with the
highest probability among all minimal diagnoses.
T2, T3: We generated all4 minimal diagnoses allD for dpi
(this can be done by any sound and complete diagnosis com-
putation method, e.g., HS-Tree (Reiter 1987)). For T2, we
selected k random elements from this set by means of the
Java (v1.8) pseudorandom number generator. For T3, we
picked the k diagnoses with lowest probability.
T4, T5, T6: We used Inv-HS-Tree (Shchekotykhin et al.
2014) to supply the samples. First, we added all s ∈ K to a
list L. For T5, we randomly shuffled L. For T4 and T6, we
sorted L in descending and ascending order of probability
p(s), respectively. Finally, we let plain Inv-HS-Tree operate
on this list L to supply a sample of size k (see Appendix A
for additional explanations).

3.4 Evaluating Samples
We evaluate sample types based on what we call their theo-
retical and practical representativeness:
Theoretical Representativeness (T-Rep): A sample type
Ti is the more representative, the better the (i) probabil-
ity estimates 〈p̂+

m,D, p̂
−
m,D〉 for MPs m match the respec-

tive actual values 〈p+
m, p

−
m〉, (ii) elimination rate estimates

〈êr+m,D, êr
−
m,D〉 for MPs m match the respective actual val-

ues 〈er+m, er−m〉 for samples D = STi,k.
Practical Representativeness (P-Rep): A sampling tech-
nique Ti is the more representative, the lower the (i) number

4This is generally intractable (Bylander et al. 1991). So, this
approach to random sampling is not viable in practice and just used
for evaluation purposes. As said in Sec. 3.1, we chose our dataset
so that computation of allD was feasible.

of measurements required, (ii) time needed for sampling (di-
agnosis computation) in a sequential diagnosis session until
the actual diagnosis is isolated from spurious ones, where
D = STi,k in each sequential diagnosis iteration.

3.5 Research Questions
We investigate the following research questions:

R1 Which type of sample is best in terms of T-Rep?
R2 Which type of sample is best in terms of P-Rep?
R3 Are the results wrt. R1 and R2 consistent over different

(a) sample sizes, (b) measurement selection heuristics,
and (c) diagnosis problem instances?

R4 Does larger sample size imply better representativeness?
R5 Does better T-Rep translate to better P-Rep?

3.6 Experiments
We ran two experiments, EXP1 and EXP2, to study our re-
search questions. Common to both of them are the following
settings:

• We defined one DPI dpiK := 〈K , ∅, ∅, ∅〉 for each K
in Tab. 1. That is, we assumed each sentence (compo-
nent) in K to be possibly faulty and left the background
knowledge and the measurements void to begin with. To
each s ∈ K , we randomly assigned a fault probability
p(s) ∈ (0, 1) in a way that syntactically equally (more)
complex sentences have an equal (higher) probability (cf.
(Shchekotykhin et al. 2012)). E.g., in our DPI from Ex. 1,
elements of {s1, s3} (one implication, one negation) and
{s2, s4} (one implication), respectively, would each be
allocated the same probability, and the former two would
have a higher probability than the latter (cf. Ex. 3).

• We precomputed all minimal diagnoses allD for each
DPI dpiK .

• We used all sample types Ti for i ∈ {1, . . . , 6} (cf.
Sec. 3.2).

• We used sample sizes (numbers of generated minimal di-
agnoses) k ∈ {2, 6, 10, 20, 50}.

The specific settings for each experiment were:
EXP1: (T-Rep) For each dpiK , for each k, and for
each Ti, we computed a sample D = STi,k. We used
(i) D to compute probability and elimination rate estimates
〈p̂+

m,D, p̂
−
m,D〉 and 〈êr+m,D, êr

−
m,D〉, and (ii) allD to com-

pute 〈p+
m, p

−
m〉 and 〈er+m, er−m〉 for 50 (if so many, otherwise

for all) randomly selected informative MPs wrt. D. For each
such MP, we thus had four estimates and four corresponding
actual values, that we could compare against one another.
EXP2: (P-Rep) For each dpiK , for each k, for each Ti, and
for each of the four heuristics h ∈ {ENT,SPL,RIO,MPS}
(cf. Sec. 2), we executed 10 diagnosis sessions (loop S1–S4,
Sec. 2) while in each session (i) searching for a different
randomly selected target diagnosis D∗ ∈ allD for dpiK ,
(ii) starting from the initial problem dpiK , (iii) with stop
criterion σ = 1 (loop until a single minimal diagnosis re-
mains, i.e., all others have been ruled out). At this, in each
loop iteration, at step S1, a sample D = STi,k is drawn for
the current DPI, at step S2, an optimal informative MP wrt.
h is selected, and at step S3, an automated oracle classifies
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each MP in a way the target diagnosis D∗ is not ruled out.
For our analyses, we recorded (sampling) times and number
of measurements (i.e., loop iterations) throughout a session.

3.7 Results
From our experiments, we obtained two large datasets, with
6 ∗ 8 ∗ 5 = 240 (EXP1) and 6 ∗ 8 ∗ 5 ∗ 4 = 960 (EXP2)
factor combinations for the factors sample type (6 levels),
diagnosis problem (8), sample size (5), and heuristic (4).5

Presentation Tab. 2 shows rankings of the sample types
over different subsets of all factor combinations (referred
to as scenarios; left column of the table). E.g., scenario
“all” means all 240 (EXP1) / 960 (EXP2) cases aggregated,
whereas “k = 20” denotes exactly the 240 : 5 = 48 (EXP1)
/ 960 : 5 = 192 (EXP2) cases where the sample size was
set to 20. Results from EXP1 are depicted in the top part
of the table (first ten rows); results from EXP2 in the bot-
tom part. A sample type Ti being ranked prior to type Tj
(middle table column) means that Ti was better than Tj
in more factor combinations of the respective scenario than
vice versa. Equally ranked sample types are written in paren-
theses. The meaning of “better” (criterion for comparison;
rightmost table column) is a higher Pearson correlation coef-
ficient between estimated and real values for elimination rate
(E) and, respectively, probability (P) estimations (cf. T-Rep
in Sec. 3.4), and a lower avg. number of measurements (M)
and, respectively, a lower avg. sample computation time (T)
in diagnosis sessions (cf. P-Rep in Sec. 3.4).6 The idea be-
hind this representation is to give the user of a diagnosis
system guidance how to set parameters (diagnosis compu-
tation algorithm, number of computed diagnoses, measure-
ment selection heuristic) in order to have the highest chance
of achieving best estimations (EXP1) / efficiency (EXP2).

Tab. 3 lists the best (ranked) sample types wrt. overall
time per diagnosis session in EXP2 (cumulated system com-
putation time plus cumulated time for all measurements)
for different scenarios and assumptions (1min, 10min) of
measurement conduction times. The two rightmost columns
(“adj”) show hypothetical results under the assumption that
sample types T2 (rd ) and T3 (wf )—which we naively simu-
lated by means of brute force diagnosis computation in our
experiments (cf. Sec. 3.3)—were as efficiently computable
as sample type T1 (bf ). This allows to assess the added value
of, e.g., efficient random diagnosis sampling techniques.

Discussion We address each research question in turn:
R1:7 (Elimination rate, criterion E, Tab. 2) We see that rd is
the sample type of choice, as one would expect. In numbers,

5Please find all further information on the experiments and the
results (including the raw data, additional data analyses, pointers to
the used code, and information on the computing infrastructure) at
http://isbi.aau.at/ontodebug/evaluation.

6Tab. 2 does not inform about how much better (worse) one T i
was than another, but only that it was a preferred choice to the other
in more (less) cases (of a scenario). And, a higher ranked strategy
is not necessarily always better than a lower ranked one.

7Remarks wrt. R1: (1) We had to leave out the k = 2 scenarios
as there were too few informative MPs which made these scenar-
ios not reliably analyzable. (2) Values and rankings for other types

scenario (best) ranking (worst) criterion

all rd wf bf awf (abf ard ) E
k = 6 bf wf (rd awf ) abf ard E
k = 10 rd wf bf awf abf ard E
k = 20 rd wf bf awf (abf ard ) E
k = 50 rd wf awf bf ard abf E

all bf rd awf abf ard wf P
k = 6 bf (abf rd ard ) awf wf P
k = 10 bf rd (abf awf ) (ard wf ) P
k = 20 bf rd awf (abf ard wf ) P
k = 50 bf rd awf ard wf abf P

all bf ard abf rd awf wf M
k = 2 bf abf ard awf rd wf M
k = 6 bf rd ard abf awf wf M
k = 10 rd abf ard bf awf wf M
k = 20 ard abf awf rd bf wf M
k = 50 ard rd awf bf abf wf M
h = ENT bf abf ard awf rd wf M
h = SPL bf ard abf rd awf wf M
h = RIO rd ard awf bf abf wf M
h = MPS ard abf rd awf wf bf M

all awf bf (abf ard ) rd wf T
k = 2 abf (ard awf ) bf rd wf T
k = 6 awf (abf ard ) bf (rd wf ) T
k = 10 awf abf (ard bf ) rd wf T
k = 20 bf ard awf abf rd wf T
k = 50 bf wf (awf rd ) ard abf T
h = ENT awf abf bf ard rd wf T
h = SPL (abf awf bf ) ard rd wf T
h = RIO awf (abf ard bf ) rd wf T
h = MPS bf awf ard abf rd wf T

Table 2: T-Rep and P-Rep: Rankings of sample types for
various scenarios (EXP1 & EXP2).

best sample type

scenario t = 1 t = 10 t = 1 (adj) t = 10 (adj)

all data bf bf bf bf
k = 2 bf bf bf bf
k = 6 bf bf bf bf
k = 10 abf abf abf (rd ,abf )
k = 20 awf bf awf bf
k = 50 bf bf rd rd
h = ENT bf bf bf bf
h = SPL bf bf bf bf
h = RIO bf ard rd (ard ,bf )
h = MPS ard ard ard ard

Table 3: Best sample types wrt. overall sequential diagnosis
time for various scenarios (EXP2) under the assumption that
the time for each measurement equals t minutes. Columns
with the predicate “adj” show the results when assuming ef-
ficient algorithms for the sample types rd and wf such that
they can be computed as fast as the sample type bf .

of correlation coefficients (i.e., Spearman and Kendall) were very
similar to the presented (Pearson) results. (3) Most correlation co-
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the median correlation coefficients over all cases per sce-
nario for (best,worst) sample type for k ∈ {6, 10, 20, 50}
were {(0.76, 0.5), (0.83, 0.52), (0.95, 0.7), (0.98, 0.85)},
which reveals that estimations were altogether pretty good
for all sampling techniques. However, for k ≥ 20, coeffi-
cients for rd manifested a significantly lower variance than
in case of all other techniques, i.e., all coefficients for rd
concentrated in the interval [0.9,1], whereas lowest coeffi-
cients for all other techniques lay between less than 0.5 and
0.7. Moreover, it stands out that wf allowed almost as accu-
rate estimations as rd . A likely explanation for these favor-
able results of wf is that there is usually a large number of
minimal diagnoses with a very small probability, which is
why the “sub-population” from which the wf diagnoses are
“selected” tends to be larger (and thus more representative)
than for other sample types, except for rd (where diagnoses
are drawn at random from the full population). Finally, it is
interesting that approximate methods (awf , ard , abf ) pro-
duced less representative samples than exact ones. And, al-
though rd comes out on top for E, its approximate counter-
part ard shows the worst results. That is, Inv-HS-Tree with
a random sorting of its input (cf. Sec. 3.3) does not allow to
simulate a random selection of diagnoses.
(Probability, criterion P, Tab. 2) Here, bf proved to be the
predominantly superior technique in all depicted scenarios,
whereas rd was, surprisingly, only the second best method.
Closer analyses of the data revealed that the explanation for
this is that often few of the most probable diagnoses already
accounted for a major part of the overall probability mass,
which is why they are more reliable for estimations of P than
a random sample. For the same reason, wf samples turned
out to be the least preferable means to estimate P. The medi-
ans of the correlation coefficients over all cases per scenario
for (best,worst) sample type for k ∈ {6, 10, 20, 50} were
{(0.93, 0.6), (0.87, 0.64), (0.98, 0.74), (0.99, 0.86)}. Thus,
again, all sampling methods enabled pretty decent estima-
tions, even for small sample sizes.
R2: (Number of measurements, criterion M, Tab. 2) We find
that bf was the best strategy if all data is considered; and it
was the most suitable choice for heuristics ENT and SPL and
for small sample sizes {2, 6}. On the other hand, it was the
worst choice for the MPS heuristic where it led to substan-
tial overheads (of up to >100 %) compared to other sample
types, especially for large sample sizes. E.g., for the diag-
nosis problem U and k = 50, in a diagnosis session us-
ing bf , 58 measurements had to be conducted to identify
the actual fault vs. only 25 measurements if rd was used
instead. What is somewhat surprising is that bf decidedly
outperformed rd in the SPL scenarios, although the SPL
function does not use any probabilities (where bf leads to
better estimations), but solely the elimination rate (where rd
produces better estimates). Further analyses are needed to
better understand this phenomenon. Overall, rd compares
favorably only against awf and wf , but its performance de-
pends largely on the used heuristic. For RIO it is even the
sample type of choice, and for MPS it clearly overcomes

efficients were statistically significant (α = 0.05), except for a few
k = 6 scenarios and some scattered k = 10 cases.

bf . For all four heuristics, one of the approximate methods
was the second best method, among which ard led to good
performance most consistently. In comparison with rd , ard
was only (slightly) outweighed for RIO, but prevails for the
other three heuristics. When considering large samples (20
or 50 diagnoses), ard even turned out to be the overall win-
ner. This indicates that the QuickXplain-based approximate
random algorithm, in spite of its rather poor estimations (cf.
E and P in Tab. 2), tends to be no less effective than a real
random strategy. Also, observe that wf was in fact the least
favorable option in quasi all scenarios.
(Time for diagnosis session, criterion T, Tab. 2) Due to the
brute force approach we used in our experiments to gener-
ate samples of type rd and wf , it comes as no surprise that
these two methods perform most poorly in terms of T. When
drawing our attention to the best strategies, we find that, in
all but one (h = SPL) of the shown scenarios, it is a different
sample type that exhibited lowest time (T) than the one that
manifested the lowest number of measurements (M). Hence,
there appears to be a time-information trade-off in diagnosis
sampling—or: whenever the sampling process is most effi-
cient (on avg.), the measurements arising from the sample
are not most effective (on avg.). In particular, we recognize
that, if an exact method is best for T (M), then an approxi-
mate method is best for M (T).
(Overall diagnosis time, criteria T & M combined, Tab. 3)
As the outcome for R2 is not clear-cut when viewing M and
T separately, we investigate their combined effect, i.e., the
overall (avg.) time for diagnosis sessions for the different
sample types. In brief, the conclusions are:

(i) For small sample size (below 10), go with bf .
(ii) For sample size 10, use abf .

(iii) For sample size 20, take awf if the expected time for
conducting measurements is low, and take bf else.

(iv) For large sample size (50), use rd if there is an effi-
cient method for it, otherwise use bf .

(v) For ENT or SPL, adopt bf .
(vi) For RIO, if measurement time is short, use rd if there

is an efficient method for it, else use bf ; if measuring
takes longer, use ard .

(vii) For MPS, use ard .

R3: For T-Rep, we observe pretty consistent (ranking) re-
sults over all sample sizes (cf. often equal entries in each
column for each of the E and P criteria in Tab. 2). There is
more variation when comparing results for different diagno-
sis problems. Nevertheless, results are fairly stable wrt. the
winning strategy: rd is in all cases the best (75 %) or sec-
ond best (25 %) sample type for E, and bf is in all but one
case the best (63 %) or second best (25 %) sample type for
P. For P-Rep, we see more of a fluctuation over different
sample sizes and heuristics, as discussed for R2 above (cf.
variation over entries of each column for M and T in Tab. 2).
Examining results over different diagnosis problems reveals
a similar picture, where however the rankings for T are de-
cidedly more stable than those for M, meaning that relative
sampling times are less affected by the particular problem
instance than the informativeness of the samples.
R4: Our data indicates a clear trend that increasing sample
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size leads to better T-Rep (cf. discussion of R1). However,
it also suggests that there is no general significant positive
effect of larger sample size on P-Rep. While this is obvi-
ous for sampling time (T), i.e., generating more diagnoses
cannot take less time, it is less so for the number of mea-
surements (M). In fact, we even measured increases wrt. M
in some cases (e.g., for MPS) as a result to drawing larger
samples. This is in line with similar findings, albeit for lower
sample sizes or other types of diagnosis problems, reported
by (de Kleer and Raiman 1995; Rodler and Schmid 2018).
R5: From our data, we cannot generally conclude that a bet-
ter T-Rep implies a better P-Rep (see discussion on R1, R2
and R3). E.g., observe the performance of ard in the top
(criteria E,P) vs. bottom (criteria M,T) part of Tab. 2. The
likely cause of this is that all common measurement selec-
tion heuristics are based on a one-step-lookahead (de Kleer,
Raiman, and Shirley 1992), where the approximate character
of this analysis might lower the benefit of good estimations.

4 Research Limitations
Our evaluations do not come without limitations. In brief,
there are the following threats to validity:8 1. For feasibility
reasons, we (i) could not use all diagnoses, but only all min-
imal ones, to determine the real values (EXP1), and (ii) had
to rely on problem instances that allow the generation of
all minimal diagnoses in reasonable time. 2. We focused on
binary-outcome measurements which are common in some
but not all diagnosis sub-domains, e.g., in knowledge base
debugging (Schekotihin, Rodler, and Schmid 2018), circuit
diagnosis (de Kleer and Williams 1987), or matrix-based
methods (Shakeri et al. 2000).∗ 3. We did not evaluate bf
sample types including minimum-cardinality diagnoses, but
concentrated on most probable ones.∗ 4. To keep the size of
our dataset manageable, we (i) omitted less commonly used
existing measurement selection heuristics, and (ii) included
only a subset of all diagnosis computation methods (sample
types) in literature in our analyses.∗

5 Conclusions
This work addresses an important and fundamental question
for model-based diagnosis, i.e., whether the fully biased di-
agnosis samples primarily used in the field provide a reason-
able basis for decision making in spite of not being in line
with statistical practices.

The bottom line of our investigations is: Somewhat sur-
prisingly, the best-first samples including the most probable
diagnoses commonly used in the field proved to be the best
choice in a large fraction of the investigated cases. Yet, we
also find that, for certain configurations of a diagnosis sys-
tem, best-first samples imply drastic overheads compared
to other sample types. Random samples, though enabling
highly reliable estimations, often led to a worse diagnostic
efficiency than biased ones. We discuss reasons for this phe-
nomenon and make recommendations which configurations

8Those bullet points marked by a “∗” we plan to address in
terms of additional experiments as part of future work.

wrt. diagnosis computation algorithm, measurement selec-
tion heuristic and sample size users of diagnosis systems
should adopt for best diagnostic performance. E.g., best-first
samples are favorable for small sample sizes or when the in-
formation gain or split-in-half heuristics are used, whereas
random ones are best for larger sample sizes or when adopt-
ing the risk optimization or most probable singleton tech-
niques for measurement selection.

Further, our results suggest a time-information trade-off
in diagnosis sampling, i.e., more efficient sampling tends to
imply less effective measurements. Finally, we find that an
approximate, and often efficient, sampling technique based
on the Inv-HS-Tree algorithm (Shchekotykhin et al. 2014)
in many cases provides a good balance between sampling
efficiency and diagnostic effectivity. We believe that these
findings, especially the given recommendations which sam-
pling technique to use in particular diagnostic scenarios (cf.
Sec. 3.7), can be of high value for both diagnosis researchers
and practitioners.

A Sampling by Means of Inv-HS-Tree

To supply a sample of size k, Inv-HS-Tree uses k calls
to a diagnosis computation method called Inverse Quick-
Xplain (Inv-QX) (Felfernig, Schubert, and Zehentner 2011;
Shchekotykhin et al. 2014), based on the well-known Quick-
Xplain algorithm (Junker 2004; Rodler 2020b). Each call of
Inv-QX returns one well-defined minimal diagnosis DL for
the dpi = 〈K ,B ,P ,N 〉 based on the strict total order of ele-
ments imposed by the sorting of the listL (which includes all
elements of K , cf. Sec. 3.3). Specifically, DL is the minimal
diagnosis with highest rank wrt. the antilexicographic or-
der >antilex defined on sublists of L = [l1, . . . , l|K |] (Junker
2004). At this, for sublists X,Y of L, we have X >antilex Y
(X has higher rank wrt. >antilex than Y ) iff there is some
k such that X ∩ {lk+1, . . . , l|K |} = Y ∩ {lk+1, . . . , l|K |}
(both sublists are equal wrt. their lowest ranked elements in
L) and lk ∈ Y \ X (the first element that differs between
the sublists is in Y ). E.g., if L includes the letters a, b, . . . , z
in alphabetic order, then X >antilex Y for X = [b, n, r, v]
and Y = [a, p, r, v] because both lists share [r, v] and, after
deleting these two letters from both X and Y , the now last
element (p) of Y is ranked lower in L than the one (n) of X .

So, in the approximate best-first case (T4), the computed
diagnosis DL = [d1, . . . , dn−1, dn] has the property that
there is no other minimal diagnosis D ′ = [d′1, . . . , d

′
r] where

d′r has higher probability than dn, and among all minimal
diagnoses that share the last element dn, there is no other
minimal diagnosis whose second-last element has a higher
probability than dn−1, and so forth. If we replace “higher
probability” with “lower probability”, we obtain a descrip-
tion of the diagnosis DL returned in the approximate worst-
first case (T6). In the approximate random case (T5), we
reshuffle L before each call of Inv-QX, thereby trying to
simulate a random selection. Note, Inv-HS-Tree guarantees
that each Inv-QX call generates a new diagnosis by system-
atically “blocking” different elements in L which must not
occur in the next diagnosis (Shchekotykhin et al. 2014).
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Foundations of Information and Knowledge Systems - Int’l
Symposium (FoIKS).
Siddiqi, S.; and Huang, J. 2011. Sequential diagnosis by
abstraction. Journal of Artificial Intelligence Research, 41:
329–365.
Shakeri, M.; Raghavan, V.; Pattipati, K. R.; and Patterson-
Hine, A. 2000. Sequential testing algorithms for multiple
fault diagnosis. IEEE Transactions on Systems, Man, and
Cybernetics, 30(1): 1–14.
Shchekotykhin, K.; Friedrich, G.; Fleiss, P.; and Rodler, P.
2012. Interactive Ontology Debugging: Two Query Strate-
gies for Efficient Fault Localization. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, 12-13:
88–103.
Shchekotykhin, K.; Friedrich, G.; Rodler, P.; and Fleiss, P.
2014. Sequential diagnosis of high cardinality faults in
knowledge-bases by direct diagnosis generation. In Euro-
pean Conference on Artificial Intelligence (ECAI).
Slaney, J. K. 2014. Set-theoretic duality: A fundamental fea-
ture of combinatorial optimisation. In European Conference
on Artificial Intelligence (ECAI).
Srinivas, S. 1994. A probabilistic approach to hierarchical
model-based diagnosis. In Uncertainty in Artificial Intelli-
gence (UAI).
Stern, R.; Kalech, M.; Feldman, A.; Rogov, S.; and Zamir, T.
2013. Finding all diagnoses is redundant. In Int’l Workshop
on Principles of Diagnosis (DX).
Zamir, T.; Stern, R. T.; and Kalech, M. 2014. Using Model-
Based Diagnosis to Improve Software Testing. In AAAI Con-
ference on Artificial Intelligence (AAAI).

5878


