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Abstract

The paper studies strategic abilities that rise from restrictions
on the information sharing in multiagent systems. The main
technical result is a sound and complete logical system that
describes the interplay between the knowledge and the strate-
gic ability modalities.

Introduction
Controlled by al-Hazmi and al-Mihdhar, American Airline
flight 77 crashed into the Pentagon at 9:37:46 am on Septem-
ber 11th, 2001 (Kean 2004). The months that preceded this
event could be viewed as a strategic game between Al-Qaeda
headquarters, U.S. Federal Bureau of Investigation (FBI),
and U.S. Central Intelligence Agency (CIA). As later in-
vestigation revealed, CIA had evidence that al-Hazmi and
al-Mihdhar were Al-Qaeda agents living in California and
potentially plotting an attack on the United States. How-
ever, American laws prevented CIA from arresting them
on American land. FBI, whose informant lived under the
same roof with al-Hazmi and al-Mihdhar, suspected that
they were a potential threat, but did not have enough evi-
dence to open a preliminary inquiry to investigate them. If
CIA would have shared their knowledge with FBI, the latter
could have arrested them and, thus, prevented the attack on
Pentagon. CIA did not share this information with FBI1 be-
cause it believed that it was illegal to share information be-
tween intelligence and criminal investigations of a common
target (Grewe 2004). As a result, al-Hazmi and al-Mihdhar
were left free to live in California and to high-jack the plane
once ordered to do so by Al-Qaeda headquarters.

Figure 1 captures the above situation as a strategic game
between three agents: Al-Qaeda, FBI, and CIA. This game
has two “initial” states, w and w′, and two “final” states, u
and v. In state w, al-Hazmi and al-Mihdhar are Al-Qaeda
agents preparing for the attack on the United States. In state
w′, they are peaceful foreigners taking flight lessons in San
Diego. The actual initial state of the game was w. CIA was
able to distinguish this state from state w′, but FBI was not.
We show the indistinguishability relation by dashed line in
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1CIA placed al-Hazmi and al-Mihdha on FBI’s watch list in
August 2001, but this did not give FBI enough time to investigate.
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Figure 1: Strategic game between Al-Qaeda, FBI, and CIA

Figure 1. Final state u is the one in which flight 77 crashes
into the Pentagon. Final state v is when it does not.

We assume that each of the three agents has two actions
available in state w and w′: action 0 and action 1. For CIA,
action 1 means “arrest” and action 0 means “do not arrest”
al-Hazmi and al-Mihdhar. Because it is illegal for CIA to
conduct operations on American land, action 1 is illegal for
CIA in statew as well as in statew′. For FBI, action 1 means
“open an investigation” and action 0 means “do not open
the investigation.” FBI cannot conduct searches or electronic
surveillance without probable cause unless the target is an
agent of foreign power. Thus, it would be proper for FBI to
conduct an investigation in state w but not in state w′. For
Al-Qaeda, action 1 means “order the attack”, action 0 means
“do not order the attack.”

In this game, an action profile is a tuple afc, where a, f ,
and c are actions of Al-Queda, FBI, and CIA, respectively.
The directed edges in Figure 1 show transitions of the strate-
gic game from an initial to a final state under different action
profiles. For example, edge from statew′ to state v is labeled
with ∗∗∗. This means that the game transitions from state w′

to state v under any action profile afc. At the same time,
directed edge from state w to state u is labeled with 100. It
means that this transition can only happen if Al-Queda de-
cides to attack and FBI and CIA decide not to act.

FBI
CIAAl-Qaeda

Figure 2: Information wall defining partition σ.
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The key to understanding this strategic game is an infor-
mation wall that existed between FBI and CIA. In this paper,
we model such walls as partitions of the set of all agents.
One can consider a single-wall partition depicted in Figure 2
with Al-Qaeda and FBI on one side of the wall and CIA on
the other. One can also consider a partition where Al-Qaeda
is moved to the CIA side. Finally, it is possible to introduce
a two-wall partition that prevents communication between
all three agents. All such cases could be modeled using the
formalism that we propose in this paper, but for the sake of
this example, we assume only the information wall shown in
Figure 2. We refer to the partition defined by this wall as par-
tition σ. If this wall did not exist, CIA and FBI might share
the information or might not. The existence of the wall gave
Al-Qaeda a strategy that guaranteed Al-Qaeda’s ability to
achieve its goal. We denote the existence of such a strategy
by

HσAl-Qaeda(“flight 77 crashed into the Pentagon”).

In general, we write Hσaϕ if agent a has a strategy to achieve
ϕ as long as there are information walls in the game de-
fined by the partition σ. As common in the games with im-
perfect information, by a strategy we mean a know-how (or
uniform) strategy. A strategy of an agent a is a know-how
strategy if agent a can use the same strategy to achieve the
desired result from each state indistinguishable by the agent
from the current state. In other words, a strategy is a know-
how strategy if the strategy exists, the agent knows that it
exists, and the agent also knows what the strategy is.

Our next example models a very simplified version of me-
dia censorship. In this example, each of the three agents Luo
Ji, Zhi Shi, and Tui Li can be either content (C) or discon-
tent (D) with the current political situation. As a result, the
game has eight initial states labeled CCC, . . . , DDD in Fig-
ure 3. For example, in state CDC Luo Ji is content (C), Zhi
Shi is discontent (D), and Tui Li is content (C). Each of the
agents knows if she herself is content or discontent, but does
not know the other two agents’ positions. Thus, for exam-
ple, Luo Ji can distinguish states DDC from state CCD, but
not state DDC from state DCC. Dashed lines between initial
states in Figure 3 connect states indistinguishable by Luo Ji.

DDC
{0,1}

DCC
{0}

DCD
{0,1}

DDD
{0,1}

CCC
{0}

CCD
{0}

CDD
{0,1}

CDC
{0}

Figure 3: Initial states for censorship example.

Each of the three agents has two available actions in each

initial state: to remain silent (action 0) or to question the gov-
ernment (action 1). If at least one of the agents questions the
government and the majority of people is discontent, then
a revolution happens and none of the agents is prosecuted.
If an agent questions the government but majority is con-
tent, then no revolution happen and the questioning agent is
executed. Finally, if none of the agents questions the gov-
ernment, then the status quo remains. Each agent first and
foremost does not want to be executed. We call an action
that does not result in the agent’s execution a safe action of
the agent. Safe actions were called “legal” in our previous
example. In general, by a safe action we mean any action
that satisfied certain external or self-imposed constraints on
the agents. In state DDC both actions, 0 and 1, are safe for
each agent. In state DCC only action 0 is safe for each agent.
In Figure 3, each state is labeled by the set of safe actions.
In our example, the set of safe actions for each agent is the
same in a given state. In general, we allow the set of safe
actions to be agent-specific. Let Swa denote the set of all safe
actions for agent a in state w. Thus, SDDCLuo Ji = {0, 1} and
SDCCLuo Ji = {0}.

Note that for all three agents action 1 is safe in state
DDC, but not in state DCC. Suppose that Luo Ji and Zhi
Shi are discontent and Tui Li is not. Thus, the actual state
is DDC. Since Luo Ji cannot distinguish states DDC and
DCC, he does not know that the action 1 is safe. If an agent
knows that an action is safe, then we say that the action is
knowingly safe for the agent. By KSwa we denote the set
of all knowingly safe actions for agent a in state w. Then,
KSDDCLuo Ji = KSDCCLuo Ji = {0}.

Tui Li

Luo Ji

Zhi Shi

Tui Li

Luo Ji

Zhi Shi

Figure 4: Partitions τ1 (left) and τ2 (right).

Suppose that there is an information wall that prevents
any communication between agents Luo Ji, Zhi Shi, and Tui
Li. We identify this wall with partition τ1 on the set of all
agents, see Figure 4 (left). Furthermore, recall that the cur-
rent state is DDC. In other words, the majority is discontent.
Then, it is safe for each agent to question the government,
but none of them will ever learn this because information
wall τ1 is present. Thus, none of the agents will question the
government, and it is guaranteed that the revolution will not
happen. We write this as

Nτ1(“no revolution happened”).

In general, we write Nτϕ if statement ϕ is guaranteed
(“nesssary”) to be true when information wall τ is present.

Let us consider now the case, see Figure 4 (right), when
the information wall only separates Tui Li from the other
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two agents. In this case, Luo Ji might communicate with Zhi
Shi and learn that Zhi Shi is also discontent. Then, Luo Ji
will conclude that action 1 is safe and he might start the
revolution by questioning the government. In other words,
information wall defined by partition τ2 does not guarantee
that the revolution will not happen:

¬Nτ2(“no revolution happened”).

Another example of information walls is a common busi-
ness practice2 to either prohibit or to discourage discussions
of salaries at the workplace (Hayes 2017). The goal of this
practice is to discourage employees from negotiating for
higher salary.

In this paper we study the interplay between modalities
Hσa , Nσ , and the individual knowledge modality Ka.

Related Literature
This work combines two previously independent lines of re-
search: study of information flow for a given communication
network topology and the study of agents’ and their coali-
tions’ strategic abilities.

Logics of Information Flow
In the existing literature, restrictions on the information ex-
change between agents are usually imposed by specifying a
graph of the communication channels between the agents.

Pacuit and Parikh proposed a logical system combining
knowledge modality with a communication modality over
edges of a given graph (2004; 2007). They do not prove com-
pleteness of their system. More and Naumov (2011b; 2011a)
gave a complete logical system for reasoning about Suther-
land’s nondeducibility relation (1986) between communica-
tion channels in a given graph and hypergraph. They treated
nondeducibility relation as an atomic proposition, not as a
modality. Donders, More, and Naumov did the same for di-
rected acyclic graphs (2011).

Kane and Naumov proposed a sound and complete epis-
temic logic for reasoning about information flow on a linear
graph (2013). Naumov and Tao generalized it to an arbitrary
graph (2017b).

The set of connected components of any undirected graph
defines a partition of the set of all agents into groups. The
agents in different groups are not able to communicate. In
this paper we represent restrictions on communication be-
tween agents through a partition rather than a graph. We do
this because the exact structure of communication channels
in each connected component is not significant for our work
and also because partitions allow us to state axioms of our
logical system in a more succinct and elegant form.

Logics of Strategic Abilities
Logics of coalition power were developed by Pauly, who
also proved the completeness of the basic logic of coali-
tion power (2001; 2002). Pauly’s approach has been widely
studied in the literature (Goranko 2001; van der Hoek

2This practice is illegal in the US under National Labor Rela-
tions Act of 1935.

and Wooldridge 2005; Borgo 2007; Sauro et al. 2006;
Ågotnes et al. 2010; Ågotnes, van der Hoek, and Wooldridge
2009; Belardinelli 2014). An alternative logical system
was proposed by More and Naumov (2012). Alur, Hen-
zinger, and Kupferman introduced Alternating-Time Tem-
poral Logic (ATL) that combines temporal and coali-
tion modalities (2002). Van der Hoek and Wooldridge
proposed to combine ATL with epistemic modality to
form Alternating-Time Temporal Epistemic Logic (2003).
Goranko and van Drimmelen gave a complete axiomatiza-
tion of ATL (2006). Decidability and model checking prob-
lems for ATL-like systems have also been widely stud-
ied (Aminof et al. 2016; Berthon et al. 2017; Berthon,
Maubert, and Murano 2017). Wang proposed a complete ax-
iomatization of “knowing how” as a binary modality (2015;
2018). An alternative approach to expressing the power to
achieve a goal in a temporal setting is the STIT logic (Bel-
nap and Perloff 1990; Horty and Belnap 1995; Horty
2001; Horty and Pacuit 2017; Olkhovikov and Wansing
2019). Broersen, Herzig, and Troquard have shown that the
coalition logic can be embedded into a variation of STIT
logic (2007). Another approach to reasoning about strate-
gies is Strategy Logic (Chatterjee, Henzinger, and Piterman
2010; Mogavero et al. 2014; Berthon et al. 2017; Aminof
et al. 2018) that introduces explicit quantifiers over strate-
gies.

Several modal logical systems that capture the interplay
between knowledge and know-how strategies have been pro-
posed. Ågotnes and Alechina introduced a complete axiom-
atization of an interplay between single-agent knowledge
and coalition know-how modalities to achieve a goal in one
step (2019). Naumov and Tao proposed a modal logic that
combines the distributed knowledge modality with the coali-
tion know-how modality to maintain a goal (2017a). Fervari,
Herzig, Li, and Wang developed a sound and complete logi-
cal system in a single-agent setting for know-how strategies
to achieve a goal in multiple steps rather than to maintain a
goal (2017). Naumov and Tao introduced a trimodal logical
system that describes an interplay between the (not know-
how) coalition strategic modality, the coalition know-how
modality, and the distributed knowledge modality (2018c).
They also proposed logical systems describing the properties
of know-how strategies for perfect recall setting (2018b), for
second-order know-how (2018a), and for know-how modal-
ity in a metric space (2019).

Our Contribution
The above papers on information flow deal with knowledge,
but not strategic abilities. The cited papers on strategic abil-
ities do not take into account constraints on communica-
tion between the agents. In this paper we propose a logical
system that considers strategic abilities and constraints on
agents’ behavior that rise from restrictions on the informa-
tion shared between agents.

Our main technical result is the completeness of the pro-
posed logical system. The proof of the completeness uses
two key ideas: σ-harmony and distributed key generation.
While σ-harmony is a variation of the technique from (Nau-
mov and Tao 2018c,a), distributed key generation is a novel
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technique that we propose. We are not aware of this tech-
nique being used in completeness proofs before although it
is well-known in cryptography (Pedersen 1991).

This paper is organized as follows. The next section de-
fines the syntax and the semantics of our logical system.
Then, we list and discuss its axioms and inference rules. The
soundness of these axioms is shown in the section Sound-
ness. Afterwards, we explain the key ideas behind the proof
of the completeness. Details of the completeness proof are
given in the appendix.

Syntax and Semantics
In this paper, we assume a fixed set of propositional vari-
ables and a setA of agents. A partition of setA is any family
of pairwise disjoint nonempty sets whose union is equal to
A. For any agent a ∈ A and any partition σ of setA, let [a]σ
be the unique set in partition σ that contains a. In Figure 4
(right), for instance, [Luo Ji]τ2 = {Luo Ji, Zhi Shi}.

By σ/a we mean a modification of partition σ in which
set [a]σ is replaced by two sets: {a} and [a]σ \{a}. If [a]σ =
{a}, then σ/a, by definition, is σ. For example,

τ2/Luo Ji = {{Luo Ji}, {Zhi Shi}, {Tui Li}} = τ1,

τ1/Luo Ji = τ1.

Definition 1. For any two partitions σ and τ of set A, let
σ � τ if [a]σ ⊆ [a]τ for each agent a ∈ A. If σ � τ , then
partition σ is “finer” than partition τ .

The language Φ of our logical system is defined by the
following grammar:

ϕ := p | ¬ϕ | ϕ→ ϕ | Kaϕ | Nσϕ | Hσaϕ,

where p is a propositional variable, a ∈ A is an agent, and σ
is a partition of the set of agents. We read Kaϕ as “agent a
knows ϕ”, Hσaϕ as “agent a knows a safe strategy to achieve
ϕ in the presence of the information walls defined by par-
tition σ”, and Nσϕ as “ϕ is unavoidable (necessary) in the
presence of the information walls defined by partition σ”.
We assume that conjunction ∧ and Boolean constant true >
are defined through → and ¬ in the standard way. For any
finite set of formulae Y , by ∧Y we mean the conjunction of
all formulae in Y . Formula ∧∅, by definition, is >.

We define semantics of our logical system in terms of
“games”. In the definition below, ∆A is the set of all func-
tions from set of agents A to domain of actions ∆. Such
functions will be called “action profiles”.
Definition 2. A game is a tuple

(W, {∼a}a∈A,∆, {Swa }w∈W
a∈A , `,M, π), where

1. W is a (possibly empty) set of “states”,
2. ∼a is an “indistinguishability” equivalence relation on

the set of states W , for each agent a ∈ A,
3. ∆ is a set called “domain of actions”,
4. Swa ⊆ ∆ is a set of “safe” actions for agent a ∈ A in

state w ∈W ,
5. ` ∈ Swa is a “default” action, which is safe for each agent
a ∈ A in each state w ∈W ,

6. M ⊆W ×∆A ×W is a “mechanism” relation,

7. π(p) ⊆W for each propositional variable p.

In our censorship example, set W includes “initial” states
CCC, CCD, . . . , DDD as well as different “outcome”
states corresponding to revolution and no revolution with
and without execution of agents. The outcome states are not
depicted in Figure 3. Indistinguishability relation on initial
states for agent Luo Ji is captured by dashed lines in Fig-
ure 3. The set of actions ∆ contains two elements 0 (remain
silent) and 1 (question the government). In Figure 3, each
“initial” state is labeled by the set of actions safe for agent
Luo Ji. Thus, for example, SDDCLuo Ji = {0, 1}. In our example,
action ` is 0 (remain silent). We stipulate the existence of a
default “safe” action in each state in order for each agent to
be able to have at least one “safe” action. Existence of such
safe action is important for the soundness of the Necessita-
tion inference rule for modality H.

Informally, (w, δ, u) ∈M means that the system can tran-
sition from state w to state u under action profile δ. For ex-
ample, (DDD, δ100, wrev) ∈ M because if in state DDD
Luo Ji questions the government (action 1) and Zhi Shi and
Tui Li remain silent (action 0), then the game can transi-
tion into the revolution state wrev. In general, a mechanism
is a relation, not a function. Thus, transitions might be non-
deterministic. If for some state w ∈W and some action pro-
file δ ∈ ∆A there is no state u such that (w, δ, u) ∈M , then
we say that system terminates in state w under action pro-
file δ. Note that unlike our examples, in general we do not
distinguish “initial” and “outcome” states. We assume that
after any transition the system might transition again using
a different action profile.

Recall from the introduction that KSwa denotes the set of
all actions that agent a knows to be safe for her in state w. In
the censorship example, KSDDCLuo Ji = KSDCCLuo Ji = {0}.
Definition 3. Let KSwa be the set of all actions s ∈ ∆ such
that s ∈ Sw′

a for each state w′ ∈W such that w ∼a w′.

Consider now an arbitrary partition σ of the set of all
agents. If agents in the same partition communicate, they
might learn that some additional actions are safe. By DSwσ
we denote the set of all action profiles δ such that, for each
agent a ∈ A, the set of agents [a]σ distributively knows that
action δ(a) is safe for a in state w. Informally, DSwσ is the
set of all action profiles δ about which each agent a ∈ A
might learn that action δ(a) is safe for her in state w if she
communicates with the other agents in the set [a]σ .
Definition 4. DSwσ consists of all action profiles δ ∈ ∆A

such that for each agent a ∈ A and each state w′ ∈ W , if
w ∼b w′ for each agent b ∈ [a]σ , then δ(a) ∈ Sw′

a .

For example, δ100 /∈ DSDDDτ1 , but δ100 ∈ DSDDDτ2 be-
cause under partition τ2 Luo Ji might learn that Zhi Shi is
discontent. Thus, Luo Ji might learn that it is safe for him to
question the government.
Lemma 1. If σ � τ , then DSwσ ⊆ DSwτ .

Next is the key definition of this paper. It gives formal
semantics of modalities K, N, and H.
Definition 5. For any state w ∈W and any formula ϕ ∈ Φ,
satisfiability relation w 
 ϕ is defined as follows
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1. w 
 p if w ∈ π(p),
2. w 
 ¬ϕ if w 1 ϕ,
3. w 
 ϕ→ ψ if w 1 ϕ or w 
 ψ,
4. w 
 Kaϕ if u 
 ϕ for each u ∈W such that w ∼a u,
5. w 
 Nσϕ when for each action profile δ ∈ DSwσ and

each state u ∈W , if (w, δ, u) ∈M , then u 
 ϕ,
6. w 
 Hσaϕ when there is an action s ∈ KSwa such that for

all states w′, u ∈ W and each action profile δ ∈ DSw′

σ/a,
if δ(a) = s , w ∼a w′, and (w′, δ, u) ∈M , then u 
 ϕ.

Informally, Nσϕ means that statement ϕ is true under any
action profile δ in which each agent a takes an action δ(a)
that she might learn is safe for her if she communicates with
the other agents in set [a]σ .

Formula Hσaϕ denotes that, in presence of the information
walls specified by partition σ, agent a knows a safe strategy
to achieve ϕ. In the introduction we used the example

HσAl-Qaeda(“flight 77 crashed into the Pentagon”).

Note that FBI might, but is not expected to volunteer any in-
formation to Al-Qaeda. Thus, item 6 of the above definition
requires the action s to be knowingly safe to agent a without
communication with other agents. Although partition σ, see
Figure 2, does not prevent Al-Qaeda and FBI from sharing
information, we allow for a strategy of Al-Qaeda to rely on
the fact that Al-Qaeda, while pursuing the strategy, will not
volunteer any information to FBI. Hence, FBI would need
to know that its actions are safe without relying on any in-
formation from Al-Qaeda. This is why item 6 in the above
definition requires δ ∈ DSw′

σ/a instead of δ ∈ DSw′

σ . Finally,
state w′ in item 6 is used to capture the fact that the desired
strategy for agent a not only exists, but is also known by
agent a. In other words, it is a know-how strategy.

Axioms
In additional to propositional tautologies in language Φ, our
logical system contains the following axioms:3

1. Truth: Kaϕ→ ϕ,
2. Negative Introspection: ¬Kaϕ→ Ka¬Kaϕ,
3. Distributivity: 2(ϕ→ ψ)→ (2ϕ→ 2ψ)

where 2 ∈ {Ka,Nσ},
4. Monotonicity: Nτϕ→ Nσϕ where σ � τ ,

Hτaϕ→ Hσaϕ where σ/a � τ/a,
5. Strategic Introspection: Hσaϕ→ KaH

σ
aϕ,

6. Known Necessity: KaNσ/a(ϕ→ ψ)→ (Hσaϕ→ Hσaψ).

The Truth, the Negative Introspection, and the Distributivity
axioms are well-known modal properties. The Monotonic-
ity axiom for modality N captures the fact that if something
is unavoidably true under communication walls imposed by
partition τ , then the same is also unavoidably true under
any partition σ that has additional information walls. Similar
property is true for modality H except that assumption σ � τ
is replaced with a weaker assumption σ/a � τ/a because

3Notations σ � τ and σ/a have been introduced in the begin-
ning of the previous section.

formal semantics of modality Hσa excludes communication
between agent a and the other agents in class [a]σ . The
Strategic Introspection axiom states that if an agent has a
know-how strategy, then she knows that she has a know-how
strategy. The Known Necessity axiom states that if agent a
knows that ϕ → ψ is unavoidable as long as agent a re-
mains silent and she also knows how to achieve ϕ, then she
knows how to achieve ψ. Formally, “agent a remains silent”
is captured by using partition σ/a instead of partition σ.

We write ` ϕ, and say that ϕ is a theorem of our logical
system, if formula ϕ is provable from the above axioms us-
ing the Modus Ponens, the three forms of the Necessitation,
and the Monotonicity inference rules:

ϕ,ϕ→ ψ

ψ

ϕ

Hσaϕ

ϕ

Kaϕ

ϕ

Nσϕ

ϕ→ ψ

Hσaϕ→ Hσaψ
.

In addition to unary relation ` ϕ, we also consider binary
relation X ` ϕ which is true if formula ϕ is provable from
the theorems of our logical system and the set of additional
axiomsX using only the Modus Ponens inference rule. Note
that ∅ ` ϕ is equivalent to ` ϕ.

Soundness
In this section, we show the soundness of our logical system.
Soundness of the Truth, the Negative Introspection, and the
Distributivity axioms is standard. Below we prove sound-
ness of each of the remaining axioms as a separate lemma.
Lemma 2. If σ � τ and w 
 Nτϕ, then w 
 Nσϕ.

Proof. Consider any action profile δ ∈ DSwσ and any state
u ∈ W such that (w, δ, u) ∈ M . By item 5 of Definition 5,
it suffices to show u 
 ϕ. Indeed, the assumption δ ∈ DSwσ
and the assumption σ � τ of the lemma imply δ ∈ DSwτ by
Lemma 1. Hence, u 
 ϕ by the assumption w 
 Nσϕ, item
5 of Definition 5, and the assumption (w, δ, u) ∈M .

Lemma 3. If σ/a � τ/a and w 
 Hτaϕ, then w 
 Hσaϕ.

Proof. By the assumption w 
 Hτaϕ of the lemma and item
6 of Definition 5, there is an action s ∈ KSwa such that for
all states w′, u ∈ W and each action profile δ ∈ DSw′

τ/a, if
δ(a) = s , w ∼a w′, and (w′, δ, u) ∈M , then u 
 ϕ.

Consider any states w′, u ∈W and any action profile δ ∈
DSw

′

σ/a such that δ(a) = s, w ∼a w′, and (w′, δ, u) ∈ M .
By item 6 of Definition 5, it suffices to show that u 
 ϕ.

Notice that the assumption δ ∈ DSw′

σ/a and the assumption

σ/a � τ/a of the lemma imply δ ∈ DSw
′

τ/a by Lemma 1.
Therefore, u 
 ϕ by the choice of action s using the as-
sumptions δ(a) = s, w ∼a w′, and (w′, δ, u) ∈M .

Lemma 4. If w 
 Hσaϕ, then w 
 KaH
σ
aϕ.

Proof. Consider any state v ∈W such thatw ∼a v. By item
4 of Definition 5, it suffices to show that v 
 Hσaϕ.

By item 6 of Definition 5, the assumption w 
 Hσaϕ of
the lemma implies that there is an action s ∈ KSwa such that
for all states w′, u ∈ W and each action profile δ ∈ DSw′

σ/a,
if δ(a) = s, w ∼a w′, and (w′, δ, u) ∈M , then u 
 ϕ.
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Then, by the assumption w ∼a v, for all states w′, u ∈W
and each action profile δ ∈ DSw′

σ/a, if δ(a) = s, v ∼a w′,
and (w′, δ, u) ∈ M , then u 
 ϕ. Therefore, v 
 Hσaϕ by
item 6 of Definition 5.

Lemma 5. If w 
 KaN
σ/a(ϕ → ψ) and w 
 Hσaϕ, then

w 
 Hσaψ.

Proof. By item 6 of Definition 5, the assumption w 
 Hσaϕ
implies that there is an action s ∈ KSwa such that for all
states w′, u ∈ W and each action profile δ ∈ DSw

′

σ/a, if
δ(a) = s , w ∼a w′, and (w′, δ, u) ∈M , then u 
 ϕ.

Consider any two states w′, u ∈W and any action profile
δ ∈ DSw′

σ/a where δ(a) = s , w ∼a w′, and (w′, δ, u) ∈ M .
By item 6 of Definition 5, it suffices to show that u 
 ψ.
Indeed, by item 4 of Definition 5, the assumption w ∼a w′

and the assumption of the lemma w 
 KaN
σ/a(ϕ → ψ)

imply that w′ 
 Nσ/a(ϕ → ψ). Hence, u 
 ϕ → ψ by
item 5 of Definition 5 and the assumptions δ ∈ DSw′

σ/a and
(w, δ, u) ∈M .

At the same time, u 
 ϕ by the choice of action s and
because δ(a) = s, w ∼a w′, and (w′, δ, u) ∈M . Therefore,
u 
 ψ by item 3 of Definition 5.

Key Ideas behind the Proof of the
Completeness

Distributed Key Generation
The standard proof of completeness for the multiagent ver-
sion of epistemic logic S5 defines the states of the canoni-
cal model as maximal consistent sets of formulae. Two such
states are a-indistinguishable if they contain the same Ka-
formulae. This construction does not work in our case be-
cause we allow formulae that simultaneously use modality
Hσa for different partitions σ. Indeed, recall agents Luo Ji,
Zhi Shi, and Tui Li from one of the introductory examples.
Consider any maximal consistent set of formulaew that con-
tains exactly the same KZhi Shi- and KLuo Ji-formulae. In other
words, for any formula ϕ ∈ Φ,

KLuo Jiϕ ∈ w iff KZhi Shiϕ ∈ w.

If the indistinguishability relation is defined as in the stan-
dard construction, the equivalence classes of state w with
respect to relation ∼Luo Ji and relation ∼Zhi Shi would be the
same. Thus, if the canonical model is defined in the standard
way, then agents Luo Ji and Zhi Shi will know exactly the
same in state w.

Next, suppose that set w contains formulae Hτ1Tui Liϕ and
¬Hτ2Tui Liϕ for some formula ϕ ∈ Φ, were partitions τ1 and
τ2 are specified in Figure 4. For the reader’s convenience,
we reproduce this figure here as Figure 5. The key step in
the standard proof of the completeness is the “truth” (or “in-
duction”) lemma that states that a formula belongs to set w
if and only if it is satisfied in state w. In our case, this lemma
would imply that w 
 Hτ1Tui Liϕ and w 
 ¬Hτ2Tui Liϕ.

Statements w 
 Hτ1Tui Liϕ and w 
 ¬Hτ2Tui Liϕ mean that
agent Tui Li has a know-how strategy to achieve ϕ when
the wall between Luo Ji and Zhi Shi is present and does

Tui Li

Luo Ji

Zhi Shi

Tui Li

Luo Ji

Zhi Shi

Figure 5: Partitions τ1 (left) and τ2 (right).

not have such a strategy otherwise. Informally, this should
happen because, in the absence of the wall, information can
freely travel between Luo Ji and Zhi Shi and thus, they both
have larger sets of knowingly safe actions. If they use strate-
gies from these larger sets, then Tui Li’s strategy might no
longer work. However, as we have seen above, if the stan-
dard construction is used to build the canonical model, then
Luo Ji and Zhi Shi have exactly the same knowledge and,
thus, there is absolutely nothing new that they can learn by
sharing information with each other!

Zh
i S

hi

Zh
i S

hi

Tui Li

Tui Li

Tui Li

Zh
i S

hi

Zh
i S

hi

Luo Ji

Luo Ji

Luo Ji

X,1,1,0

X,1,0,0

X,0,1,0

X,0,0,0

X,0,1,1

X,0,0,1

X,1,1,1

X,1,0,1

Luo Ji

Tui Li

Figure 6: States of the canonical model for a single maximal
consistent set X .

To overcome this issue, we need Luo Ji and Zhi Shi to
possess some additional knowledge that they do not have
under the standard canonical model construction. We add
this knowledge to our canonical model using the distributed
key generation. This is a cryptographic technique consist-
ing in independent generation of random keys by several
agents (Pedersen 1991). In our running example, each state
of the canonical model will be a quadruple (X, l, z, t), where
X is a maximal consistent set of formulae and l, z, t are in-
teger “keys” of Luo Ji, Zhi Shi, and Tui Li respectively. We
assume that each agent knows her own key, but not the keys
of the other agents. For the same maximal consistent set X ,
such states and the three indistinguishability relations be-
tween them are partially depicted in Figure 6. The complete
infinite set of states consists of all quadruples (X, l, z, t) for
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all possible maximal consistent set X and all integer values
l, z, and t. Incorporation of the distributed key generation
into epistemic model construction is a new idea that we in-
troduce in this paper.

Harmony
As mentioned earlier, the proofs of completeness usually use
a “truth” or “induction” lemma that states that ϕ ∈ w if and
only if w 
 ϕ for any formula ϕ and any state w. It claims
that ϕ ∈ Xw iff w 
 ϕ, where Xw is the first component of
state w, as discussed in the previous section.

Consider now the case when formula ϕ has the form Kaψ.
If Kaψ /∈ Xw, then, by item 4 of Definition 5, the canonical
model construction must guarantee that w 1 Kaψ. As usual,
we achieve this by using Lindenbaum’s lemma to construct
a new state u such that w ∼a u and u 1 ψ.

The situation is more complicated if formula ϕ has the
form Hσaψ. In this case, the canonical model must contain
two different states, w′ and u, satisfying conditions stated in
item 6 of Definition 5. An important step in creating these
two states is the construction of the corresponding maximal
consistent sets Xw′ and Xu. It turns out that these two sets
cannot be created consecutively.

Naumov and Tao (2018c; 2018a) proposed a technique
called harmony for simultaneous construction of two max-
imal consistent sets. Their technique cannot be directly ap-
plied in our setting because the original harmony was not
designed to deal with information walls in the set of agents.
In this paper we propose a variation of their technique that
we call σ-harmony.

The technique consists of identifying a certain invariant
condition on a pair of sets of formulae, proving that an “ini-
tial” pair of sets satisfies this condition, and showing that
the sets could be expanded while preserving the invariant.
We call the invariant condition σ-harmony, just like the tech-
nique itself. The expansion step is repeated infinitely many
times to achieve another condition, that we call complete σ-
harmony. As a final step, Lindenbaum’s lemma is used to
“top-off” the two sets in complete σ-harmony to maximal
consistent sets.

Due to space constraints, the full proof of the following
strong completeness theorem is in the full version of this
paper.

Theorem 1. If Y 0 ϕ, then there is a state w of a game such
that w 
 χ for each formula χ ∈ Y and w 1 ϕ.

Conclusion
The contribution of this paper is two-fold. First, we intro-
duced a new class of strategies that rely on presence of “in-
formation walls” between players. Second, we proposed a
sound and complete modal logic that describes the proper-
ties of such strategies in games with imperfect information.

Perhaps the most natural question about this work is if the
current results could be generalized to group knowledge and
coalition know-how strategies. One of the challenges in this
direction is finding an intuitively acceptable interpretation of
group knowledge in the presence of information walls. Is it
sensible to reason about a coalition distributively knowing a

strategy if the coalition members are on different sides of a
wall and explicitly banned from communicating with each
other? One might consider only coalitions C located in the
same set of a partition, but this makes the syntax confusing
given that we study modalities HσC for different partitions σ.

We think that a more interesting direction is to study one-
way information walls that only prevent diffusion of the in-
formation in one of two directions. In real-world scenarios,
for example, certain group of people might be banned from
spreading information to outsiders, but not from listening to
them.

Another possible extension of this work is to consider
walls that do not block information diffusion completely, but
impose cost on it. In such a setting, for instance, one can
study modality Hma ϕ that stands for “agent a knows a strat-
egy to achieve ϕ as long as the total cost of communication
by all agents is no more than m. In a similar way, one can
introduce degrees of “safeness”.

Finally, another interesting direction for future research is
studying group actions that require common knowledge of
safeness. For instance, in the famous example with two gen-
erals, the generals are not able start a joint attack on a com-
mon enemy because they cannot establish common knowl-
edge of the time to attack. The two general setting is very
similar to the setting of this paper if the notion of distribu-
tively know safe action from Definition 4 is replaced with
commonly known safe action. In this modified setting we
could, for example, express the fact that the common enemy
has a strategy to win the battle with the two generals because
they will never be able to start a coordinated counterattack.
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