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Abstract
Knowledge Graph Question Answering (KGQA) involves re-
trieving facts from a Knowledge Graph (KG) using natural
language queries. A KG is a curated set of facts consisting
of entities linked by relations. Certain facts include also tem-
poral information forming a Temporal KG (TKG). Although
many natural questions involve explicit or implicit time con-
straints, question answering (QA) over TKGs has been a rel-
atively unexplored area. Existing solutions are mainly de-
signed for simple temporal questions that can be answered
directly by a single TKG fact. This paper puts forth a compre-
hensive embedding-based framework for answering complex
questions over TKGs. Our method, called temporal question
reasoning (TempoQR), exploits TKG embeddings to ground
the question to the specific entities and time scope it refers
to. It does so by augmenting the question embeddings with
context, entity and time-aware information via three special-
ized modules. The first computes a textual representation
of a given question, the second combines it with the en-
tity embeddings for entities involved in the question, and the
third generates question-specific time embeddings. Finally, a
transformer-based encoder learns to fuse the generated tem-
poral information with the question representation, which is
used for answer predictions. Extensive experiments show that
TempoQR improves accuracy by 25–45 percentage points on
complex temporal questions over state-of-the-art approaches
and it generalizes better to unseen question types.

Introduction
A knowledge graph (KG) is a set of facts that are known
to be true in the world or in a specific domain. The facts
are usually represented as tuples (subject, relation, object),
where the subject and object correspond to KG entities. Cer-
tain KGs include additional attributes such as temporal in-
formation forming a temporal knowledge graph (TKG). In
TKGs, each fact is associated with a timestamp or time in-
terval, and is represented as (subject, relation, object, times-
tamp) or (subject, relation, object, [start time, end time]),
respectively.
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Knowledge Graph Question Answering (KGQA) at-
tempts to answer a natural question using the KG as a knowl-
edge base (Lan et al. 2021). Natural questions often in-
clude temporal constraints, e.g., “Which movie won the Best
Picture in 1973?” and to aid temporal question answering,
TKGs are utilized. The first step is to identify and link the
entities, relations and timestamps of the questions to the cor-
responding ones in the TKG, e.g., “Which movie won the
Best Picture in 1973?” to (Best Picture, WonBy, ?, 1973).
This problem is known as entity linking (Kolitsas, Ganea,
and Hofmann 2018).

Recently, (Saxena, Chakrabarti, and Talukdar 2021) pro-
posed CronKGQA that solves QA over TKGs by leverag-
ing TKG embedding methods, e.g., TComplEx (Lacroix,
Obozinski, and Usunier 2020). TKG embedding methods
learn low-dimensional embeddings for the entities, rela-
tions and timestamps by minimizing a link prediction ob-
jective attuned at completing facts of the form (subject,
relation, ?, timestamps) and (subject, relation, object, ?).
CronKGQA answers the mapped question (Best Picture,
WonBy, ?, 1973) as a link prediction task over the TKG.
CronKGQA performs very well on simple questions that are
answerable by a single TKG fact (Hits@1 of 0.988). How-
ever, on more complex questions, that involve additional
temporal constraints and require information from multiple
TKG facts (e.g., “Which movie won the Best Picture after
The Godfather?”), CronKGQA performs poorly (Hits@1 of
0.392).

To effectively handle both simple and complex temporal
questions, we design a new method called temporal ques-
tion reasoning (TempoQR). TempoQR exploits TKG em-
beddings to ground the question to the specific entities and
time scope the question refers to. To illustrate the key idea
of our approach, consider the question “Which movie won
the Best Picture after The Godfather?” which involves the
TKG entities ‘Best Picture’ and ‘The Godfather’. The high-
level approach of TempoQR is shown in Figure 1. The first
reasoning step is to understand the context of the ques-
tion (context-aware step). The context of the question here
involves a movie (“Which movie...”). The next step is to
ground the question to the entities it refers to (entity-aware
step). The question refers to a movie that has won the Best
Picture. Finally, the question needs to be grounded with cer-
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(b) Context-aware question representation.
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(c) Entity-aware question representation.
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(d) Time-aware question representation.

Figure 1: (a) The underlying TKG for the question “Which movie won the Best Picture after The Godfather?”; Answer: ‘The
Sting’. (b) The context-aware question representation (dashed arrows) scores higher (numbers in parentheses) movie entities.
(c) The representation is grounded to the entity ‘Best Picture’ and gives higher scores to movies that won the Best Picture. (d)
The representation is grounded to the correct time scope (after year 1972) and gives higher scores to the movies that won the
Best Picture after 1972, i.e., ‘The Sting’.

tain temporal constraints (time-aware step). The movie won
the Best Picture after The Godfather, i.e., after 1972.

TempoQR performs the above reasoning steps using three
specialized modules. First, it uses the question’s text to gen-
erate a representation of the question by employing a lan-
guage model (LM). Next, it fuses the text-derived represen-
tations with KG entity representations to ground the ques-
tion to the entities it refers to. Third, it extracts from the TKG
question-specific temporal information to enhance the ques-
tion’s representation with two complementary approaches.
The first retrieves the relevant information from the underly-
ing TKG based on the annotated entities of the question. The
second infers temporal information by solving a link predic-
tion problem obviating the need to access the TKG. A ded-
icated information fusion layer combines the context, entity
and time-aware information together to a final question rep-
resentation. We empirically show that TempoQR is able to
model temporal constraints of the question and outperforms
other time-unaware methods for complex questions (25–45
percentage points improvement at Hits@1). Our contribu-
tions are summarized below:

• We solve complex temporal question answering by learn-
ing context, entity and time-aware question representa-
tions.

• We develop two different approaches to recover question-
specific temporal information.

• We achieve state-of-the-art performance on temporal
complex questions and provide additional strong base-
lines.

Related Work
KGQA approaches typically leverage KG pre-trained em-
beddings (Bordes et al. 2013; Yang et al. 2014; Trouillon
et al. 2017) to answer the questions (Saxena, Tripathi, and
Talukdar 2020). Such approaches perform well for simple
questions that can be easily mapped to incomplete facts in
the KG but are challenged by complex questions.

Addressing the limitations of the aforementioned ap-
proaches, (Miller et al. 2016; Xu et al. 2019; Zhou, Huang,
and Zhu 2018; Qiu et al. 2020; He et al. 2021) enhance the
question representation to address complex questions. Such
methods employ logical reasoning (Miller et al. 2016; Xu
et al. 2019; Zhou, Huang, and Zhu 2018; Qiu et al. 2020;
He et al. 2021) or leverage available side information in the
form of text documents (Sun et al. 2018; Sun, Bedrax-Weiss,
and Cohen 2019; Xiong et al. 2019; Han, Cheng, and Wang
2020). Nevertheless, these approaches are not suited for han-
dling temporal constraints.

TempQuestions (Jia et al. 2018a) was introduced to
benchmark the reasoning capabilities of existing with tem-
poral constraints. Recently, additional benchmarks have
been developed (Jin et al. 2021; Souza Costa, Gottschalk,
and Demidova 2020; Chen, Wang, and Wang 2021; Neelam
et al. 2021) that model temporal information in various do-
mains (including both KG and text data). (Jia et al. 2018b)
and (Jia et al. 2021) are methods that tackle the tempo-
ral QA problem over KGs. However, they mostly employ
hand crafted rules to handle temporal information which is
not flexible for incomplete KGs. By leveraging TKG em-
beddings, CronKGQA (Saxena, Chakrabarti, and Talukdar
2021) provides a learnable reasoning process for temporal
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KGQA, which does not rely on hand-crafted rules. Although
CronKGQA performs extremely well for answering simple
questions, it is challenged by complex questions that require
inference of certain temporal constraints. Our work is moti-
vated by this limitation.

Background
A TKG K := (E ,R, T ,F) contains a set of entities E , a set
of relations R, a set of timestamps T , and a set of facts F .
Each fact (s, r, o, τ ) ∈ F is a tuple where s, o ∈ E denote
the subject and object entities, respectively, r ∈ R denotes
the relation between them, and τ ∈ T is the timestamp as-
sociated with that relation.

TKG Embeddings
Given a TKG K = (E ,R, T ,F), TKG embedding meth-
ods typically learn D-dimensional vectors eε,vr, tτ ∈ RD
for each ε ∈ E , r ∈ R and τ ∈ T . These embedding vec-
tors are learned such that each valid fact (s, r, o, τ ) ∈ F
is scored higher than an invalid fact (s′, r′, o′, τ ′) /∈ F
through a scoring function φ(·), i.e., φ(es,vr, eo, tτ ) >
φ(es′ ,vr′ , eo′ , tτ ′). Please see (Kazemi et al. 2020) for no-
table TKG embedding methods.

TComplEx (Lacroix, Obozinski, and Usunier 2020) is an
extension of the ComplEx (Trouillon et al. 2017) KG em-
bedding method designed for TKGs. TComplEx represents
the embeddings as complex vectors in CD/2 and the scoring
function φ(·) is given by

φ(es,vr, ēo, tτ ) = Re(〈es,vr � tτ , ēo〉) (1)

where Re(·) denotes the real part, (̄·) is the complex con-
jugate of the embedding vector and � is the element-wise
product.

TComplEx employs additional regularizers to improve
the quality of the learned embeddings such as enforc-
ing close timestamps to have similar embeddings (close-
ness of time). The embedding learning procedure makes
TComplEx a suitable method for inferring missing facts
such as (s, r, ?, t) and (s, r, o, ?) over an incomplete TKG.
Throughout the manuscript, we generate TKG embeddings
via TComplEx due to its aforementioned benefits.

Type Example Questions

Simple Time When did {Stoke}s have
{Tom Holford}o in their team

Simple Entity Which movie won the
{Best Picture}s in {1973}τ

Before/After Which movie won the {Best Picture}s
after {The Godfather}o

First/Last Name the award that
{Sydney Chapman}s first received

Time Join Name a teammate of
{Thierry Henry}s in {Arsenal}o

Table 1: Different types of temporal questions. {·}s, {·}o,
and {·}τ correspond to annotated entities/times.

QA Over TKGs
Given a TKG K = (E ,R, T ,F) and a natural language
question q, the task of QA over a TKG (TKGQA) (Saxena,
Chakrabarti, and Talukdar 2021) is to extract an entity ε′ ∈ E
or a timestamp τ ′ ∈ T that correctly answers the question q.
The entities ε ∈ E and timestamps τ ∈ T of the question are
annotated, i.e., linked to the TKG. Please refer to Table 1 for
examples of such questions.

Note that a question, e.g., “Which movie won the Best Pic-
ture in 1973”, could be answerable by a single TKG fact,
i.e., (Best Picture, WonBy, The Sting, 1973). Thus, a com-
mon solution for TKGQA is to infer the relation ‘WonBy’
by the question’s context and solve the problem as link pre-
diction, i.e., (Best Picture, q, ?, 1973).

CronKGQA (Saxena, Chakrabarti, and Talukdar 2021) is
a typical method that solves TKGQA as a link prediction
task. The idea is to use the question as a ‘virtual relation’ in
the scoring function φ(·).

Suppose s and τ are respectively the annotated subject
and timestamp in a given question (e.g., ‘Best Picture’ and
‘1973’) and o∗ is the correct answer (e.g., ‘The Sting’).
CronKGQA learns a question representation q such that
φ(es,q, eo∗ , tτ ) > φ(es,q, eo′ , tτ ) for all incorrect enti-
ties o′ 6= o∗, where es, eo∗ , eo′ , and tτ are pre-trained TKG
embeddings, e.g., with TComplEx. Note that if either s or τ
is not present in the question, a random one from the TKG
(dummy) is used. The methodology is modified accordingly
when the answer is a timestamp τ∗ by giving the maximum
score to φ(es,q, eo, tτ∗), where τ∗ is the correct timestamp
and s, o are the annotated subject and object.

CronKGQA is designed for simple temporal questions
that can be transformed to link predictions over TKGs.
This limits the applicability of CronKGQA to more com-
plex questions that involve additional temporal constraints,
e.g., ‘Before/After’, ‘First/Last’ and ‘Time Join’ questions
of Table 1. This is confirmed by the experiments pre-
sented in (Saxena, Chakrabarti, and Talukdar 2021), where
CronKGQA achieves a 65% performance improvement over
non-TKG embedding methods for simple questions, but
only a 15% improvement for complex questions as the ones
here.

Method: TempoQR
TempoQR leverages pre-trained TKG embeddings of enti-
ties and timestamps that encode their temporal properties,
i.e., TComplEx. Although TKG embeddings are designed
for simple questions, our method overcomes this shortcom-
ing by incorporating additional temporal information in the
question representation q to better handle constraints. We
design TempoQR by following the human reasoning steps
to answer temporal questions; see also Figure 1. In the fol-
lowing subsections, we describe in detail the architecture of
TempoQR.

Context-aware Question Representation.
Given a question’s text, we use pre-trained LMs, e.g.,
BERT (Devlin et al. 2019), to encode the question’s context
into an embedding vector. The [CLS] token is inserted into
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the question, e.g., “[CLS] Which movie won the Best Picture
after The Godfather?”, which is transformed to a tokenized
vector q0. Then, we compute a representation for each token
as

QB = WBBERT(q0) , (2)

where QB := [qBCLS ,qB1 , . . . ,qBN
] is a D × N embed-

ding matrix where N is the number of tokens and D are
the dimensions of the TKG embeddings. WB is a D ×DB

learnable projection matrix where DB is the output the di-
mension of the LM (DB = 768 for BERT(·)).

Entity-aware Question Representation.
We utilize the TKG entity embeddings to ground the ques-
tion to the specific entities it involves. Inspired by other ap-
proaches (Zhang et al. 2019; Févry et al. 2020) that compute
entity-aware text representations, we replace the token em-
beddings of the entities and timestamps of QB with their
pre-trained TKG embeddings. Specifically, the ith column
of the entity-aware token embedding matrix QE is com-
puted as

qEi
=


WEeε, if token i is linked to an entity ε,
WEtτ , if token i is linked to a timestamp τ .
qBi

, otherwise,
(3)

where WE is a D×D learnable projection. As a result, the
token embedding matrix QE := [qECLS ,qE1 , . . . ,qEN

] in-
corporates additional entity information from the TKG. This
enriches the question with entity information from the TKG.

Time-aware Question Representation.
A question may refer to a specific time scope which the
answer needs to be associated, e.g., “after The Godfa-
ther” refers to “after 1972”. We develop two alternatives
that recover such temporal information. The first approach
retrieves the question-specific time scope from the TKG
based on the annotated entities. We call this approach hard-
supervised, since it accesses available facts in the TKG. The
second approach infers question-specific temporal informa-
tion based on the question’s representation. We term this ap-
proach soft-supervised, since it may recover missing tempo-
ral facts by operating in the embedding space.

Hard Supervision: We utilize the annotated entities of
the question to retrieve the relative time scope from the un-
derlying TKG. For the example question “Which movie won
the Best Picture after The Godfather?”, the entities ‘Best
Picture’ and ‘The Godfather’ appear together in a TKG fact
with timestamp 1972. Hence, the time embedding of 1972
can be utilized to further enhance the question representa-
tion.

First, we identify all facts that involve the annotated enti-
ties of the question. These facts involve specific timestamps
which we collect together (retrieved timestamps). In some
cases, we may retrieve multiple timestamps, but we only
keep the start and end timestamps after we sort them (since
we aim at recovering a question-specific time scope). We
recover two temporal embeddings t1 and t2 that correspond

to the TKG embedding for start and end timestamps, respec-
tively. We term this method TempoQR-Hard.

Soft Supervision: Instead of retrieving timestamps from
the TKG, we may directly obtain time embeddings by utiliz-
ing φ to infer missing temporal information. We generate a
time-aware question embedding qtime as

qtime = WTqBCLS , (4)

where qBCLS corresponds to the [CLS] token embedding of
QB and WT is a D ×DB learnable projection matrix. The
time-aware qtime is used as a ‘virtual relation’ in the scoring
function φ. TComplEx assigns a score to a timestamp τ that
potentially completes a fact (s, r, o, ?) as〈

Re(es)� Re(uro)− Im(es)� Im(uro),Re(tτ )
〉
+〈

Re(es)� Im(uro) + Im(es)� Re(uro), Im(tτ )
〉
,

(5)

where uro = vr � ēo. Thus, the real Re(·) and imaginary
Im(·) part of the time embedding tτ can be approximated by

Re(tτ ) ≈ Re(es)� Re(uro)− Im(es)� Im(uro),

Im(tτ ) ≈ Re(es)� Im(uro) + Im(es)� Re(uro).
(6)

We follow the same computations to infer the real and imag-
inary part of the desired (soft-supervised) time embeddings.
Here, we treat qtime as a relation embedding vr and the
annotated entities as subject s and object o interchange-
ably to generate t1 and t2, respectively. If either s or o
is not present, we use dummy ones. We term this method
TempoQR-Soft.

Note here that the difference of hard and soft supervision
relies on the available facts given during QA, i.e., access to
the TKG. Moreover, soft-supervision may generalize better
since it infers the temporal information in the embedding
space. In Section (), we demonstrate the benefits and limita-
tions of each approach.

Fusing Temporal Information: After obtaining time em-
beddings t1 and t2, we leverage them to enhance the ques-
tion representation with temporal information. Specifically,
we compute the ith collumn of the time-aware token embed-
ding matrix QT as

qTi
=

{
qEi

, if token i is not an entity,
qEi

+ t1 + t2, if token i is an entity.
(7)

with QT := [qTCLS ,qT1
, . . . ,qTN

]. Our intuition for sum-
ming the entity and time embeddings together follows the
motivation of how transformer-based LMs, e.g., BERT use
positional embedding for tokens (Vaswani et al. 2017).
Here, time embeddings can be seen as entity positions in
the time dimension. QT contains text, entity and time-aware
information. Next, we propose an information fusion layer
to combine this information altogether into a single question
representation q.

Answer Prediction
Following (Févry et al. 2020), we use an information fu-
sion layer that consists of a dedicated learnable encoder f(·)
which consists of l Transformer encoding layers (Vaswani
et al. 2017). This encoder allows the question’s tokens to
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attend to each other, which fuses context, entity and time-
aware information together. The final token embedding ma-
trix Q is calculated as

Q = f(QT ), (8)

where the columns of the embedding matrix correspond to
the initial tokens Q := [qCLS,q1, . . . ,qN ]. As a final ques-
tion representation, we use the embedding of the [CLS] to-
ken q := qCLS.

The final score of an entity ε ∈ E being the answer is
given by

max
(
φ(es,PEq, eε, tτ ),

φ(eo,PEq, eε, tτ )
)
,

(9)

where s, o and τ are the annotated subject, object and times-
tamp, respectively, and PE is a D × D learnable matrix
specific for entity predictions. Here, we treat the annotated
subject and object interchangeably, and the max(·) function
ensures that we ignore the scores when s or o is a dummy
entity.

In addition, the final score of an timestamp τ ∈ T being
the answer is given by

φ(es,PTq, eo, tτ ), (10)

where s, o are annotated entities in the question and PT
is a D × D learnable matrix specific for time predictions.
During training, the entity and time scores are concatenated
and transformed to probabilities by a softmax function. The
model’s parameters are updated to assign higher probabil-
ities to the correct answers by minimizing a cross entropy
loss.

Experimental Setting
CronQuestions (Saxena, Chakrabarti, and Talukdar 2021)
is a temporal QA benchmark based on the Wikidata TKG
proposed in (Lacroix, Obozinski, and Usunier 2020). The
WikiData TKG consists of 125k entities, 203 relations, 1.7k
timestamps (timestamps correspond to years), and 328k
facts. In this TKG, facts are represented as (subject, rela-
tion, object, [start time, end time]). CronQuestions consists
of 410k unique question-answer pairs, 350k of which are for
training and 30k for validation and for testing. Moreover,
the entities and times present in the questions are annotated.
CronQuestions includes both simple and complex temporal
questions ( Table 1 for examples).

To illustrate how methods perform under incomplete
TKGs, we provide a setting where the given WikiData TKG
is corrupted at the time dimension. Specifically, for a fact
(subject, relation, object, [start time, end time]) ∈ F , we
remove the associated timestamps with probability p. If the
timestamps are removed, the fact becomes (subject, relation,
object, no time). Here, ‘no time’ denotes that there is no
timestamp associated with (subject, relation, object) and we
treat it as a special timestamp.

We used the corrupted TKG to perform two experiments.
In the first experiment, we substitute the original TKG with
the corrupted one during the QA task. This affects only
TempoQR-Hard since this is the only method that uses a

TKG during QA. The second configuration is to substitute
the original TKG with the corrupted one throughout the pro-
cess. This means that TComplEx embeddings are generated
on a corrupted TKG and, thus, may not encode important
temporal information. All TKGQA embedding-based meth-
ods are affected by this configuration.

Although CronQuestions includes different question
types, we manually create additional complex types. The
idea is to evaluate how different methods perform on com-
plex questions that were unseen during training but in-
clude the same keywords (and temporal constraints) with
the training questions. We create (i) ‘before & after’ ques-
tions that include both ‘before’ and ‘after’ constraints and
(ii) ‘before/after & first/last’ questions that include both ‘be-
fore/after’ and ‘first/last’ constraints. We describe the details
of generating these QA pairs in the Appendix.

Model Configuration
We learn TKG embeddings with the TComplEx method,
where we set their dimensions D = 512. During, QA the
pre-trained LM’s parameters and the TKG embeddings are
not updated. We set the number of transformer layers of the
encoder f(·) to l = 6 with 8 heads per layer. We also ob-
served the same performance when setting l = 3 with 4
heads per layer. The model’s parameters are updated with
Adam (Kingma and Ba 2014) with a learning rate of 0.0002.
The model is trained for 20 maximum epochs and the final
parameters are determined based on the best validation per-
formance. The model is implemented with Pytorch (Paszke
et al. 2019). For reproducibility, our code is available at:
https://github.com/cmavro/TempoQR.

Baseline Methods
BERT (Devlin et al. 2019) and RoBERTa (Liu et al. 2019)
are two well-established pre-trained LMs. To evaluate these
models, we generate their LM-based question embedding
and concatenate it with the annotated entity and time em-
beddings, followed by a learnable projection. The resulted
embedding is scored against all entities and timestamps via
dot-product.

Entity as Experts (EaE) (Févry et al. 2020) is an entity-
aware method similar to TempoQR. The key differences are
that EaE does not utilize a TKG embedding-based scoring
function for answer prediction and that it does not fuse ad-
ditional temporal information as in Section . As a baseline,
we experiment with EaE combined with TComplEx scoring
function. Since this baseline is similar to TempoQR without
the steps of Section (), we call it EntityQR.

CronKGQA is the TKGQA embedding based method de-
scribed in Section . EmbedKGQA (Saxena, Tripathi, and
Talukdar 2020) is similar to CronKGQA, but designed for
regular KGs. EmbedKGQA is implemented for TKGQA
as follows. Timestamps are ignored during pre-training and
random time embeddings are used during the QA task.
CronKGQA and EntityQR are extended to incorporate ad-
ditional temporal information by the algorithmic steps in
Section , which generate time embeddings t1 and t2 for
TempoQR. Recall that TempoQR generates t1 and t2 by
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Model
Hits@1 Hits@10

Overall Question Type Answer Type Overall Question Type Answer Type
Complex Simple Entity Time Complex Simple Entity Time

BERT 0.243 0.239 0.249 0.277 0.179 0.620 0.598 0.649 0.628 0.604
RoBERTa 0.225 0.217 0.237 0.251 0.177 0.585 0.542 0.644 0.583 0.591
EmbedKGQA 0.288 0.286 0.290 0.411 0.057 0.672 0.632 0.725 0.850 0.341
EaE 0.288 0.257 0.329 0.318 0.231 0.678 0.623 0.753 0.688 0.698
CronKGQA 0.647 0.392 0.987 0.699 0.549 0.884 0.802 0.992 0.898 0.857
EntityQR 0.745 0.562 0.990 0.831 0.585 0.944 0.906 0.993 0.962 0.910
TempoQR-Soft 0.799 0.655 0.990 0.876 0.653 0.957 0.930 0.993 0.972 0.929
TempoQR-Hard 0.918 0.864 0.990 0.926 0.903 0.978 0.967 0.993 0.980 0.974

Table 2: Comparison against other methods.
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Figure 2: Performance with corrupted TKGs: x-axis corresponds to the corruption probability p of a fact.

either accessing the TKG or by inferring them in the em-
bedding space. For CronKGQA and EntityQR, we generate
t1 and t2 in the same way, but we employ them directly to
the TComplEx scoring function as follows. We modify (9),
which scores an entity to be the answer, as

max
(
φ(es,PEq, eε, t1 + t2),

φ(eo,PEq, eε, t1 + t2)
)
,

(11)

to replace the embedding of a dummy timestamp tτ (if no
time is annotated in the question) with t1 + t2. Based on
how t1 and t2 are generated (hard or soft supervision), we
term the methods CronKGQA-Hard and EntityQR-Hard or
CronKGQA-Soft and EntityQR-Soft, respectively.

Results

In this section, we provide the experimental results under
different configurations. As a performance metric, we report
Hits@k, which is the accuracy of the top-k predictions.

Main Results

Table 2 shows the results of our method compared to other
baselines on CronQuestions. First, by comparing EntityQR
to CronKGQA, we see that grounding the question to the
entities it refers (entity-aware step) significantly helps for
answering complex questions. In this case, the absolute im-
provement for complex questions is 17% and 10% at Hits@1
and Hits@10, respectively. Furthermore, comparing Tem-
poQR to EntityQR, we see the benefit of adding temporal
information to the question (time-aware step). The abso-
lute improvement of TempoQR-Soft over EntityQR is 9%
at Hits@1 for complex questions, while the respective im-
provement of TempoQR-Hard is more than 30%. More-
over, TempoQR-Hard outperforms TempoQR-Soft by 25%
at Hits@1 when the answer is a time. This confirms that
TempoQR-Hard provides accurate temporal information by
retrieving it from the TKG, while TempoQR-Soft sometimes
cannot infer as accurate information from the embedding
space.

We also highlight that methods that score possible an-
swers with the TComplEx function (TempoQR, EntityQR
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Figure 3: Evaluation for unseen complex types during infer-
ence. x-axis corresponds to k of Hits@k.

and CronKGQA) answer 99% of the simple questions cor-
rectly. The other methods (BERT, RoBERTa, EmbedKGQA
and EaE) cannot answer correctly more the 35% (Hits@1)
and 76% (Hits@10). Similarly, BERT, RoBERTa, Embed-
KGQA and EaE have 35%-65% and 11%-40% worse overall
accuracy for Hits@1 and Hits@10, respectively, compared
to TempoQR, EntityQR and CronKGQA.

Complex Questions All
Before/ First/ Time
After Last Join

CronKGQA 0.256 0.371 0.511 0.647
EntityQR 0.540 0.493 0.833 0.745
CronKGQA-Soft 0.341 0.375 0.671 0.672
EntityQR-Soft 0.430 0.468 0.766 0.708
TempoQR-Soft 0.670 0.570 0.894 0.799
CronKGQA-Hard 0.379 0.445 0.942 0.728
EntityQR-Hard 0.442 0.470 0.955 0.748
TempoQR-Hard 0.714 0.853 0.978 0.918

Table 3: Hits@1 for different complex type questions.

Ablation Study
Table 3 shows how soft and hard supervision affect the
performance of various methods for different question
types. First, we see that both supervision approaches have
a positive effect on CronKGQA, where the performance
is improved by 2.5% and 6% over the original method
(CronKGQA-Soft and CronKGQA-Hard, respectively, com-
pared to CronKGQA). The same does not happen for En-
tityQR, where its performance drops (EntityQR-Soft and
EntityQR-Hard compared to EntityQR). This is an effect
of over-using TKG embeddings, since EntityQR-Soft and
EntityQR-Hard use this information multiple times for an-
swer prediction.

Moreover, TempoQR-Hard performs much better for
‘first/last’ questions compared to soft-supervision (27%
absolute improvement). Since TempoQR-Hard always re-
trieves the start and end timestamps of the question entities,
this provides more accurate temporal information to “When
was the first/last time...” questions. On the other hand, this
does not equally benefit ‘before/after’ questions; the im-
provement of hard-supervision over soft-supervision is only
3%. This indicates that both approaches handle such ques-
tions in a similar manner. Finally, TempoQR-Soft performs
8% worse in ‘time join’ questions compared to TempoQR-
Hard. This indicates that might be some room for improve-

ment for inferring more accurate time embeddings with soft-
supervision.

Robustness Over Corrupted TKGs
Figure 2a shows the results when the given TKG is corrupted
during the QA phase. TempoQR-Hard is the only method
that depends on the quality of the TKG during QA and is
greatly affected by a corrupted TKG. When a lot of facts
are corrupted (p = 0.8) it performs similar to EntityQR,
which does not use any additional temporal information. For
‘before/after’ questions, it performs worse than TempoQR-
Soft even when the facts are corrupted by a probability p =
0.2. Finally, TempoQR-Hard is more robust for ‘first/last’
and ‘time join’ questions, where it better handles the non-
corrupted timestamps of the facts.

Figure 2b shows the results when a corrupted TKG is
given for both TKG embedding and QA. We can see that
methods that rely on TKG embeddings (TempoQR-Hard,
TempoQR-Soft) are greatly affected, since they perform
similar to each other as well to EntityQR when the corrup-
tion probability p is large, e.g., p = 0.5. CornKGQA is the
least affected by a corrupted TKG, but, still, its performance
is much lower. The largest performance drop is observed
for TempoQR-Hard for ‘first/last’ questions, which indicates
that it cannot generalize well to such questions under a cor-
rupted TKG. Finally, depending on the information that is
corrupted, some methods benefit over others, i.e., compare
TempoQR-Hard to EntityQR for p = 0.33 at ‘time join’
questions.

Unseen Question Types
Figure 3 shows the performance for unseen question types
during training. As we can see, TempoQR-Soft performs
the best for both generated question types. Since it learns
to handle temporal constraints in the embedding space, it
generalizes better than TempoQR-Hard which simply uses
the TKG to answer such questions. In general, neither of
these methods seems to be able to tackle unseen questions
effectively, i.e., Hits@1 is below 20% for all the methods.
This is also confirmed since the performance of the methods
only increases when k is increased, i.e., the return more pos-
sible answers. This motivates the need for extending these
methods in a way that ensures better performance for unseen
questions.

Conclusion
This paper puts forth a comprehensive embedding frame-
work specialized in answering complex questions over
TKGs. The benefit of TempoQR comes by learning context,
entity and time-aware question representations. The latter re-
lies either on hard or soft supervision. Extensive experiments
confirmed the benefits of each step performed in our method.
TempoQR outperforms existing methods for complex ques-
tions by 25–45%. The limitations and advantages of hard
and soft supervision are also showcased. Future research in-
cludes extending existing methods to generalize better to un-
seen question types.
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