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Abstract

Weighted First-Order Model Counting (WFOMC) computes
the weighted sum of the models of a first-order logic the-
ory on a given finite domain. First-Order Logic theories
that admit polynomial-time WFOMC w.r.t domain cardinal-
ity are called domain liftable. We introduce the concept of
lifted interpretations as a tool for formulating closed-forms
for WFOMC. Using lifted interpretations, we reconstruct
the closed-form formula for polynomial-time FOMC in the
universally quantified fragment of FO2, earlier proposed by
Beame et al. We then expand this closed-form to incorporate
cardinality constraints, existential quantifiers and counting
quantifiers (a.k.a. C2) without losing domain-liftability. Fi-
nally, we show that the obtained closed-form motivates a nat-
ural definition of a family of weight functions strictly larger
than symmetric weight functions.

Introduction
First-Order Logic (FOL) allows specifying structural knowl-
edge with formulas containing variables ranging over all
the domain elements. Probabilistic inference in domains de-
scribed in FOL requires grounding (aka instantiation) of
all the individual variables with all the occurrences of the
domain elements. This grounding leads to an exponential
blow-up of the complexity of the model description and
hence the probabilistic inference.

Lifted inference (Poole 2003; de Salvo Braz, Amir, and
Roth 2005) aims at resolving this problem by exploiting
symmetries inherent to the FOL structures. In recent years,
Weighted First-Order Model Counting has emerged as a use-
ful formulation for probabilistic inference in statistical rela-
tional learning frameworks (Getoor and Taskar 2007; Raedt
et al. 2016). Formally, WFOMC (Gogate and Domingos
2011) refers to the task of calculating the weighted sum of
the models of a formula Φ over a domain of a given finite
size

WFOMC(Φ, w, n) =
∑
ω|=Φ

w(ω)

where n is the cardinality of the domain and w is a
weight function that associates a real number to each in-
terpretation ω. FOL theories Φ and weight functions w
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which admit polynomial-time WFOMC w.r.t the domain
cardinality are called domain-liftable (den Broeck 2011).
In the past decade, multiple extensions of FO2 (the frag-
ment of FOL with two variables) have been proven to
be domain-liftable(Kazemi et al. 2016; Kuusisto and Lutz
2018; Kuzelka 2021).

In this paper, instead of relying on an algorithmic ap-
proach to WFOMC, as in (den Broeck et al. 2011), our ob-
jective is to find a closed-form for WFOMC in FO2 that
can be easily extended to larger classes of first-order for-
mulas. To this aim, we introduce the novel notion of lifted
interpretation. Lifted interpretations allow us to reconstruct
the closed-form formula for First-Order Model Counting
(FOMC) in the universally quantified fragment of FO2 as
proposed in (Beame et al. 2015) and to extend it to larger
classes of FO formulas.

We see the following key benefits of the presented formu-
lation:

1. The formula is easily extended to FO2 with existential
quantifiers, cardinality constraints and counting quanti-
fiers, without losing domain-liftability. A cardinality con-
straint on an interpretation is a constraint on the number
of elements for which a certain predicate holds. Count-
ing quantifiers admit expressions of the form ∃≥mxΦ(x)
expressing that there exist at leastm elements that satisfy
Φ(x). Previous works have relied on Lagrange interpola-
tion and Discrete Fourier Transform (Kuzelka 2021) for
evaluating cardinality constraints. In this work, we deal
with cardinality constraints in a completely combinato-
rial fashion.

2. We provide a complete and uniform treatment of
WFOMC in the two-variable fragment. Multiple exten-
sions of FO2 have been proven to be domain liftable
(Kuzelka 2021; Kuusisto and Lutz 2018; den Broeck,
Meert, and Darwiche 2014). Most of these works rely
extensively on a variety of logic-based algorithmic tech-
niques. In this paper, we provide a uniform and self-
contained combinatorial treatment for all these exten-
sions.

3. The formula computes WFOMC for a class of weight
functions strictly larger than symmetric weight func-
tions. This extended class of weight functions allows
modelling the recently introduced count distributions
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(Kuzelka 2020).

Most of the paper focuses on First-Order Model Counting
(FOMC) i.e. counting the number of models of a formula
Φ over a finite domain of size n denoted by FOMC(Φ, n).
We then show how WFOMC can be obtained by multiply-
ing each term of the resulting formula for FOMC with the
corresponding weight function. This allows us to separate
the treatment of the counting part from the weighting part.
The paper is therefore structured as follows: The next sec-
tion describes the related work in the literature on WFOMC.
We then present our formulation of the closed-form formula
for FOMC given in (Beame et al. 2015) for the universally
quantified fragment of FO2. We then extend this formula
to incorporate cardinality constraints, existential quantifica-
tion and counting quantifiers, dedicating one section to each
of them respectively. The last part of the paper extends the
formula for FOMC to WFOMC for the case of symmetric
weight functions and for a larger class of weight functions
that allow modeling count distributions (Kuzelka 2020).

Related Work
WFOMC for the purposes of probabilistic inference was ini-
tially defined and proposed in (Gogate and Domingos 2011)
and (den Broeck et al. 2011). (den Broeck et al. 2011) pro-
vides an algorithm for Symmetric-WFOMC over universally
quantified theories based on knowledge compilation tech-
niques. The notion of a domain lifted theory i.e. a first-order
theory for which WFOMC can be computed in polynomial
time w.r.t domain cardinality was first formalized in (den
Broeck 2011). The same paper shows that a theory com-
posed of a set of universally quantified clauses containing at
most two variables is domain liftable. (den Broeck, Meert,
and Darwiche 2014) extends this procedure to theories in
full FO2 (i.e. where existential quantification is allowed) by
introducing a skolemization procedure for WFOMC.

Theoretical aspects of WFOMC are analyzed in (Beame
et al. 2015), which also provides a closed-form formula
for WFOMC in the universally quantified fragment of FO2.
(Kuusisto and Lutz 2018) extends the domain liftability re-
sults to FO2 with a functionality axiom, and for sentences
in uniform one-dimensional fragment U1 (Kuusisto 2016).
It also proposes a closed-form formula for WFOMC in FO2

with functionality constraints. (Kuzelka 2021) recently pro-
posed a uniform treatment of WFOMC for FO2 with car-
dinality constraints and counting quantifiers, proving these
theories to be domain-liftable.

With respect to the state-of-the-art approaches to
WFOMC, we propose an approach that provides a closed-
form for WFOMC with cardinality constraints and count-
ing quantifiers from which the PTIME data complexity is
immediately evident. Moreover, (Kuzelka 2021) relies on
a sequence of reductions for proving domain liftability of
counting quantifiers in the two variable fragment, on the
other hand, our approach relies on a single reduction and
exploits the principle of inclusion-exclusion to provide a
closed-form formula for WFOMC. Finally, (Kuzelka 2020)
introduces Complex Markov Logic Networks, which use
complex-valued weights and allow for full expressivity over

a class of distributions called count distributions. We show
in the last section of the paper that our formalization is com-
plete w.r.t. this class of distributions without using complex-
valued weight functions.

FOMC for Universal Formulas
Let L be a first-order function free language with equal-
ity. A pure universal formula in L is a formula of the form
∀x1 . . . ∀xm.Φ(x1, . . . , xm), where X = {x1, . . . , xm} is a
set of m distinct variables occurring in Φ(x1, . . . , xm) and
Φ(x1, . . . , xm) is a quantifier free formula that does not con-
tain any constant symbol. We use the compact notation Φ(x)
for Φ(x1, . . . , xm), where x = (x1, . . . , xm). Notice that
we distinguish between the m-tuple of variables x and the
set of variables denoted by X . We use C to denote the set
of domain constants. For every σ = (σ1, . . . , σm), m-tuple
of constants or variables, Φ(σ) denotes the result of uniform
substitution of xi with σi in Φ(x). If Σ ⊆ X ∪ C is the set
of constants or variables of L and ∀xΦ(x) a pure universal
formula then:

Φ(Σ) =
∧

σ∈Σm

Φ(σ) (1)

Φ(Σ) is a very convenient notion, for instance, grounding
of a pure universal formula ∀x.Φ(x) over a set of domain
constants C, can be simply denoted as Φ(C). Furthermore,
Φ(X) and Φ(x) have the following useful relationship:

Lemma 1. For any arbitrary pure universal formula
∀xΦ(x), the following equivalence holds:

∀xΦ(x)↔ ∀xΦ(X) (2)

Example 1. Let Φ(x, y) = A(x)∧R(x, y)∧x 6= y → A(y),
then Φ(X = {x, y}) is the following formula

(A(x) ∧R(x, x) ∧ x 6= x→ A(x))
∧ (A(x) ∧R(x, y) ∧ x 6= y → A(y))
∧ (A(y) ∧R(y, x) ∧ y 6= x→ A(x))
∧ (A(y) ∧R(y, y) ∧ y 6= y → A(y))

(3)

Due to Lemma 1, we can assume that in any grounding
of ∀x∀y.Φ(X = {x, y}), two distinct variables x and y,
are always grounded to different domain elements. This is
because the cases in which x and y are grounded to the
same domain element are taken into account by the con-
juncts Φ(x, x) and Φ(y, y) in Φ(X). See, for instance, the
first and the last conjunct of (3).

Definition 1 (Lifted interpretation). A lifted interpretation τ
of a pure universal formula ∀xΦ(x) is a function that as-
signs to each atom of Φ(X) either 0 or 1 (0 means false and
1 means true) and assigns 1 to xi = xi and 0 to xi = xj if
i 6= j.

Lifted interpretations are different from FOL interpreta-
tions as they assign truth values to the atoms that contain
free variables. Instead, lifted interpretations are similar to
m-types (Kuusisto and Lutz 2018)(we will later formalize
this similarity), where m is the number of variables in the
language L. The truth value of a pure universal formula Φ
under the lifted interpretation τ denoted by τ(∀xΦ(x)), can
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be computed by applying the classical semantics for propo-
sitional connectives to the evaluations of the atoms in Φ(X).
With abuse of notation, we sometimes write also τ(Φ(X))
instead of τ(∀xΦ(x)).

Example 2. The following is an example of a possible lifted
interpretation τ for the formula (3) of Example 1:

A(x) R(x, x) A(y) R(y, y) R(x, y) R(y, x)
0 1 1 1 0 1

τx τy τxy

We omit the truth assignments of equality atoms since they
are fixed for all lifted interpretations. Clearly, τ((3)) = 0.

As highlighted in the previous example, any lifted inter-
pretation τ can be decomposed into a set of partial lifted in-
terpretations τY where Y ⊆ X . Notice that τY assigns truth
value to all the atoms that contain all the variables Y . For
instance, in Example 2, τ{x,y} (denoted as τxy in the exam-
ple) assigns to atomsR(x, y) andR(y, x) only and not to the
atoms R(x, x) and A(x). In general, we will use the simpler
notation τxy to denote the partial lifted interpretation τ{x,y}.

(Beame et al. 2015) provide a mathematical formula for
computing FOMC(Φ, n), where Φ is a pure universal formula
in FO2, i.e., sentences of the form ∀xy.Φ(x, y). In the fol-
lowing, we reconstruct this result using the notion of lifted
interpretations. As it will be clearer later, using lifted inter-
pretations allow us to seamlessly extend the result to larger
extensions of FO2 formulas.

Let ∀xy.Φ(x, y) be a pure universal formula. Let u be
the number of atoms whose truth values are assigned by
τx i.e., first-order atoms containing only the variable x. Let
P1(x), . . . , Pu(x) be an ordering of these atoms1. There are
2u possible partial lifted interpretations τx which could as-
sign truth values to these atoms. We assume that each such
partial lifted interpretation τx is indexed by an integer i,
where 0 ≤ i ≤ 2u − 1. Hence, the i-th partial lifted in-
terpretation τx is defined as τx(Pj(x)) = bin(i)j , where
bin(i)j represents the value of the jth bit in the binary en-
coding of i, for all 1 ≤ j ≤ u. We use i(x) to denote the
conjunction of a maximally consistent set of literals (atoms
and negated atoms) containing only the variable x which are
satisfied by the i-th τx. For instance, in Example 1,A(x) and
R(x, x) are the atoms assigned by τx. Assuming the order
of atoms to be (A(x), R(x, x)), we have that τx = 1 implies
thatA(x) is interpreted to be false andR(x, x) is interpreted
to be true. Also, i(x) denotes ¬A(x) ∧R(x, x) if i = 1 and
¬A(x) ∧ ¬R(x, x) if i = 0. We use similar notation for
atoms assigned by τy(y) i.e. atoms containing only the vari-
able y. Furthermore, we use i(c) to denote the conjunction of
ground atoms containing only one constant c. In Example 1,
i(c) denotes ¬A(c)∧R(c, c) if i = 1 and ¬A(c)∧¬R(c, c)
if i = 0. Clearly, i(x) exactly corresponds to 1-types. Fur-
thermore, given an interpretation ω if ω |= i(c) then we say
that c is of 1-type i.

For a pure universal formula Φ and 0 ≤ i ≤ j ≤ 2u − 1,
let nij be the number of lifted interpretations τ that satisfy

1The list includes atoms of the form P (x, x) for binary predi-
cate P .

Φ such that τx = i and τy = j. Formally:
nij = |{τ | τ |= Φ({x, y}) ∧ i(x) ∧ j(y)}|

Example 3 (Example 1 cont’d). The set of atoms containing
only x or only y in the formula (3) are {A(x), R(x, x)} and
{A(y), R(y, y)} respectively. In this case u = 2. The partial
lifted interpretations τx and τy corresponding to the lifted
interpretation τ of Example 2 are: τx = 1 and τy = 3.
n13 is the number of lifted interpretations satisfying (3) and
agreeing with τx = 1 and τy = 3. In this case n13 = 2. The
other cases are as follows:

n00 n01 n02 n03 n11 n12 n22 n23 n33

4 4 2 2 4 2 4 4 4

Theorem 1 (Beame et al. (2015)). For any pure universal
formula ∀xy.Φ(x, y)

FOMC(∀xy.Φ(x, y), n) =
∑

∑
k=n

(
n

k

) ∏
0≤i≤j≤2u−1

n
k(i,j)
ij

(4)

where k = (k0, ..., k2u−1) is a 2u-tuple of non-negative in-
tegers,

(
n
k

)
is the multinomial coefficient and

k(i, j) =

{
ki(ki−1)

2 if i = j

kikj otherwise

We provide the proof for Theorem 1 along with some ad-
ditional Lemmas in the appendix. Intuitively, ki represents
the number of constants c of 1-type i. Hence, for a given k,
we have

(
n
k

)
possible interpretations. Furthermore, given a

pair of constants c and d such that c is of 1-type i and d is
of 1-type j, the number of truth assignments to binary pred-
icates containing both c and d is given by nij independently
of all other constants. Finally, the exponent k(i, j) accounts
for all possible pair-wise choices of constants given a k vec-
tor.

Notice that the method in (Beame et al. 2015) requires
additional n + 1 calls to a counting oracle for dealing with
equality. Lifted interpretations on the other hand allow us
to fix the truth values of the equality atoms, by assuming
(w.l.o.g.) that different variables are assigned to distinct ob-
jects in ∀x.Φ(X). The equality atoms then contribute to the
model count only through nij , hence, allowing us to deal
with equality in constant time w.r.t domain cardinality.
Example 4 (Example 1 continued). Consider a domain of 3
elements (i.e., n = 3). Each term of the summation (4) is of
the form (

3

k0, k1, k2, k3

) 3∏
i=0

n
ki(ki−1)

2
ii

3∏
i<j
i=0

n
kikj
ij

which is the number of models with k0 elements for which
A(x) and R(x, x) are both false; k1 elements for which
A(x) is false and R(x, x) true, k2 elements for which A(x)
is true and R(x, x) is false and k3 elements for which A(x)
and R(x, x) are both true. For instance:

(
3

2,0,0,1

)
n1

00n
2
03 =(

3
2,0,0,1

)
41 · 22 = 3 · 16 = 48 is the number of models in

which 2 elements are such that A(x) and R(x, x) are false
and 1 element such that A(x) and R(x, x) are both true.
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FOMC for Cardinality Constraints
Cardinality constraints are arithmetic expressions that im-
pose restrictions on the number of times a certain predi-
cate is interpreted to be true. A simple example of a car-
dinality constraint is |A| = m, for some unary predicate A
and positive integer m. This cardinality constraint is satis-
fied by any interpretation in which A(c) is interpreted to be
true for exactly m distinct constants c in the domain C. A
more complex example of a cardinality constraint could be:
|A| + |B| ≤ |C|, where A, B and C are some predicates in
the language.

For every interpretation ω of the language L on a finite
domain C, we define Aω = {c ∈ C | ω |= A(c)} if A is
unary, and Aω = {(c, d) ∈ C × C | ω |= A(c, d)} if A
is binary. ω satisfies a cardinality constraint ρ, in symbols
ω |= ρ, if the arithmetic expression, obtained by replacing
|A| with |Aω| for every predicate A in ρ, is satisfied.

If a cardinality constraint involves only unary predicates,
then we can exploit Theorem 1 considering only a subset of
k’s. The multinomial coefficient

(
n
k

)
counts the models that

contain exactly ki elements of 1-type i, the cardinality of the
unary predicates in these models are fully determined by k.

To deal with cardinality constraints involving binary
predicates, we have to expand the formula (4) by includ-
ing also the assignments to binary predicates. This im-
plies extending the k vector in order to consider assign-
ments to atoms that contain both variables x and y. Let
R0(x, y), R1(x, y), . . . , Rb(x, y) be an enumeration of all
the atoms in Φ(X) that contain both variables x and y.
Notice that the order of variables leads to different atoms,
for instance in Example 1, we have two binary atoms
R1(x, y) = R(x, y) and R2(x, y) = R(y, x).

For every 0 ≤ v ≤ 2b−1 let v denote the vth partial lifted
interpretation τxy , such that τxy assigns bin(v)j to the j-th
binary atom Rj(x, y) for every 1 ≤ j ≤ b. As for the unary
case, v(x, y) represents the conjunction of all the literals that
are satisfied by v. For instance, in example 1, v(x, y) denotes
¬R(x, y)∧R(y, x) if v = 1 and R(x, y)∧R(y, x) if v = 3.
Clearly, the set of 2-types in the language of the formula
Φ correspond to i(x) ∧ j(y) ∧ v(x, y). We define nijv as
follows:

nijv = |{τ | τ |= Φ({x, y}) ∧ i(x) ∧ j(y) ∧ v(x, y)}|

Notice that nij =
∑2b−1
v=0 nijv and that nijv is either 0 or

1.
Example 5. For instance n13 introduced in Example 3 ex-
pands to n130 +n131 +n132 +n133 where n13v corresponds
to the following assignments:

A(x) R(x, x) A(y) R(y, y) R(x, y) R(y, x) n13v

0 1 1 1

0 0 n130 = 1
0 1 n131 = 0
1 0 n132 = 1
1 1 n133 = 0

τx = 1 τy = 3 τxy = v

By replacing nij in equation (4) with its expansion∑2b−1
v=0 nijv we obtain that FOMC(∀xy.Φ(x, y), n) is equal

to

∑
∑
k=n

(
n

k

) ∏
0≤i≤j≤2u−1

 ∑
0≤v≤2b−1

nijv

k(i,j)

=
∑
k,h

(
n

k

) ∏
0≤i≤j≤2u−1

(
k(i, j)

hij

) ∏
0≤v≤2b−1

n
hij
v
ijv (5)

where, for every 0 ≤ i ≤ j ≤ 2u − 1, hij is a vector of 2b

integers that sum up to k(i, j). To simplify the notation we
define the function F (k,h,Φ) where Φ is a pure universal
formula as follows

F (k,h,Φ) =

(
n

k

) ∏
0≤i≤j≤2u−1

(
k(i, j)

hij

) ∏
0≤v≤2b−1

n
hij
v
ijv

where hijv is the v-th element of the vector hij , which rep-
resents the number of pairs of constants of distinct elements
that satisfy the 2-type i(x) ∧ j(y) ∧ v(x, y). We will now
show that the (k,h) vectors contain all the necessary infor-
mation for determining the cardinality of the binary predi-
cates.

For every L-interpretation ω on the finite domain C, we
define (k,h)ω = (kω,hω) with kω =

〈
kω0 , . . . , k

ω
2u−1

〉
such that kωi is the number of constants c ∈ C such that ω |=
i(c). hω is equal to {(hij)ω}0≤i≤j≤2b−1, where (hij)ω =

〈(hij0 )ω, . . . (hij
2b−1

)ω〉 such that (hijv )ω is the number of
pairs (c, d) with c 6= d such that ω |= i(c) ∧ j(d) ∧ v(c, d)
if i < j. When i = j, (hiiv )ω is equal to the count of the
unordered pairs (c, d) (i.e. only one of the (c, d) and (d, c) is
counted) for which ω |= i(c) ∧ i(d) ∧ v(c, d).
Lemma 2. For every predicate P and interpretations ω1

and ω2, (k,h)ω1 = (k,h)ω2 implies |Pω1 | = |Pω2 |.

Proof. Let (k,h) be a vector such that (k,h) = (k,h)ω .
The Lemma is true iff (k,h) uniquely determines the car-
dinality of Pω . If Pω is a unary predicate whose atom
is indexed by s in the ordering of the unary atoms, then
the cardinality of Pω can be given as

∑2u−1
i=0 bin(i)s · ki.

Similarly, if P is binary then in order to count Pω , we
need to take into account both k and h. Let P (x, x) be
the atom indexed s i.e. Ps, let P (x, y) be the atom in-
dexed l i.e. Pl and let P (y, x) be the atom indexed r i.e.
Pr, then the cardinality of P if P is binary is given as∑2u−1
i=0 bin(i)s ·ki+

∑
i≤j
∑2b−1
v=0 (bin(v)l+ bin(v)r) ·hijv .

Example 6. Consider formula (3) with the additional con-
junct |A| = 2 and |R| = 2. The constraint |A| = 2 im-
plies that we have to consider k such that k2 + k3 = 2.
|R| = 2 constraint translates to only considering (k,h) with
k1 + k3 +

∑
i≤j(h

ij
1 + hij2 + 2hij3 ) = 2.

For a given (k,h), we use the notation k(P ) to denote
cardinality of P if P is unary and (k,h)(P ) if P is bi-
nary. Using Lemma 2, we can conclude that FOMC(Φ∧ρ, n)
where Φ is a pure universal formula with 2 variables can be
computed by considering only the (k,h)’s that satisfy ρ, i.e.,
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those (k,h)′s where ρ evaluates to true, when |P | is substi-
tuted with (k,h)(P ) when P is binary and k(P ) when P is
unary.
Corollary 1 (of Theorem 1). For every pure universal for-
mula Φ and cardinality constraint ρ, FOMC(Φ ∧ ρ, n) =∑
k,h|=ρ F (k,h,Φ)

FOMC for Existential Quantifiers
In this section, we provide a proof for model counting in
the presence of existential quantifiers. The key difference
in our approach w.r.t (Beame et al. 2015) is that we make
explicit use of the principle of inclusion-exclusion, and we
will later generalize the same approach to counting quan-
tifiers. We will first provide a corollary of the principle of
inclusion-exclusion.
Corollary 2 ((Wilf 2005) section 4.2). Let Ω be a set of
objects and let S = {S1, . . . , Sm} be a set of subsets of Ω.
For every Q ⊆ S , let N(⊇ Q) be the count of objects in
Ω that belong to all the subsets Si ∈ Q, i.e., N(⊇ Q) =∣∣∣{⋂Si∈Q Si}

∣∣∣. For every 0 ≤ l ≤ m, let sl =
∑
|Q|=lN(⊇

Q) and let e0 be count of objects that do not belong to any
of the Si in S , then

e0 =
m∑
l=0

(−1)lsl (6)

Any arbitrary formula in FO2 can be reduced to an eq-
uisatisfiable reduction called Scott’s Normal Form (SNF)
(Scott 1962). Moreover, SNF preserves FOMC as well as
WFOMC if all the new predicates and their negation are as-
signed a unit weight (Kuusisto and Lutz 2018). A formula in
SNF has the following form:

∀x∀y.Φ(x, y) ∧
q∧
i=1

∀x∃y.Ψi(x, y) (7)

where Φ(x, y) and Ψi(x, y) are quantifier-free formulae.
Theorem 2. For an FO2 formula in Scott’s Normal Form
as given in (7), let Φ′ = ∀xy.(Φ(x, y) ∧

∧q
i=1 Pi(x) →

¬Ψi(x, y)) where Pi’s are fresh unary predicates, then:

FOMC((7), n) =
∑
k,h

(−1)
∑

i k(Pi)F (k,h,Φ′) (8)

Proof. Let Ω be the set of models of ∀xy.Φ(x, y) over the
language of Φ and {Ψi} (i.e., the language of Φ′ excluding
the predicates Pi) and on a domain C consisting of n ele-
ments. Let S = {Ωci}c∈C, 1≤i≤q be the set of subsets of Ω
where Ωci is the set of ω such that ω |= ∀y.¬Ψi(c, y). For
every model ω of (7), ω 6|= ∀y¬Ψi(c, y) for any pair of i and
c i.e. ω is not in any Ωci. Also, for every ω ∈ Ω, if ω 6∈ Ωci
for any pair of i and c, then ω |= ∃y.Ψi(c, y) for all i and for
all c ∈ C i.e., ω |=

∧q
i=1 ∀x∃y.Ψi(x, y). Hence, ω |= (7)

if and only if ω 6∈ Ωci for all c and i. Therefore, the count
of models of (7) is equal to the count of models in Ω which
do not belong to any Ωci. Hence, If we are able to compute
sl (as introduced in Corollary 2), then we could use Corol-
lary 2 for computing cardinality of all the models which do
not belong to any Ωci and hence FOMC((7), n).

For every 0 ≤ l ≤ n · q, let us define

Φ′l = Φ′ ∧
q∑
i=1

|Pi|= l (9)

We will now show that sl is exactly given by FOMC((9), n).
Every model of Φ′l is an extension of an ω ∈ Ω that be-

longs to at least l elements in S . In fact, for every model ω
of ∀xy.Φ(x, y) i.e. ω ∈ Ω, if Q′ is the set of elements of S
that contain ω, then ω can be extended into a model of Φ′l in(|Q′|
l

)
ways. Each such model can be obtained by choosing

l elements in Q′ and interpreting Pi(c) to be true in the ex-
tended model, for each of the l chosen elements Ωci ∈ Q′.
On the other hand, recall that sl =

∑
|Q|=lN(⊇ Q). Hence,

for any ω ∈ Ω if Q′ is the set of elements of S that contain
ω, then there are

(|Q′|
l

)
distinct subsets Q ⊆ Q′ such that

|Q|= l. Hence, we have that ω contributes
(|Q′|
l

)
times to sl.

Therefore, we can conclude that

sl = FOMC(Φ′l, n) =
∑
|Q|=l

N(⊇ Q)

and by the principle of inclusion-exclusion as given in
Corollary 2, we have that :

FOMC((7), n) = e0 =

n·q∑
l=0

(−1)lsl

=

n·q∑
l=0

(−1)lFOMC(Φ′l, n)

=

n·q∑
l=0

(−1)l
∑

k,h|=
∑

i|Pi|=l

F (k,h,Φ′)

=
∑
k,h

(−1)
∑

i k(Pi)F (k,h,Φ′)

FOMC for Counting Quantifiers
Counting quantifiers are expressions of the form ∃x≥my.Ψ,
∃≤my.Ψ, and ∃=my.Ψ. The extension of FO2 with such
quantifiers is denoted by C2 (Gradel, Otto, and Rosen 1997).
In this section, we show how FOMC in C2 can be performed
by exploiting the formula for FOMC in FO2 with cardi-
nality constraints. We assume that the counting quantifier
∃≤my.Ψ is expanded to

∨m
k=0 ∃=ky.Ψ, and the quantifiers

∃≥my.Ψ are first transformed to ¬(∃≤m−1y.Ψ) and then ex-
panded. We are therefore left with quantifiers of the form
∃=my.Ψ. Hence, any C2 formula can be transformed into a
formula of the form Φ0 ∧

∧q
k=1 ∀x.(Ak(x) ↔ ∃=mky.Ψk)

that preserves FOMC, where2 Φ0 is a pure universal for-
mula obtained by replacing every occurrence of the sub-
formula ∃=mky.Ψk with Ak(x), where Ak is a fresh predi-
cate. W.l.o.g, we can assume that Ψk is the atomic formula

2We assume that Φ0 contains no existential quantifiers as they
can be transformed as described in Theorem 2.
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Rk(x, y). We will now present a closed-form for FOMC of
Φ0 ∧

∧
k ∀x.(Ak(x) ↔ ∃=mky.Rk(x, y)). For the sake of

notational convenience, we use Φi..j to denote
∧
i≤s≤j Φs

for any set of formulas {Φs}.
Theorem 3. Let Φ be the following C2 formula :

Φ0 ∧
q∧

k=1

∀x.(Ak(x)↔ ∃=mky.Rk(x, y))

where Φ0 is a pure universal formula in FO2. Let us define
the following formulas for each k, where 1 ≤ k ≤ q:

Φk1 =
∧mk

i=1∀x∃y.Ak(x) ∨Bk(x)→ fki(x, y)

Φk2 =
∧

1≤i<j≤mk
∀x∀y.fki(x, y)→ ¬fkj(x, y)

Φk3 =
∧mk

i=1∀x∀y.fki(x, y)→ Rk(x, y)

Φk4 = ∀x.Bk(x)→ ¬Ak(x)

Φk5 = ∀x∀y.Mk(x, y)↔ ((Ak(x) ∨Bk(x)) ∧Rk(x, y))

Φk6 = |Ak|+ |Bk| = |fk1| = · · · = |fkmk
| = |Mk|

mk

where3 Bk, fki and Mk are fresh predicates. Then
FOMC(Φ, n) is given as:∑

(k,h)|=
∧

k Φk
6

(−1)
∑

k k(Bk)+
∑

k,i k(Pki)F (k,h,Φ′)∏
kmk!k(Ak)

where Φ′ is obtained by replacing each Φk1 with∧mk

i=1∀x∀y.Pki(x) → ¬(Ak(x) ∨ Bk(x) → fki(x, y)) in
Φ0 ∧

∧
k Φk1..5 and Pki are fresh unary predicates.

Lemma 3. If ω |= Φ0∧
∧q
k=1 Φk1..6 then every c ∈ Aωk ∪Bωk

has exactly mk Rk-successors i.e., ω |= ∃=mky.R(c, y).

Proof. If c ∈ Aωk ∪ Bωk , then by Φk1 , c has an fki-successor
for every 1 ≤ i ≤ mk. Φk2 implies that c has distinct fki and
fkj successor for any choice of i and j. Φk3 implies that any
fki-successor of c is also an Rk-successor. Hence, c has at
least mk Rk-successors.

Axiom Φk5 implies that c has exactly as many Rk-
successors as Mk-successors. Hence, c has at-least mk Mk-
successors. Furthermore, by Φk4 we have thatAωk andBωk are
disjoint. Hence, using Φk6 , we can conclude that c has exactly
mk Mk-successors. Finally, using Φk5 we can conclude that
c has exactly mk Rk-successors.

Proof (of Theorem 3). First notice that every model ω of Φ
can be extended to

∏
kmk!A

ω
k models of Φ0 ∧

∧
k Φk1..6 by

interpreting Bk in the empty set, fki in the set of pairs 〈c, d〉
for c ∈ Aωk and d being the i-th Rk-successor of c (for some
ordering of theRk-successors) andMk according to the def-
inition given in Φ5

k.
Let Ω the set of models of Φ0 ∧

∧q
k=1 Φk1..6 restricted to

the language of Φ, Mk and fki (i.e., the language of Φ0 ∧
3If Φ0 is obtained after a transformation as described in The-

orem 2, then we can add the term
∑

g k(Pg) to the exponent of
(−1), for the set of unary predicates {Pg} introduced to deal with
existential quantifiers. Also, any cardinality constraint on predi-
cates of Φ0 can be easily conjuncted and incorporated into ∧kΦk

6 .

∧q
k=1 Φk1..6 excluding the predicatesBk) and on a domainC

consisting of n elements.
Notice that Ω contains also the models that are not exten-

sions of some model of Φ. Therefore, in the first part of the
proof we count the number of extensions of models of Φ in
Ω, and successively we will take care of the over-counting
due to the multiple interpretations of fki’s.

Let S = {Ωck} be the set of subsets of Ω such that
if ω ∈ Ωck then ω |= ¬Ak(c) ∧ ∃=mky.Rk(c, y). Due
to Lemma 3, if ω ∈ Ω then ω |=

∧
k ∀x.Ak(x) →

∃=mky.Rk(x, y). Hence, in order to count the models of Φ
in Ω we only need to count the number of models in Ω that
satisfy

∧
k ∀x∃=mky.Rk(x, y) → Ak(x), equivalently, the

number of models that belong to none of the Ωck. Hence, if
we are able to evaluate sl (as introduced in Corollary 2) then
we can use Corollary 2 to count the set of models in Ω that
satisfy Φ.

Let ω ∈ Ω. Let us define Φl for l ≥ 0 as follows:

Φl = Φ0 ∧
∧
k

Φk1..6 ∧

(∑
k

|Bk| = l

)
(10)

Firstly, let Q′ be the set of elements in S that contain ω. By
Lemma 3, ω can be extended in

(|Q′|
l

)
models of Φl. Each

such extension can be achieved by choosing l elements in
Q′, and interpreting Bk(c) to be true in the extended model
iff Ωck is a part of the l chosen elements. On the other
hand, recall that sl =

∑
|Q|=lN(⊇ Q). Every ω that is

contained in all the elements of Q′, contributes
(|Q′|
l

)
to sl.

Hence, sl = FOMC(Φl, n). Using inclusion-exclusion prin-
ciple (corollary 2), we have that the number of models which
do not belong to any of the Ωck are:∑

l

(−1)lsl =
∑
l

(−1)lFOMC(Φl, n) (11)

Hence, we have the count of models of Φ in Ω. But notice
that this is the count of the models of Φ in the language of
Φ0 ∧

∧
k Φk1..6 excluding Bk, where there are the additional

predicates {fki}. Since every interpretation with |Aωk |= rk
can be extended in mk!rk models of Φ due to the permuta-
tions of {fki}mk

i=1, to obtain FOMC on the language of Φ we
have to take into account this over-counting4. This can be
obtained by introducing a cardinality constraint |Ak| = rk
for every Ak and dividing by mk!rk for each k and r1...rq
values. Giving the following expression for FOMC(Φ, n):∑

l,rk

(−1)l
FOMC(Φl ∧

∧
k|Ak|= rk, n)∏

kmk!rk
(12)

Also notice that Φk1 contains mk existential quantifiers, to
eliminate them we use the result of Theorem 2. We intro-
duce mk new unary predicates Pk1, . . . , Pkmk

for each k,
and replace each Φk1 with

∧
i ∀x∀y.Pki(x) → ¬(Ak(x) ∨

Bk(x) → fki(x, y)). Hence, by Theorem 2 we have that

4Notice that Mk leads to no additional models of Φ as interpre-
tations of Mk are uniquely determined by Ak and Rk by Φk

5 .
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FOMC(Φ, n) is equal to:∑
(k,h)|=

∧
k Φk

6

(−1)
∑

k k(Bk)+
∑

k,i k(Pki)F (k,h,Φ′)∏
kmk!k(Ak)

where Φ′ is the pure universal formula Φ0 ∧
∧q
k=1 Φk2..5 ∧∧

i,k Pki(x)→ ¬(Ak(x) ∨Bk(x)→ fki(x, y)).

Weighted First-Order Model Counting
All the FOMC formulas introduced so far can be easily ex-
tended to weighted model counting by simply defining a
positive real-valued weight function w(k,h) and adding it
as a multiplicative factor to F (k,h,Φ) in all FOMC for-
mulas. The case of Symmetric-WFOMC can be obtained by
defining w(k,h) as follows:

w(k,h) =
∏
P∈L

w(P )(k,h)(P ) · w̄(P )(k,h)(¬P )

wherew(P ) and w̄(P ) associate positive real values to pred-
icate P and its negation respectively. But symmetric-weight
functions are clearly not the most general class of weight
functions. (Kuzelka 2020) introduced a strictly more expres-
sive class of weight functions which also preserves domain
liftability. These weight functions can express count distri-
butions, which are defined as follows:
Definition 2 (Count distribution (Kuzelka 2020)). Let Φ =
{αi, wi}mi=1 be a Markov Logic Network defining a prob-
ability distribution pΦ,Ω over a set of possible worlds (we
call them assignments) of a formula Ω. The count distribu-
tion of Φ is the distribution over m-dimensional vectors of
non-negative integers n given by

qΦ(Ω,n) =
∑

ω|=Ω, n=N(Φ,ω)

pΦ,Ω(ω) (13)

where N(Φ, ω) = (n1, . . . , nm) and ni is the number of
grounding of αi that are true in ω.

(Kuzelka 2020) shows that count distributions can
be modelled by Markov Logic Networks with complex
weights. In the following, we prove that if each αi is in FO2,
count distributions can be expressed by a w(k,h).
Theorem 4. Every count distribution over a set of possi-
ble worlds of a formula Ω definable in FO2 can be mod-
elled with a weight function on (k,h), by introducing m
new predicates Pi and adding the axioms Pi(x) ↔ αi(x)
and Pj(x, y)↔ αj(x, y), if αi and αj has one and two free
variables respectively and by defining:

qΦ(Ω,n) =
1

Z

∑
(k,h)(Pi)=ni

w(k,h) · F (k,h,Ω) (14)

where Z = WFOMC(Ω, w, n) is the partition function.

Sketch. The proof is a simple consequence of the fact that all
the models agreeing with a count statistic n can be counted
using cardinality constraints which agree with n. Any such

cardinality constraint correspond to a specific set of (k,h)
vectors. Hence, we can express arbitrary probability distri-
butions over count statistics by picking real valued weights
for (k,h) vector. We defer the full proof to appendix.

Example 7. In the example proposed in (Kuzelka 2020),
they model the distribution of a sequence of 4 coin tosses
such that the probability of getting an odd number of heads
is zero and the probability of getting an even number of
heads is uniformly distributed. In order to model this distri-
bution, we introduce a predicateH(x) over a domain of 4 el-
ements, we also define Ω as >. This means that every model
of this theory is a model of Ω. Notice that this distribution
cannot be expressed using symmetric weights, as symmetric
weights can only express binomial distribution for this lan-
guage. But we can define weight function on (k,h) vector. In
this case k = (k0, k1) such that k0 +k1 = 4. Since there are
no binary predicates we can ignore h. Intuitively, k0 is the
number of tosses which are not heads and k1 is the number
of tosses which are heads. If we define the weight function as
w(k0, k1) = 1 + (−1)k1 . Then by applying (14) we obtain
the following probability distribution over the tosses:

q(Ω, (4, 0)) =

(
4
4

)
· (1 + 1)

16
=

1

8

q(Ω, (3, 1)) =

(
4
3

)
· (1− 1)

16
= 0

q(Ω, (2, 2)) =

(
4
2

)
· (1 + 1)

16
=

3

4

q(Ω, (1, 3)) =

(
4
1

)
· (1− 1)

16
= 0

q(Ω, (0, 4)) =

(
4
0

)
· (1 + 1)

16
=

1

8

which coincides with the distribution obtained by (Kuzelka
2020). Notice, that such a distribution cannot be expressed
through symmetric weight functions and obligates the use of
a strictly more expressive class of weight functions.

We are able to capture count distributions without losing
domain liftability. Furthermore, we do not introduce com-
plex or even negative weights, making the relation between
weight functions and probability rather intuitive.

Conclusion
In this paper, we have presented a closed-form formula for
FOMC of universally quantified formulas in FO2 that can
be computed in polynomial time w.r.t. domain cardinality.
From this, we are able to derive a closed-form expression for
FOMC in FO2 formulas in Scott’s Normal Form, extended
with cardinality constraints and counting quantifiers. These
extended formulas are also computable in polynomial time,
and therefore they constitute lifted inference algorithms for
C2. All the formulas are extended to cope with weighted
model counting in a simple way, admitting a larger class of
weight functions than symmetric weight functions. All the
results have been obtained using combinatorial principles,
providing a uniform treatment to all these fragments.
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