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Abstract

Knowledge compilation is an alternative solution to address
demanding reasoning tasks with high complexity via con-
verting knowledge bases into a suitable target language.
Interestingly, the notion of logical separability, proposed by
Levesque, offers a general explanation for the tractability
of clausal entailment for two remarkable languages: decom-
posable negation normal form and prime implicates. It is
interesting to explore what role logical separability on earth
plays in problem tractability. In this paper, we apply the
notion of logical separability in three reasoning problems
within the context of propositional logic: satisfiability check
(CO), clausal entailment check (CE) and model counting (CT),
contributing to three corresponding polytime procedures. We
provide three logical separability based properties: CO-logical
separability, CE-logical separability and CT-logical separabil-
ity. We then identify three novel normal forms: CO-LSNNF,
CE-LSNNF and CT-LSNNF based on the above properties.
Besides, we show that every normal form is the necessary
and sufficient condition under which the corresponding
procedure is correct. We finally integrate the above four
normal forms into the knowledge compilation map.

Introduction
Knowledge compilation (KC) has been attracted interests
in many areas of AI, for example, model-based diagnosis
(Huang and Darwiche 2005; Mateescu, Dechter, and Mari-
nescu 2008), explainable machine learning (Shih, Darwiche,
and Choi 2019; Darwiche and Hirth 2020), probabilistic
inference (Martires, Dries, and De Raedt 2019; Shih, Choi,
and Darwiche 2019) and planning (Palacios et al. 2005;
Huang 2006) and so on. As an alternative solution to
address demanding reasoning tasks with high complexity,
KC converts knowledge bases into a target language in
which such reasoning tasks can be tractably accomplished.

Darwiche and Marquis (2002) proposed two criteria to
evaluate target compilation languages: succinctness (the
size of complied knowledge bases) and tractability (the sup-
ported polytime queries and transformations). In general,
more succinct languages are less tractable and vice versa.

*Both are corresponding authors.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

One of primary purposes of KC is to design a suitable target
language that achieves a good trade-off between succinct-
ness and tractability for one or more specific reasoning tasks.

In the past decades, many prominent target compilation
languages were developed, particularly, decomposable
negation normal form (DNNF), the subset of negation normal
form (NNF) satisfying the ∧-decomposability property (Dar-
wiche 2001a). The author also designed two polytime pro-
cedures for satisfiability check and clausal entailment check,
which are correct for DNNF. In other words, DNNF supports
polytime satisfiability check and clausal entailment check.

One question worth investigation is the intrinsic reason
why DNNF supports such polytime queries. It actually can
be answered by the notion of logical separability which
was first proposed by Levesque (1998). Roughly speaking,
a conjunction φ is logically separable, if the clausal entail-
ment problem of a conjunction φ can be decomposed to
entailment problems for every conjunct of φ. It is easily
verified that any conjunction appearing in a DNNF-formula is
logically separable due to the ∧-decomposability property.
In addition, prime implicate normal form (PI) supports
polytime clausal entailment check as the conjunction of
prime implicates is logically separable. Hence, logical
separability offers a thorough explanation for why both
DNNF and PI supports clausal entailment check.

It is interesting to explore what role logical separabil-
ity on earth plays in problem tractability. In the paper
(Levesque 1998), Levesque also defined a normal form,
namely Levesque’s normal form (LNF), s.t. the entailment
check is tractable for a class of knowledge bases. However,
after that, the idea of logical separability has hardly been
applied to language design for other reasoning problems.
It motivates us to take logical separability into account
to design succinct target languages in which reasoning
problems are tractably solved.

In this paper, we focus on three reasoning problems in the
context of propositional logic: satisfiability check, clausal
entailment check and model counting. For these three
reasoning problems, we start by providing three polytime
procedures CO, CE and CT , and then give definitions of
logical separability based properties: CO-logical separa-
bility, CE-logical separability and CT-logical separability,
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respectively. We also propose three novel normal forms:
CO-LSNNF, CE-LSNNF and CT-LSNNF, each of which satisfies
the above logical separability based properties, respectively,
and show that every normal form is the necessary and suf-
ficient condition under which the corresponding procedure
is correct. In addition, CO-LSNNF, CE-LSNNF and CT-LSNNF
are complete languages.

• For CO-LSNNF, we provide two interesting theoretical re-
sults: (1) any language supports polytime satisfiability
check iff it is polynomially translatable into CO-LSNNF;
and (2) CO-LSNNF is equally succinct to NNF.

• For CE-LSNNF, we show that if a language is polynomi-
ally translatable into CE-LSNNF, then it supports polytime
clausal entailment check; and make a comparison to LNF
which is a strictly less succinct than CE-LSNNF.

• For CT-LSNNF, we prove that (1) if a language is polyno-
mially translatable into CT-LSNNF, then it supports poly-
time model counting, and (2) CT-LSNNF is polynomially
equivalent to d-DNNF.

Furthermore, we analyze the computational complexity of
the membership problems of the three logical separability-
based normal forms. Finally, we analyze the relative
succinctness of CO-LSNNF, CE-LSNNF, CT-LSNNF and LNNF
compared to the languages considered in (Darwiche and
Marquis 2002; Fargier and Marquis 2014) and investi-
gate which of the queries and transformations can be
accomplished in polytime for them.

Preliminaries
The NNF Languages
Throughout this paper, we fix a finite set X of variables.
A literal is a variable (positive literal) or a negated one
(negative literal). For a positive (resp. negative) literal x
(resp. ¬x), its complementary literal is ¬x (resp. x). Let
Y ⊆ X. A Y-literal is a literal x or ¬x where x ∈ Y.
A term (resp. clause) is >, ⊥, or a conjunction (resp.
disjunction) of literals. We say a term (resp. clause) is
non-trivial if every variable appears at most once.

Throughout this paper, we consider a wide range of
complete propositional languages, all of which are the
subsets of negation normal form (NNF). A NNF-formula is
a rooted, directed acyclic graph (DAG), of which each leaf
node is labeled by >, ⊥, or literals; and each internal node
is labeled by ∧ (conjunction) or ∨ (disjunction). We use a
lower-case Greek letter (e.g. α, β) to denote a propositional
formula. We use Var(α) (resp. Lit(α)) to denote the set
of variables (resp. literals) appearing in α. We use |α| to
denote the size of α (i.e. the number of its DAG edges).

A Y-interpretation ω is a set of Y-literals s.t. each
variable of Y appears exactly once. Let Var(α) ⊆ Y. We
use ω |= α to denote ω satisfies α, which is defined as
usual. A Y-model of α is a Y-interpretation satisfying α.
We use ModY(α) to denote the set of Y-models of α. For
simplicity, in the case Y = X, we omit the subscript X,
and Mod(α) denotes the set of X-models of α. We say α is
satisfiable, if Mod(α) 6= ∅; otherwise, it is unsatisfiable.

As mentioned in (Darwiche and Marquis 2002), a lan-
guage qualifies as a target language if it supports polytime
clausal entailment check. NNF is not a desired target lan-
guage as it does not support such a query unless P = NP.
But many of its subsets, with one or more restrictions, do.

Conjunctive normal form (CNF) is the conjunction of non-
trivial clauses while its dual, disjunctive normal form (DNF),
is the disjunction of non-trivial terms. A prime implicate c
of α is an implicate of α and there is no implicate c′ 6= c
s.t. α |= c′ and c′ |= c. Prime implicates (PI) is the subset
of CNF where each formula α is a conjunction of all of the
prime implicates of α. Its dual, prime implicants (IP), can
be similarly defined.

Decomposable NNF (DNNF) (Darwiche 2001a) is the
subset of NNF satisfying ∧-decomposability, requiring the
sets of variables of the children of each ∧-node in a formula
to be pairwise disjoint. Deterministic DNNF (d-DNNF) (Dar-
wiche 2001b) is the subset of DNNF satisfying determinism,
requiring the children of each ∨-node in a formula to be
pairwise logically contradictory.
KROM (Krom 1970) is the subset of CNF in which each

clause contains at most two literals. HORN (Horn 1951) is the
subset of CNF in which each clause contains at most a posi-
tive literal. K/H is the union of KROM and HORN. Renamable-
Horn (renH) is the subset of all CNF-formulas α for which
there is a subset Y of Var(α) s.t. the formula obtained by
substituting in α every Y-literal l by its complement l̄ is a
HORN-formula. Fargier and Marquis (2014) applied disjunc-
tive closure principle to KROM, HORN, K/H and renH and ob-
tained KROM[∨], HORN[∨], K/H[∨] and renH[∨], respectively.

We remark that the above normal forms are not only
defined in purely syntactic style but also based on seman-
tics. For example, CNF and DNF are syntactic normal forms.
On the other hand, PI and d-DNNF are based on clausal
entailment and satisfiability, respectively and hence being
semantic normal forms.

Succinctness and Polynomial Translations
We now consider two notions of translations on two subsets
of NNF: succinctness and polynomial-translation.
Definition 1. Let L1 and L2 be subsets of NNF. We say
• L1 is at least as succinct as L2, denoted L1 ≤s L2, if

there is a polynomial p s.t. for every formula α ∈ L2,
there is an equivalent formula β ∈ L1 s.t. |β| ≤ p(|α|).

• L2 is polynomially translatable into L1, denoted L1 ≤p

L2, if there exists a (deterministic) polynomial-time al-
gorithm f s.t. for every formula α ∈ L2, we have an
equivalent formula f(α) ∈ L1.

Succinctness only considers polynomial-space transla-
tions, that is, the size of the L1-formula β equivalent to
α is required to be polynomial in the size of L2-formula
α. Polynomial-translation is a more strict relation than
succinctness, requiring polynomial-time translations, that
is, any L2-formula can be tractably transformed into an
equivalent L1-formula. Furthermore, we have L1 ≤p L2

implies that L1 ≤s L2 (Fargier and Marquis 2014).
The two relations ≤s and ≤p are clearly reflexive and

transitive, i.e. pre-orders over subsets of NNF. The notation
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∼s denotes the symmetric part of ≤s, that is, L1 ∼s L2 iff
L1 ≤s L2 and L2 ≤s L1. On the other hand, <s denotes
the asymmetric part of ≤s, that is, L1 <s L2 iff L1 ≤s L2

and L2 6≤s L1. In the following, L1 6≤∗s L2 means that
L1 6≤s L2 unless the polynomial hierarchy PH collapses.
The notations ∼p, <p and 6≤∗p can be similarly defined.

Queries and Transformations
As pointed out in (Darwiche and Marquis 2002), another
two crucial criteria for evaluating normal forms is the set
of query and transformation tasks supported in polytime. To
differentiate query (or transformation) tasks and properties,
we use letters in typewriter type font for the former, and
letters in the boldface font for the latter.

A query task for a language L takes as input one or more
L-formulas and possibly clauses and terms, and outputs a
Boolean value, a natural number, or a set of interpretations.
We consider the following query tasks:

• Satisfiability (CO): check if α 6≡ ⊥.

• Validity (VA): check if α ≡ >.

• Casual entailment (CE): check if α|=c where c is a clause.

• Term implication (IM): check if t |= α where t is a term.

• Sentential entailment (SE): check if α |= β.

• Equivalence (EQ): check if α ≡ β.

• Model counting (CT): compute the size of Mod(α).

• Model enumeration (ME): list every member of Mod(α).

A transformation task for L takes as input one or a
set of L-formulas, possibly a term and a set of variables,
and returns an appropriate L-formula. We consider the
following transformation tasks:

• Conditioning (CD): generate α|t where t is a satisfiable
term;

• Forgetting (FO): generate ∃Y.α where Y ⊆ X.

• Singleton forgetting (SFO): generate∃{x}.αwhere x∈X.

• Conjunction (∧C): generate α1 ∧ · · · ∧ αn.

• Disjunction (∨C): generate α1 ∨ · · · ∨ αn.

• Bounded conjunction (∧BC): generate α ∧ β.

• Bounded disjunction (∨BC): generate α ∨ β.

• Negation (¬C): generate ¬α.

Specifically, conditioning a formula α on a satisfiable term
t, denoted by α|t, is the result of replacing each occurrence
of a variable x in α by > (resp. ⊥), if x (resp. ¬x) is a
positive (resp. negative) literal of t. Forgetting Y from α,
denoted as ∃Y.α, is the strongest consequence that does not
contains any variables of Y, that is, for any NNF-formula β
s.t. Var(β) ∩Y = ∅, α |= β iff ∃Y.α |= β. We say a lan-
guage L satisfies the query (resp. transformation) property
Q (resp. T), iff there is a polytime procedure for the query
(resp. transformation) task Q (resp. T) for L. For example,
DNF supports CO since the CO task can be performed under
DNF in polytime (Darwiche and Marquis 2002).

Satisfiability
We first present a procedure for satisfiability check on NNF-
formulas, which was proposed by Darwiche (2001a).
Definition 2. The procedure CO(α) is recursively defined
as:
• CO(>) = 1, CO(⊥) = 0 and CO(l) = 1
• CO(β1 ∧ · · · ∧ βn) = min

1≤i≤n
{CO(βi)}

• CO(β1 ∨ · · · ∨ βn) = max
1≤i≤n

{CO(βi)}

The above procedure works in a recursive way. In the
base case, the Boolean constant > and a literal l are
satisfiable while⊥ is unsatisfiable. In the induction case, the
satisfiability problem of an ∨-node (or ∧-node) is reduced
to the same problem of its subformula βi. If some βi of
∨-node α is satisfiable, then α is satisfiable. Similarly, if
every βi of ∧-node α is satisfiable, then α is satisfiable.
Definition 3. Let L be a language, and f a procedure that
takes an NNF-formula α as input, and that returns a Boolean
value. We say
• f is CO-sound for L iff for every L-formula α, f(α) = 1

only if CO(α) = 1;
• f is CO-complete for L iff for every L-formula α,
CO(α) = 1 only if f(α) = 1.

The procedure CO is a CO-complete algorithm for any
NNF-formula α and it can be evaluated in linear time in |α|.
Theorem 1. (Darwiche 2001a) The procedure CO is CO-
complete for NNF with the time complexity O(|α|).

However, the procedure CO is unsound for NNF-formula.
Let us consider the unsatisfiable formula α = x ∧ ¬x.
Clearly, CO(x) = CO(¬x) = 1. It follows that CO(α) = 1
which contradicts the unsatisfiability of α.

The reason why the procedure CO cannot serve as a sound
algorithm is that CO is a simple evaluation-based algorithm
and it does not consider implicit logical contraditions
occurring in some ∧-nodes of an NNF-formula. Formally, we
say an ∧-node α = β1∧· · ·∧βn contains an implicit logical
contradiction, if α is unsatisfiable and each βi is satisfiable
for 1 ≤ i ≤ n. In this case, CO(α) = 1 as CO(βi) = 1 for
1 ≤ i ≤ n, and hence deriving an incorrect result.

We hereafter provide a necessary and sufficient condition
on NNF for which the CO procedure is complete and sound.
Definition 4. An NNF-formula α is CO-logically separable
(COls) iff
• α is >, ⊥, or a literal l; or
• α is an ∧-node β1 ∧ · · · ∧ βn, and if α is unsatisfiable,

then βi is unsatisfiable and COls for some 1 ≤ i ≤ n; or
• α is an ∨-node β1 ∨ · · · ∨ βn, and if α is unsatisfiable,

then βi is unsatisfiable and COls for every 1 ≤ i ≤ n.
We use CO-LSNNF to denote the subset of NNF in which

any formula satisfies CO-logical separability property.
For instance, the formula x ∧ ¬x ∧ ⊥ is CO-logically

separable as the logical contradiction occurs explicitly.
To avoid the implicit logical contraditions in an unsat-

isfiable ∧-node β1 ∧ · · · ∧ βn, Definition 4 requires some
conjuncts βi to be unsatisfiable and CO-logically separable.
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Let us consider the formula α = ((x ∧ ¬x) ∨ y) ∧ ⊥. The
logical contradiction hidden in the inner ∧-node x ∧ ¬x
does not impede the correctness of the procedure CO due
to the occurrence of ⊥ in the outermost ∧-node of α. In
a similar way, each disjunct of an unsatisfiable ∨-node is
unsatisfiable and CO-logically separable. Hence, we obtain
the soundness of the procedure CO.

Theorem 2. A language L is CO-LSNNF iff the procedure
CO is CO-complete and CO-sound for L.

Proof. We prove by induction on α. We here only verify the
case where α is an ∧-node β1 ∧ · · · ∧ βn.

(⇒): It directly follows from Theorem 1 that the proce-
dure CO is complete for CO-LSNNF. It remains to verify the
soundness property of the procedure CO for CO-LSNNF. Let
α be an arbitrary CO-LSNNF formula. Assume that CO(α) =
0. We hereafter prove that CO(α) = 0. By CO-logical sep-
arability property, there is some βi that is unsatisfiable and
COls. By the induction hypothesis, we have that CO(βi) = 0.
It follows from the procedure CO that CO(α) = 0.

(⇐): Assume that the language L is such that for any L-
formula α, CO(α) = 1 iff CO(α) = 1. In case where α
is satisfiable, by Definition 4, it holds that α ∈ CO-LSNNF.
In case where α is unsatisfiable. By the assumption above,
we get that CO(α) = 0. According to the procedure CO,
we get that CO(βi) = 0 for some i. Since the procedure
CO is complete, CO(βi) = 0. It follows that βi ∈ L. By
the induction hypothesis, βi is CO-logically separable. By
Definition 4, α is also CO-logically separable.

We observe that all normal forms, summarized in (Dar-
wiche and Marquis 2002), supporting CO include PI,
DNNF, OBDD and so on. Interestingly, they are either PI or a
subset of DNNF. In addition, we observe that every formula
of PI or DNNF satisfies CO-logical separability.

Proposition 1. The languages DNNF and PI are subsets of
CO-LSNNF.

On the one side, ∧-decomposability forbids simultaneous
occurrence of the same variable in distinct conjuncts of any
∧-node. Hence, no implicit logical contradiction occurs in
∧-nodes of a DNNF-formula. On the other side, PI requires
that any implicate of α is derived by a clause c of α and
that no implicate c′ 6= c of α such that c′ |= c. The Boolean
constant ⊥ is a disjunction of an empty set of literals. If α
implies⊥, then it must be⊥ itself. The logical contradiction
therefore appears explicitly in any unsatisfiable PI-formula.

Someone may wonder if the two properties polytime sat-
isfiability check and CO-logical separability are essentially
equivalent? The four normal forms: KROM[∨], HORN[∨],
renH[∨] and K/H[∨], which supports polytime satisfiability
check (Fargier and Marquis 2014), are counterexamples
for the above question. As mentioned before, the formula
x ∧ ¬x is not CO-logically separable. Clearly, it is a formula
of the above four normal forms.

The story does not come to the end. We connect these
two properties via polytime translation.

Theorem 3. A languageL satisfies CO iff it is polynomially
translatable into CO-LSNNF.

Proof. (⇒): Assume that L supports polytime satisfiability
check. We design an algorithm transforming any L-formula
α into an equivalent one that is CO-logically separable. If it
is satsifiable, then it is CO-logically separable; otherwise, the
algorithm returns ⊥ which is CO-logically separable. Since
the satisfiability of L-formula α can be achieved in time
polynominal in |α|, the above algorithm is also polytime.

(⇐): Let f be the polytime algorithm that transforms any
L-formula α into an equivalent one that is CO-logically sep-
arable. By the completeness and soundness of the procedure
CO for CO-LSNNF, α is satisfiable iff CO(f(α)) = 1. This,
together with the fact that f and CO are polytime, imply that
L satisfies CO.

In other words, L supports polytime satisfiability check
iff the implicit logically contraditions in any L-formula α
that are witnesses to refute the satisfiability of α can be
efficiently discovered.

We close this section by comparing CO-LSNNF and NNF in
terms of succinctness and polynomial-translation.

Proposition 2.

• NNF ∼s CO-LSNNF
• NNF ≤p CO-LSNNF and CO-LSNNF 6≤∗p NNF.

As mentioned in (Fargier and Marquis 2014), the inclu-
sion ≤p⊂≤s holds. It means that there are two languages
L1 and L2 such that L1 ≤s L2 holds but L1 ≤p L2 does
not. However, they do not provide two languages confirming
the inclusion ≤p⊂≤s. We have surveyed the existing liter-
ature regarding succinctness among various propositional
representations (Darwiche and Marquis 2002; Wachter and
Haenni 2006; Pipatsrisawat and Darwiche 2008; Fargier and
Marquis 2009; Darwiche 2011; Fargier and Marquis 2014;
Berre et al. 2018; C̆epek and Chromý 2020). We find that in
these literature, for every two languages L1 and L2, if the
succinctness relation L1 ≤s L2 holds, then the polynomial-
translation relation L1 ≤p L2 also holds. To the best of our
knowledge, this paper is the first one to provide the pair of
languages which is a witness to the inclusion ≤p⊂≤s.

A classical knowledge compilation result in (Selman and
Kautz 1996) states that unless PH collapses, there does not
exist a class L of formulas s.t. every NNF-formula has a poly-
size equivalent L-formula, and L supports polytime clausal
entailment. It is well-known that both CE and CO tasks for
NNF are reasoning problems with high computational com-
plexity, which are coNP-complete and NP-complete, re-
spectively. In this paper, we show that CO-LSNNF is the lan-
guage that supports polytime satisfiability check and that is
equivalent succinct to NNF, proving the similar result in (Sel-
man and Kautz 1996) for satisfiability check does not hold.

Finally, determining if an NNF-formula is CO-logically
separable is the same as hard as the satisfiability problem.

Proposition 3. Deciding if an NNF-formula is in CO-LSNNF
is NP-complete.

Proof. (Lower bound): By CO-logically separability and
Theorem 2, we get that for any NNF formula α, α is sat-
isfiable iff α is in CO-LSNNF and CO(α) = 1. Due to the
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fact that the satisfiability problem of any NNF-formula is NP-
complete, we can draw a conclusion that deciding if an NNF-
formula is in CO-LSNNF is NP-hard.

(Upper bound): It is easy to verify that for any NNF for-
mula α, α is in CO-LSNNF iff α is satsifiable or CO(α) = 0.
The satisfiability problem is in NP and so is the CO-LSNNF
membership problem.

Clausal Entailment
As mentioned in (Darwiche and Marquis 2002), a language
qualifies as a target language, if it permits polytime clausal
entailment check. In this section, we consider logical
separability in the query clausal entailment.

The Procedure for Clausal Entailment
Definition 5. Let α be an NNF-formula and c a non-trivial
clause. The procedure CE(α, c) is recursively defined as:

• CE(>, c) =

{
1, if c = >
0, otherwise

• CE(⊥, c) = 1, CE(l,>) = 1 and CE(l,⊥) = 0

• CE(l, l1 ∨ · · · ∨ lm) =

{
1, if l = li for some i
0, otherwise

• CE(β1 ∧ · · · ∧ βn, c) = max
1≤i≤n

{CE(βi, c)}

• CE(β1 ∨ · · · ∨ βn, c) = min
1≤i≤n

{CE(βi, c)}

The above procedure is a recursive algorithm. In the
case that α is a Boolean constant >, the procedure returns
1 if the clause c is also >, and returns 0 otherwise. In the
case that α is ⊥, the procedure always returns 1 since an
unsatisfiable KB derives any consequence. In the case that
α is a literal l, then the procedure returns 1 if l is a literal of
the clause c, or c is > since l entails a clause including l and
> is a consequence of any formula. The clausal entailment
problem of an ∧-node β1 ∧ · · · ∧ βn and a clause c can be
reduced to the same subproblem of βi and c. If one of the
βi’s entails c, then their conjunction does. The case that α
is a ∨-node is similarly handled.

Darwiche (2001a) proposed a polytime clausal entailment
procedure CE ′ via the procedure CO and conditioning. The
definition of CE ′ is as follows: CE ′(α, c) = 1 iff CO(α|t) =
0 where t is equivalent to ¬c. In fact, the two procedures CE
and CE ′ are equivalent, that is, they return the same result
for every formula α and every non-trivial clause c.

Proposition 4. Let α be an NNF-formula and c a non-trivial
clause. Then, CE(α, c) = CE ′(α, c).

The major advantage of the procedure CE over CE ′ is that
the former directly solves the clausal entailment problem
while the latter resorts to two procedures for satisfiability
check and conditioning.

Definition 6. Let L be a language and f be a procedure that
takes an NNF-formula α and a non-trivial clause c as input,
and that returns a Boolean value. We say

• f is CE-sound for L iff for every L-formula α and every
non-trivial clause c, f(α, c) = 1 only if CE(α, c) = 1;

• f is CE-complete for L iff for every L-formula α and
every non-trivial clause c, CE(α,c)=1 only if f(α,c)=1.

The procedure CE is a sound algorithm for clausal
entailment and takes polytime in the size of α and c.

Theorem 4. The procedure CE is CE-sound for NNF with the
time complexity O(|α| · |c|).

However, it is not guaranteed that the procedure CE is
complete if α is an arbitrary NNF-formula. Let us consider
the formula α = (¬x ∨ y) ∧ (¬y ∨ z) and the clause
c = ¬x ∨ z. It is easily verified that CE(¬x, c) = 1,
CE(y, c) = 0, CE(¬y, c) = 0 and CE(z, c) = 1. It follows
that CE(¬x ∨ y, c) = 0 and CE(¬y ∨ z, c) = 0. Finally,
CE(α, c) = 0. On the contrary, CE(α, c) = 1 as α |= c.

The reason that the procedure CE cannot give a complete
answer for clausal entailment is similar to why the CO does
not work perfectly for satisfiability check. The procedure
CE only decomposes ∧-nodes of a formula α in a simple
way and does not reasoning about implicit logical implicate
of these ∧-nodes. We say an ∧-node α = β1 ∧ · · · ∧ βn
contains an implicit logical implicate, if there is a clause c
s.t. α |= c and βi 6|= c for every 1 ≤ i ≤ n.

By conjoining α with the clause ¬x ∨ z, the new formula
α′ = (¬x ∨ y) ∧ (¬y ∨ z) ∧ (¬x ∨ z) contains no implicit
logical implicates. We now examine the procedure CE for
the formula α′, which is equivalent to the previous one
α. It is easily verified that CE(¬x ∨ z, c) = 1, and hence
CE(α′, c) = 1. The procedure CE(α′, c) generates a result
in accordance with CE(α′, c).

Based on the above observations, we hereafter give a
normal form that is the sufficient and necessary condition of
making the procedure CE not only sound but also complete.

Definition 7. Let c be a non-trivial clause. An NNF-formula
α is CE-logically separable (CEls) w.r.t. c iff

• α is >, ⊥, or a literal l; or
• α is an ∧-node β1 ∧ · · · ∧ βn, and if α |= c, then there is

a conjunct βi s.t. βi |= c and βi is CEls w.r.t. c; or
• α is an ∨-node β1∨· · ·∨βn, and if α |= c, then for every

disjunct βi, we have βi |= c and βi is CEls w.r.t. c.

The Boolean constants and a literal l are CEls w.r.t.
any non-trivial clause c. Suppose that α is an ∧-node
β1 ∧ · · · ∧ βn which entails a clause c. The clause c
may be an implicit logical implicate of α. To avoid them,
Definition 7 requires some of its conjunct to entail c and
to be CE-logically separable w.r.t. c. In the similar way, if
a ∨-node entails clause c, then each of its disjuncts also
entails c and is CE-logically separable w.r.t. c.

We say an NNF-formula satisfies general CE-logically
separable (general CEls), if it is CEls w.r.t. every non-trivial
clause. We use CE-LSNNF to denote the subset of NNF
for which every formula satisfies general CEls. General
CE-logical separability eliminates any implicit impli-
cate of some ∧-nodes so as to gain the completeness of the
procedure CE for every formula and every non-trivial clause.

Theorem 5. A language L is CE-LSNNF iff the procedure CE
is CE-complete and CE-sound for L.
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Proof. We prove by induction on α. We here only verify the
case where α is an ∧-node β1 ∧ · · · ∧ βn.

(⇒): By Theorem 4, the procedure CE is CE-sound for
CE-LSNNF. It remains to verify the completeness property
of the procedure CE for CE-LSNNF. Let α be an arbitrary
CE-LSNNF-formula and c a non-trivial clause. Assume that
α |= c. We hereafter prove that CE(α, c) = 1. By CE-logical
separability property, we have that βi |= c and βi is CEls
w.r.t. c for some i. By the induction hypothesis, it holds
that CE(βi, c) = 1. It follows from the procedure CE that
CE(α, c) = 1.

(⇐): Assume that the language L is such that for every
L-formula α and every non-trivial clause c, CE(α, c) = 1
iff CE(α, c) = 1. We prove that every L-formula α is CE-
logically separable w.r.t. every non-trivial clause c. In case
where α 6|= c, by Definition 7, it holds that α is CEls w.r.t. c.
In case where α |= c. By the assumption above, we get that
CE(α, c) = 1. According to the procedure CE , we get that
CE(βi, c) = 1 for some i. Since the procedure CE is sound
for any NNF-formula, we have that CE(βi, c) = 1. It follows
that βi ∈ L. By the induction hypothesis, βi is CE-logically
separable w.r.t. c. By Definition 7, α is CEls w.r.t. c.

We observe that ∧-decomposability and prime implicates
are special cases of general CE-logical separability.

Proposition 5. DNNF and PI are subsets of CE-LSNNF.

We elaborate the intuition behind ∧-decomposability and
prime implicant via the inference rule: resolution. Reso-
lution is used to find a refutation proof of CNF-formulas
(Davis and Putnam 1960). Levesque (1998) used resolution
to discover implicit implicates hidden in ∧-nodes. The con-
junction of x∨c1 and ¬x∨c2 deduces their resolvant c1∨c2.
This deduction also holds if the two clauses c1 and c2 are
replaced by two arbitrary formulas β1 and β2 respectively.

On the one side, ∧-decomposability precludes the case
that a variable x simultaneously occurs in different con-
juncts of an ∧-node α. This causes no occurrence of implicit
implicate within any ∧-node. On the other side, PI-formula
α requires every resolution among every two clauses of
α to be entailed by a clause within α. Hence, no implicit
implicate occurs via making advantage of resolution.

It is easily verified that every language L that is
polynomially translatable into CE-LSNNF also satisfies CE.

Theorem 6. If a language L is polynomially translatable
into CE-LSNNF, then L satisfies CE.

But the opposite direction remains open. Considering
the four disjunctive closure based languages, none of these
languages is at least as succinct as CE-LSNNF. Any KROM-
formula can be converted into a PI-formula in polytime
(Marquis 2000). In addition, PI is a subset of CE-LSNNF
and CE-LSNNF supports polytime disjunction (∨C), which
will be shown in Table 1. We therefore obtain that KROM[∨]
is polynomially translatable to CE-LSNNF. So CE-LSNNF is
strictly more succinct than KROM[∨]. The problem whether
CE-LSNNF is at least as succinct as renH[∨], K/H[∨] and
HORN[∨] remains unknown.

Every CO-LSNNF-formula is an NNF-formula that is CE-
logically separable w.r.t.⊥. So CO-LSNNF ≤s CE-LSNNF. But

the opposite direction does not hold unless PH collapses.

Proposition 6. CO-LSNNF ≤s CE-LSNNF and CE-LSNNF 6≤∗s
CO-LSNNF.

CO-LSNNF does not support polytime conditioning which
will be shown in Table 1. The following proposition states
that CE-LSNNF is the maximal fragment of CO-LSNNF closed
under conditioning.

Proposition 7. An NNF-formula α ∈ CE-LSNNF iff α ∈
CO-LSNNF and α|t∈CO-LSNNF for every non-trivial term t.

Proof. We prove by induction on α. We here only verify the
case where α is an ∧-node β1 ∧ · · · ∧ βn.

(⇒): Suppose that α ∈ CE-LSNNF. Clearly, α ∈
CO-LSNNF. It remains to verify that α|t is COls for every non-
trivial term t. Let c be a non-trivial clause equivalent to ¬t.
By Definition 4, if α 6|= c, then α|t is satisfiable, and hence
α|t ∈ CO-LSNNF. We now assume that α |= c. By Defini-
tion 7, there is a conjunct βi of α s.t. βi |= c and βi is CEls
w.r.t. c. By the induction hypothesis, we have βi|t is COls.
By Definition 4, it holds that α|t is COls.

(⇐): Let α ∈ L. By assumption, α is CO-logically sep-
arable and α|t is also CO-logically separable for every non-
trivial term t. Let c′ a non-trivial clause and t′ a non-trivial
term equivalent to ¬c′. It remains to verify that α is CEls
w.r.t. c′. α is an ∧-node β1 ∧ · · · ∧ βn: If α|t′ is satisfiable,
then α 6|= c′. It follows from Definition 7 that α is CEls w.r.t.
c′. We now assume that α|t′ is unsatisfiable. By Definition
4, there is a conjunct βi of α s.t. βi|t′ is unsatisfiable. By the
induction hypothesis, we have that βi is CEls w.r.t. c′. Hence,
α is CEls w.r.t. c′.

The following proposition provides the upper bound of
the CE-LSNNF membership problem.

Proposition 8. Deciding if an NNF-formula is in CE-LSNNF
is in Πp

2.

Proof. We first consider the non-membership problem of
CE-LSNNF. An NNF-formula α is not a CE-LSNNF-formula
iff there exists a non-trivial clause c s.t. CE(α, c) = 1 and
CE(α, c) = 0. Since the clausal entailment problem of NNF-
formula is coNP-complete, the non-membership problem of
CE-LSNNF can be solved by a non-deterministic Turing ma-
chineM by invoking an NP oracle that decides if CE(α, c) =
1. Hence, the non-membership problem of CE-LSNNF is in
ΣP

2 , and the membership problem is in ΠP
2 .

Comparison to Levesque’s Normal Form
In first-order logic, Levesque (1998) defined a class for
queries, namely Levesque’s normal norm (LNF), such that
entailment check is complete, sound and can be tractably
solved for a class of knowledge base, namely proper knowl-
edge base, which is equivalent to a possibly infinite consis-
tent set of ground literals. Since the negation ¬ is applied to
a formula, LNF is not a subset of NNF. To make a clear com-
parison between LNF and CE-LSNNF, we propose the NNF
version of LNF, namely Levesque’s negation normal norm
(LNNF). We remark that every LNF-formula can be converted
into a polysize equivalent one in LNNF, and vice versa.
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Definition 8. An NNF-formula α is in LNNF, iff

• α is >, ⊥, or a literal l; or
• α is an ∧-node β1 ∧ · · · ∧ βn where

– for any non-trivial clause c, if α |= c, then βj |= c for
some 1 ≤ j ≤ n; and

– βi is in LNNF for every 1 ≤ i ≤ n; or
• α is a ∨-node β1 ∨ · · · ∨ βn where

– for any non-trivial term t, if t |= α, then t |= βj for
some 1 ≤ j ≤ n; and

– βi is in LNNF for every 1 ≤ i ≤ n.

We use the formula α = [((¬x ∨ y) ∧ (¬y ∨ z)) ∨ ⊥] ∧
(¬x ∨ z) to illustrate the distinction between CE-LSNNF and
LNNF. The formula α satisfies general CE-logical separabil-
ity, but is not an LNNF-formula. Let β = (¬x∨y)∧(¬y∨z).
Each conjunct of β does not entail the clause ¬x ∨ z, but
β does. So β is not in LNNF. It follows that β ∨ ⊥ is not in
LNNF. Neither does α.

From the above example, we can observe that LNNF
incorporates not only a stronger constraint than CE-logical
separability for ∧-nodes but also its dual property for ∨-
nodes. The direct consequences are (1) CE-LSNNF subsumes
LNNF, and (2) LNNF supports polytime term implication
check. CE-LSNNF is strictly more succinct than LNNF unless
PH collapses.

Proposition 9. LNNF 6≤∗s CE-LSNNF.

Proof. It can be shown that unless PH collapses, there
does not exist a class L of formulas s.t. every DNF-formula
has a polysize equivalent L-formula, and L supports poly-
time term implication. This, together with the fact that
CE-LSNNF ≤s DNF and LNNF supports IM (Proposition 12),
impiles that LNNF 6≤∗s CE-LSNNF.

Model Counting
We now turn to the query model counting that returns the
number of models of a propositional formula. A number of
key AI tasks can be reduced to the model counting problem,
such as probabilistic inference (Chavira and Darwiche
2008) and constraint optimization (Bulatov 2013).

We hereafter develop a unified model counting algorithm.

Definition 9. Let α be an NNF-formula, Y ⊇ Var(α) and
Y0 = Y \ Var(α). The procedure CT (α,Y) is recursively
defined as:

• CT (⊥,Y)=0, CT (>,Y)=2|Y| and CT (l,Y)=2|Y|−1

• CT (β1 ∧ · · · ∧ βn,Y) = 2|Y0| ·
∏n

i=1 CT (βi,Var(βi))
• CT (β1 ∨ · · · ∨ βn,Y) =

∑n
i=1 CT (βi,Y)

The above procedure works in a recursive way. The first
item is for the base case. The numbers of models of >,
⊥ and a literal are 2|Y|, 0 and 2|Y|−1, respectively. In the
induction case, the model counting problem of an ∧-node
(resp. ∨-node) is decomposed to that of its subformula. The
number of models of an ∧-node equals to the product of the
number of models of its subformula βi multiplying 2|Y0|.
The number of models of a ∨-node equals to the sum of the
Y-models of its subformula βi.

Definition 10. Let L be a language and f a procedure that
takes an NNF-formula α and a set of variables Y s.t. Y ⊇
Var(α) as inputs, and that returns a natural number. We say
• f is CT-overapproximate for L iff for every L-formula α,
CT(α,Y) ≤ f(α,Y);

• f is CT-underapproximate for L iff for every L-formula
α, CT(α,Y) ≥ f(α,Y).

The procedure CT is overapproximate for any NNF-
formula α with time linear in the size of α.
Theorem 7. The procedure CT is CT-overapproximate for
NNF with the time complexity O(|α|).

However, the procedure CT may compute the incorrect
answer for some NNF-formulas. We illustrate the reasons
from the model-theoretic perspective.

We first consider the ∧-node α = β1∧· · ·∧βn. Let Ωi be
the set of Yi-models of βi where Yi = Var(βi). The Carte-
sian product on n sets of models Ω1, · · · ,Ωn is defined as:
Ω1× · · · ×Ωn = {ω1 ∪ · · · ∪ ωn | ωi ∈ Ωi for 1 ≤ i ≤ n}.
The Cartesian product may contain an inconsis-
tent set of literals, that is, a set contains a vari-
able x and its complement ¬x. For example,
{{x}} × {{¬x,¬y}, {x, y}} = {{x,¬x,¬y}, {x, y}}
where {x,¬x,¬y} is an inconsistent set of literals. The
procedure CT simply returns the product of |Ω1|, · · · , |Ωn|
and the number 2|Y0|, Therefore, CT computes an overap-
proximate result when the Cartesian product Ω1 × · · · ×Ωn

contains some inconsistent sets of literals.
We now consider the ∨-node α = β1 ∨ · · · ∨ βn.

Let Ωi be the set of Y-models of βi The procedure CT
simply returns the sum of |Ωi|. Therefore, CT produces an
overapproximate result since a Y-interpretation may satisfy
more than one disjunct of α.

In the following, we identify the conditions under which
the procedure CT provides the exact counting of models.
We say two formulas α and β agree on common variables,
if for every variable x ∈ Var(α) ∩ Var(β), we have α |= x
and β |= x; or α |= ¬x and β |= ¬x.
Definition 11. An NNF-formula is CT-logically separable
(CTls) iff one of the following conditions hold
• α is a literal, > or ⊥;
• α is an ∧-node β1 ∧ · · · ∧ βn s.t.

– if α is unsatisfiable, then βi is unsatisfiable and CTls
for some i;

– if α is satisfiable, then every βi is CTls and every two
distinct βi and βj agree on common variables.

• α is an ∨-node β1 ∨ · · · ∨ βn s.t. βi ∧ βj |= ⊥ for i 6= j
and every βi is CTls.

With the above constraints, no inconsistent set of literals
exists in the Cartesian product on sets of models of con-
juncts of ∧-nodes. Neither common models in some distinct
disjuncts of ∨-nodes does. We use CT-LSNNF to denote the
subset of NNF in which any formula satisfies CT-logical
separability property. CT-LSNNF precisely capture the class
of formulas that allow CT to produce a correct result.
Theorem 8. A language L is CT-LSNNF iff the procedure
CT is CT-overapproximate and CT-underapproximate for L.
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Proof. We prove by induction on α. We here only verify the
case where α is an ∧-node β1 ∧ · · · ∧ βn.

(⇒): Let α be a CT-LSNNF-formula and Y ⊇ Var(α). We
prove that CT (α,Y) = |ModY(α)| = CT(α,Y). The in-
duction step for ∧-node: Let β0 = >, Y0 = Y \ Var(α)
and Yi = Var(βi) for 1 ≤ i ≤ n. In the case where α
is satisfiable. By CT-logically separability property, we get
that ModY0

(β0) × ModY1
(β1) × · · · × ModYn

(βn) does
not contain an inconsistent set of literals. Hence, the union
of each Yi-model of βi is a Y-model of α. By the induc-
tive hypothesis, we get that CT (βi,Yi) = |ModYi(βi)|
for 1 ≤ i ≤ n. So |ModY(α)| =

∏n
i=0 |ModYi(βi)| =

2|Y0| ·
∏n

i=1 CT (βi,Yi) = CT (α,Y). In the case where α
is unsatisfiable. By CTls property and the inductive hypoth-
esis, it is easy to verify that CT (α,Y) = |ModY(α)| = 0.

(⇐): Suppose that the languageL is such that for everyL-
formula α and every Y ⊇ Var(α), CT(α,Y) = CT (α,Y).
We prove that every L-formula α is CT-logically separable.
We w.l.o.g. assume that Y = Var(α). Let Yi = Var(βi) for
1 ≤ i ≤ n. In the case α is satisfiable. By the assumption
CT(α,Y) = CT (α,Y), the following hold:

1. CT(βi,Yi) = CT (βi,Yi) for every 1 ≤ i ≤ n;
2. ModY1(β1)× · · · ×ModYn(βn) does not contain an in-

consistent set of literals.

By Item 1 and the induction hypothesis, we get that each
βi is CTls. By Item 2, we get that every two distinct formulas
βi and βj agree on common variables. It follows from CT-
logically separability property that α ∈ CT-LSNNF.

In the case where α is unsatisfiable. By the assumption,
we get that CT (α,Y) = CT(α,Y) = 0. By procedure CT ,
CT (βi,Yi) = 0 for some i. Since the CT procedure is
CT-overapproximate, βi is unsatisfiable. So CT (βi,Yi) =
CT(βi,Yi). By the induction hypothesis, βi is CTls. Hence,
α ∈ CT-LSNNF.

Darwiche (2001b) proposed a model counting algorithm
that is correct for sd-DNNF, that is, the subset of d-DNNF with
the smoothness property requiring that Var(βi) = Var(βj)
for each ∨-node β1 ∨ · · · ∨ βn of an NNF-formula. By
comparison, the CT algorithm has wider scope of ap-
plication and is more efficient than (Darwiche 2001b)’s
algorithm since CT-LSNNF is a strict superset of sd-DNNF
and transforming a CT-LSNNF-formula into an equivalent
sd-DNNF-formula may cause a O(|X|) blowup in size where
|X| is the number of variables.

We hereafter prove that d-DNNF and CT-LSNNF are
polynomially equivalent.

Proposition 10. d-DNNF ∼p CT-LSNNF.

Proof. It is easily verified that CT-LSNNF ≤p d-DNNF. We
here only prove that d-DNNF ≤p CT-LSNNF. We can trans-
form every CT-LSNNF-formula to an equivalent d-DNNF-
formula in a bottom-up manner. During the transformation,
we only convert every ∧-subnode α =

⋃n
i=1 βi as fol-

lows. We first determine the satisfiability of α, which can be
solved in polytime. If α is unsatisfiable, then ⊥ is a d-DNNF-
formula equivalent to α. Otherwise, it follows from the CT-
logically separability property that each βi is in CT-LSNNF.

Suppose that β′i is the transformed d-DNNF-formula equiv-
alent to βi with polysize in |βi|. Let L =

⋃n
i=1[Lit(β′i) ∩

(
⋃i−1

j=1 Lit(β′j))] and α′ = β′1|L ∧ · · · ∧ β′n|L ∧ L. Since
d-DNNF is closed under conditioning (cf. Proposition 5.1 in
(Darwiche and Marquis 2002)), β′i|L is also d-DNNF. It is
easily verified that α′ ≡ α and α′ satisfies determinism and
decomposability.

To the best of our knowledge, the maximal fragment of
NNF supporting polytime model counting, which is discov-
ered in the existing literature, is d-DNNF (Darwiche 2001b).

In the following, we prove a dual language, namely
c-DNNF, to d-DNNF that is not a subset of CT-LSNNF but
supports polytime model counting. The ∨-decomposability
property requires the sets of variables of the children of
each ∨-node to be pairwise disjoint. The covering property
requires the children of each ∧-node in a formula to be pair-
wise logically tautology. Cover dual decomposability NNF
(c-DNNF) is the subset of NNF satisfying ∨-decomposability
and covering properties.

We now design a polytime model counting procedure
CT ′ for c-DNNF. Every c-DNNF-formula α can be trans-
formed into a d-DNNF-formula ᾱ in polytime s.t. α ≡ ¬ᾱ
via replacing any occurrence of Boolean constants > (resp.
⊥) by ⊥ (resp. >), of literals l by its complement l̄ and of
connectives ∧ (resp. ∨) by ∨ (resp. ∧). For convenience,
we call the d-DNNF-formula ᾱ, generated from α by the
above process, the complement of α. The procedure CT ′
for c-DNNF is defined as CT ′(α,Y) = 2|Y| − CT (ᾱ,Y).
Since the formula ᾱ is d-DNNF, the procedure CT produces
a exact number of models of ᾱ. Hence, 2|Y| − CT (ᾱ,Y) is
the correct answer for the models of α.

We illustrate the fact that c-DNNF is not CT-logical
separable with the formula α = (x ∧ ¬x) ∨ y. The sub-
formula x ∧ ¬x of α is unsatisfiable, but neither x nor ¬x
is. It violates the requirement of unsatisfiable ∧-nodes in
CT-LSNNF, and hence is not in CT-LSNNF. However, this
formula α satisfies ∨-decomposability and covering.

Finally, we prove that every language L that is polynomi-
ally translatable into CT-LSNNF also satisfies CT. But the
opposite direction remains open.

Theorem 9. If a language L is polynomially translatable to
CT-LSNNF, then L satisfies CT.

We close this section by providing the upper bound of the
CT-LSNNF membership problem.

Proposition 11. Deciding if an NNF-formula is in CT-LSNNF
is in ∆P

2 .

Proof. It is easy to design a deterministic algorithm for the
CT-LSNNF membership problem via invoking NP oracle ac-
cording to the definition of CT-LSNNF-formulas (cf. Defini-
tion 11). Identify whether an NNF-formula α is in CT-LSNNF
requires checking the satisfiability of some subformulas of
α and the conjunction of some subformulas, and checking
the entailment of some subformulas and some literals. NP
oracles are used to solve the above two checking and are
invoked at most O(n4) times where n is the size of α.
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Figure 1: Succinctness of various normal forms. An edge
L1 → L2 indicates L1 <s L2 while an edge L1 ↔ L2

indicates L1 ∼s L2. A dotted right arrow from L1 to L2

means L2 6≤s L1 but whether L1 ≤s L2 is unknown.

L CO VA CE IM EQ SE CT ME

CO-LSNNF
√

◦ ◦ ◦ ◦ ◦ ◦ ◦
CE-LSNNF

√
◦

√
◦ ◦ ◦ ◦

√

LNNF
√ √ √ √

◦ ◦ ◦
√

CT-LSNNF
√ √ √ √

? ◦
√ √

L CD FO SFO ∧BC ∧C ∨BC ∨C ¬C
CO-LSNNF ◦ ◦

√
◦ ◦

√ √
◦

CE-LSNNF
√ √ √

◦ ◦
√ √

◦
LNNF

√
? ? ◦ ◦ ◦ ◦

√

CT-LSNNF
√

◦ ◦ ◦ ◦ ◦ ◦ ?

Table 1: Queries and transformations for the logical sepa-
rability based languages. An occurrence of

√
indicates that

L supports the query (or transformation) property; ◦ means
that it is not the case unless P = NP; and ? means that
whether L supports this property is unknown.

Succinctness, Queries and Transformations
As pointed out in (Darwiche and Marquis 2002), succinct-
ness, queries and transformations are three key dimensions
to consider when choosing an appropriate target language
for application-specific problems. In this section, we discuss
the relative succinctness of logical separability based
languages (CO-LSNNF, CE-LSNNF, LNNF and CT-LSNNF)
compared to other languages considered in (Darwiche and
Marquis 2002; Fargier and Marquis 2014) in Figure 1. We
also investigate the supported queries and transformations
of logical separability based languages in Table 1.
Proposition 12. The results in Figure 1 and Table 1 hold.

We can make several observations from Figure
1 and Table 1 as follows. (1) There are two suc-
cinctness orderings of logical separability based lan-
guages: CO-LSNNF <s CE-LSNNF <s CT-LSNNF and
CO-LSNNF <s CE-LSNNF <s LNNF. CT-LSNNF 6≤s LNNF but
whether LNNF ≤s CT-LSNNF remains open. (2) Adding CO-
logical separability to NNF gains the polytime satisfiability
check property without lowering down its succinctness hi-

erarchy. But CO-LSNNF loses the transformation properties:
CD, ∧BC, ∧C and ¬C which hold in NNF. It is worthy
noting that CO-LSNNF is at least as succinct as any language
that offers polytime satisfiability check. (3) Besides KROM[∨]
and subsets of DNNF, CE-LSNNF is another fragment of NNF
supporting CE, FO and ∨C. Furthermore, CE-LSNNF is
strictly more succinct than any languages supporting CE
except renH[∨], K/H[∨] and HORN[∨]. (4) Although LNNF
offers VA and IM compared to CE-LSNNF, but the former
is not closed under bounded disjunction and is less succinct
than the latter. (5) CT-LSNNF is equally succinct to d-DNNF
and hence supports the same query and transformation
properties as d-DNNF. (6) None of logical separability based
languages satisfies bounded conjunction.

Conclusion and Future Work
Inspired by Levesque, we introduce three new logical sepa-
rability based properties: CO-logical separability, CE-logical
separability and CT-logical separability for query tasks CO,
CE and CT respectively, establishing the connection between
knowledge compilation and logical separability. We then
identify three novel fragments: CO-LSNNF, CE-LSNNF and
CT-LSNNF, which precisely capture the classes of formulas
that permit polytime procedures CO, CE and CT always
produce a correct answer of the corresponding tasks re-
spectively. We also extend the knowledge compilation map
by investigating succinctness and tractability of the four
logical separability based languages (CO-LSNNF, CE-LSNNF,
LNNF and CT-LSNNF). We show that CO-LSNNF is the most
succinct language permitting CO and particularly any
propositional formula has a polysize equivalent CO-LSNNF
formula. CE-LSNNF is as powerful as DNNF since they
supports the same set of queries and transformations, yet
strictly more succinct. CT-LSNNF is the same as succinct as
d-DNNF and offers the same tractability as d-DNNF.

There are several directions for future works. Firstly, the
remaining open questions include: the unknown succinct-
ness, supported queries and transformations which shown in
Figure 1 and Table 1 as well as the lower bound of the mem-
bership problem of CE-LSNNF and CT-LSNNF. Secondly, we
would like to develop a compilation method for CE-LSNNF,
leading to build up a more efficient representation for
two important AI problems: planning and model-based
diagnosis. This is because that CE-LSNNF is the most suc-
cinct normal form, shown in Figure 1, which supports the
four basic queries and transformations (clausal entailment,
model enumeration, conditioning and forgetting) that are
essential to planning and model-based diagnosis. Finally,
it is interesting to further apply the notion of logical
separability to more query and transformation tasks.
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