
Understanding Enthymemes in Deductive Argumentation
Using Semantic Distance Measures

Anthony Hunter
Department of Computer Science, University College London, London, WC1E 6BT, UK

anthony.hunter@ucl.ac.uk

Abstract

An argument can be regarded as some premises and a claim
following from those premises. Normally, arguments ex-
changed by human agents are enthymemes, which gener-
ally means that some premises are implicit. So when an en-
thymeme is presented, the presenter expects that the recipient
can identify the missing premises. An important kind of im-
plicitness arises when a presenter assumes that two symbols
denote the same, or nearly the same, concept (e.g. dad and
father), and uses the symbols interchangeably. To model
this process, we propose the use of semantic distance mea-
sures (e.g. based on a vector representation of word embed-
dings or a semantic network representation of words) to deter-
mine whether one symbol can be substituted by another. We
present a theoretical framework for using substitutions, to-
gether with abduction of default knowledge, for understand-
ing enthymemes based on deductive argumentation, and in-
vestigate how this could be used in practice.

Introduction
There are a number of frameworks for modelling argumen-
tation in logic. They incorporate a formal representation of
individual arguments, where the premises imply the claim,
and techniques for comparing conflicting arguments (Atkin-
son et al. 2017). However, real arguments (i.e. arguments
presented by humans) usually do not have enough explicitly
presented premises for the entailment of the claim. This is
because there is some common or commonsense knowledge
that can be assumed by a proponent of an argument and the
recipient of it (Walton 2001). This allows the proponent of
an argument to encode it as an enthymeme by ignoring some
of the common or commonsense knowledge, and it allows a
recipient of the enthymeme to decode it into an argument by
drawing on commonsense reasoning.

Whilst human agents constantly need to understand en-
thymemes, there is a lack of adequate AI methods for sup-
porting or automating this process, The coding/decoding can
be modelled as abduction (Hunter 2007; Black and Hunter
2012; Hosseini, Modgil, and Rodrigues 2014). However,
these proposals assume an extensive set of common or com-
monsense knowledge with a preference ordering over the ap-
propriateness of any formula for a specific audience. These

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

are demanding assumptions. It is difficult to acquire com-
monsense knowledge, and in particular, there are often gaps
in the explicit knowledge that connects concepts. Relation-
ships between concepts are often known but they are im-
plicit. For instance, different symbols for the same con-
cept are used (e.g. dad and father) or for similar concepts
(showery and rainy), though sometimes such correspon-
dences are context dependent (e.g. in the context of a church,
dad and father often refer to different concepts).

To address this need for a scalable and robust way of con-
necting concepts, we propose in this paper a solution based
on distance measures between semantic concepts. We as-
sume that each semantic concept is represented by a word,
and so in propositional logic, each propositional atom is
a word (or compound word), and in predicate logic, each
predicate, function, and constant, symbol is a word (or com-
pound word). So with a distance measure, we want the dis-
tance between dad and father to be low, and between dad
and grass to be high. Fortunately, there are now some ro-
bust and scalable options for distance measures that we can
use (as itemized below). None of these will be totally cor-
rect, but the error rate could be tolerable, and the benefits of
using them far outweighing this.
Word embeddings Recent developments in deep learning

allow learning of meanings of words in the form of word
embeddings (e.g. Word2Vec (Mikolov et al. 2013) and
GloVe (Pennington, Socher, and Manning 2014)) where
the meaning of an individual word is represented by a
vector. Each entry in the vector represents an aspect of
the meaning of the word, though normally not in human
meaningful terms. Rather it reflects co-occurrence infor-
mation from the training data. Words can be compared by
the cosine similarity of their vector representation (which
is a distance measure), and so the smaller the value, the
more similar the words are (according to the training
data). Some word-embedding models are pre-trained on
a large corpora of text, and have been shown to have good
performance in recognizing similar concepts.

Semantic networks Whilst semantic networks have been
considered in AI for decades, there has been a resur-
gence of interest in them (e.g. knowledge graphs (Paul-
heim 2017)) through the use of machine learning to con-
struct them (e.g. the use of distantly supervised learning
(Mintz et al. 2009)). A semantic network is a directed

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

5729



graph where each node denotes a concept or an attribute
and each arc denotes a relationship between a pair of
nodes. They can be constructed for specific applications
or large general purpose networks can be harnessed such
as WordNet which was developed for organizing over
100K words into sets of synonyms (called synsets) ac-
cording to context plus hypernym and hyponym relation-
ships (Miller 1995), or DBpedia which was developed
to capture a wide range of concepts from Wikipedia in-
cluding people, places, and organizations (Mendes et al.
2011). There are distance measures based on the struc-
ture of the graph (Budanitsky and Hirst 2006).

Logical ontologies Description logics offer more sophisti-
cated options than semantic networks for representing
and reasoning with knowledge about concepts. Some
large ontologies have been developed that can be used as
description logic ontologies such as SNOMED which has
over 350K concepts in biomedicine (Rector and Brandt
2008). Various options for distance measures can be used
based on the structure of the graph some of which are ef-
ficient to compute (Hu et al. 2006).

Lexical analysis There are a number of distance measures
for comparing pairs of words (e.g. Hamming, Jaro, Lev-
enshtein, or longest common sequence distance), and
these offer cheap and scalable options for distance mea-
sures (e.g. (Petroni 2010)). For some applications (e.g.
place names), it may be appropriate to use such distance
measures for determining whether two words are suffi-
ciently similar for them to represent the same concept.

The choice of distance measure depends on how we orga-
nize the words. There are advantages and disadvantages with
each - in particular with regard to scalability (i.e. the scale
of the problems they can be used for), reliability (i.e. the
proportion of words that are correctly identified as denoting
very similar concepts), and applicability (i.e. they are usable
in a wide range of domains or only focused domains). What
we can see is that there are options for identifying similar
words from sets of 100K or more words, across broad do-
mains, with reasonable reliability.

In the rest of the paper, we will review deductive argu-
mentation, and then introduce our solution to understand-
ing enthymemes in two parts. First, we will investigate how
we can use semantic distance measures to find connections
between logical symbols, and thereby allow for connected
symbols to be substituted and so draw inferences that could
not otherwise be made, and second, we will use this with
abduction to find missing premises for enthymemes.

Preliminaries
We assume a finite set of function symbols F . If the arity
of a function symbol is zero, then it is a constant symbol. A
term is a constant symbol or it is of the form f(t1, . . . , tn)
where f ∈ F and t1, . . . , tn are terms. We also assume a
finite set of predicate symbols P . A predicate symbol has
arity greater than or equal to zero. A zero arity predicate
symbol is a propositional atom (e.g. bird or fly). A pos-
itive literal is of the form p(t1, . . . , tn) where p ∈ P and

t1, . . . , tn are terms. Since we have no variables, each posi-
tive literal is ground, and it can be treated as a propositional
atom. (e.g. like(Harry,Sally)). LetA be the set of atoms
(i.e. propositional atoms and positive ground literals) that
can be formed from F and P .

Let L be the set of propositional formulae composed
from atoms A and the logical connectives ∧, ∨, ¬. We use
α,β, γ, δ, φ,ψ, . . . for arbitrary formulae and ∆,Φ,Ψ, . . . for
arbitrary sets of formulae. A knowledgebase ∆ ⊆ L is a finite
set of formulae. We use K for the set of all knowledgebases.
We let ⊢ denote the classical consequence relation, and write
∆ ⊢ � to denote that ∆ is inconsistent. Atoms(∆) gives the
atoms appearing in the formulae in ∆. Let Cn be the con-
sequence closure function (i.e. Cn(∆) = {φ ∣ ∆ ⊢ φ}). For
φ,ψ ∈ L, φ ≡ ψ denotes that φ and ψ are equivalent (i.e.
{φ} ⊢ ψ and {ψ} ⊢ φ). For Φ,Ψ ⊆ L, Φ ≡ Ψ denotes that Φ
and Ψ are equivalent (i.e. Cn(Φ) = Cn(Ψ)).

Deductive Argumentation
In deductive argumentation, an argument is a pair ⟨Φ, α⟩
where Φ ⊆ L is a minimal set such that Φ is consistent and
Φ entails the claim α (Besnard and Hunter 2001). In this
paper, we adapt a version of deductive argumentation that
was proposed for handling enthymemes (Hunter 2007). An
approximate argument is a pair ⟨Φ, α⟩ where Φ ⊆ L and
α ∈ L. This is a very general definition. It does not assume
that Φ is consistent, or that it even entails α. An argument is
a special case of an approximate argument. For an approx-
imate argument ⟨Φ, α⟩, let Support(⟨Φ, α⟩) be Φ, and let
Claim(⟨Φ, α⟩) be α.

Some kinds of approximate arguments include: If Φ ⊢ α,
then ⟨Φ, α⟩ is valid; If Φ /⊢ �, then ⟨Φ, α⟩ is consistent;
If Φ ⊢ α, and there is no Φ′ ⊂ Φ such that Φ′ ⊢ α, then
⟨Φ, α⟩ is minimal; And if Φ ⊢ α, and Φ /⊢ �, then ⟨Φ, α⟩
is expansive (i.e. it is valid and consistent, but it may have
unnecessary premises).

In addition, we require a further kind of approximate ar-
gument that has the potential to be transformed into an argu-
ment: If Φ /⊢ α, and Φ /⊢ ¬α, then ⟨Φ, α⟩ is a precursor (i.e.
it is a precursor for an argument). Therefore, if ⟨Φ, α⟩ is a
precursor, then there exists some Ψ ⊂ L such that Φ∪Ψ ⊢ α
and Φ ∪Ψ /⊢ �, and hence ⟨Φ ∪Ψ, α⟩ is expansive.
Example 1. Let ∆ = {a,¬a ∨ b,c,¬b,b,¬c,¬b ∨ c}.
Some approximate arguments from ∆ that are valid in-
clude {A1,A2,A3,A4,A5,A8} of which {A1,A3,A4,A8}
are expansive, {A2,A4,A8} are minimal, and {A4,A8} are
arguments. Also, some approximate arguments that are not
valid include {A6,A7} of which A6 is a precursor.

A1 = ⟨{a,¬a ∨ b,c,b},b⟩ A2 = ⟨{c,¬c},b⟩
A3 = ⟨{a,¬a ∨ b,c},b⟩ A4 = ⟨{a,¬a ∨ b},b⟩
A5 = ⟨{a,¬a ∨ b,c,¬c},b⟩ A6 = ⟨{¬a ∨ b},b⟩
A7 = ⟨{¬a ∨ b,¬b ∨ c,¬c},b⟩ A8 = ⟨{},a ∨ ¬a⟩
Some observations concerning approximate arguments

include: (1) If ⟨Γ, α⟩ is expansive, then there is a Φ ⊆ Γ
such that ⟨Φ, α⟩ is an argument; (2) If ⟨Φ, α⟩ is minimal, and
⟨Φ, α⟩ is expansive, then ⟨Φ, α⟩ is an argument; (3) If ⟨Φ, α⟩
is an argument, and Ψ ⊂ Φ, then ⟨Ψ, α⟩ is a precursor; and
(4) If ⟨Γ, α⟩ is a precursor, then ⟨Γ, α⟩ is consistent.

5730



An enthymeme is a precursor that can be generated from
an argument (i.e. a precursor ⟨Φ, α⟩ is an enthymeme for ar-
gument ⟨Ψ, α⟩ iff Φ ⊂ Ψ). So if a proponent has an argument
that it wishes to present to a recipient, the intended argu-
ment, then the proponent may send an enthymeme instead
of the intended argument to the recipient.
Example 2. Let u be “you need an umbrella today”, and
r be “the weather report predicts rain”. So for an intended
argument ⟨{r,r→ u},u⟩, the enthymeme sent by the propo-
nent to the recipient may be ⟨{r},u⟩

Since there can be more than one enthymeme that can be
generated from an intended argument, a proponent needs to
choose which to send to a recipient. To facilitate this selec-
tion, the proponent consults what it believes to be common
or commonsense knowledge. We assume that each agent has
a personal knowledgebase ∆, and a common/commonsense
knowledgebase Π. Now consider an agent with intended ar-
gument ⟨Φ, α⟩ that it wants to send to a recipient. So Φ is
a subset of ∆. The agent will remove premises from Φ that
are common/commonsense knowledge. So for an argument
⟨Φ, α⟩, the encodation of ⟨Φ, α⟩ from a proponent is the ap-
proximate argument ⟨Ψ, α⟩, where Ψ is Φ ∖ Π. The result
of this encodation process is either the intended argument or
an enthymeme for that argument. In Example 2, the encoded
argument is ⟨{r},u⟩ when r→ u ∈ Π.

Next, we review some types of counterargument taken
from (Gorogiannis and Hunter 2011). where A and B
are approximate arguments: A is a defeater of B if
Claim(A) ⊢ ¬⋀Support(B); A is an undercut of B if
∃Ψ ⊆ Support(B) s.t. Claim(A) ≡ ¬⋀Ψ; A is a direct
undercut of B if ∃φ ∈ Support(B) s.t. Claim(A) ≡ ¬φ; A
is a defeating rebuttal of B if Claim(A) ⊢ ¬Claim(B).
Example 3. Let ∆ = {a ∨ b,a ↔ b,c → a,¬a ∧
¬b,a,b,c,a → b,¬a,¬b,¬c}. ⟨{a ∨ b,c}, (a ∨ b) ∧ c⟩ is
a defeater of ⟨{¬a,¬b},¬a∧¬b⟩,⟨{¬a∧¬b},¬(a∧b)⟩ is a
undercut of ⟨{a,b,c},a ∧ b ∧ c⟩,⟨{¬a ∧ ¬b},¬a⟩ is a direct
undercut of ⟨{a,b,c},a ∧ b ∧ c⟩, and ⟨{a,a → b},b⟩ is a
defeating rebuttal of ⟨{¬a ∧ ¬b,¬c},¬(b ∨ c)⟩.

In this paper, an argument graph is a graph where each
node is an approximate argument, and each arc denotes an
attack as identified on the intended argument. Extensions
can be identified using Dung’s semantics (Dung 1995).

We assume that some or all of the approximate arguments
in the argument graph are given to an agent (the recipient).
For instance, the graph could be constructed incrementally
in a dialogue: With each cycle of the dialogue, an agent
could receive an enthymeme from the other agent, which it
needs to understand, and then it responds with its own ap-
proximate argument.
Example 4. Consider an agent receiving the enthymeme at
the root in the top argument graph, and replying with the en-
thymeme at the leaf. The corresponding intended arguments
are in the bottom argument graph.

⟨{b},a⟩ ⟨{¬a ∨ ¬b ∨ ¬c},¬a ∨ ¬b⟩

⟨{b,b → a},a⟩ ⟨{¬a ∨ ¬b ∨ ¬c,c},¬a ∨ ¬b⟩

Understanding via Substitution
For a set of predicate symbols P and a set of function sym-
bols F , a distance measure D is a function D ∶ P ∪ F ×
P ∪ F → [0,∞] that satisfies: (identity of indiscernibles)
D(s1, s2) = 0 when s1 = s2; (symmetry) D(s1, s2) =
D(s2, s1); and (triangle inequality)D(s1, s2) ≤D(s1, s3)+
D(s3, s2). We assume that the predicate and function sym-
bols are words that represent concepts, and we use a dis-
tance measure to capture semantic distance between these
concepts. The nearer two symbols (i.e. words) are according
to the distance measure, the closer the concepts conveyed by
the symbols.

Example 5. In the following semantic network, each node
is a set of synonyms, and an arc denotes the hyponym rela-
tionship. The distance measure D is the number of arcs tra-
versed in connecting two words. Hence, D(dad,father) =
0, D(dad,parent) = 1, and D(dad,mum) = 2.

{father,dad,papa} {mother,mum,mom}

{parent}

We use a distance measure to specify changes in the sym-
bols in formulae. A swap is a pair of symbols, denoted
s1/s2 where s1, s2 ∈ P , or s1, s2 ∈ F . For each swap
s1/s2, we call s1 the outgoing symbol and s2 the incom-
ing symbol. When a swap s1/s2 is applied to a formula φ,
s1 is substituted by s2 throughout φ. So for example, for
father(John,Sue), the application of father/dad will re-
sult in dad(John,Sue), and the application of Sue/Susan
will result in dad(John,Susan). A swap s1/s2 is reflexive
iff s1 = s2. A swap s1/s2 is a valid swap for distance mea-
sure D and threshold τ ∈ [0,∞] iff D(s1, s2) ≤ τ . Hence,
for a swap s1/s2, if s1 = s2 or τ =∞, then s1/s2 is valid.

A substitution is a set of swaps {s1/s′1, . . . , sn/s′n} such
that there is at most one swap for each outgoing symbol (i.e.
for all si/s′i, sj/s′j ∈ {s1/s′1, . . . , sn/s′n}, si ≠ sj), and no
symbol is both incoming and outgoing unless it is for a re-
flexive swap (i.e. for all si/s′i, sj/s′j ∈ {s1/s′1, . . . , sn/s′n},
s′i ≠ sj unless si/s′i and sj/s′j are reflexive). For exam-
ple, {a/b,d/c} is a substitution, whereas {a/b,a/c} and
{a/b,b/c} are not. Let S be the set of all substitutions.
A substitution {s1/s′1, . . . , sn/s′n} is a valid substitution
for distance measure D and threshold τ ∈ [0,∞] iff each
si/s′i ∈ {s1/s′1, . . . , sn/s′n} is valid for D and τ .

The next definition is a set of rewrite rules for applying a
substitution to an arbitrary formula and to sets of formulae.
If the same symbol occurs multiple times, then all occur-
rences of that symbol are changed in the same way.

Definition 1. Let S be a valid substitution. The substitute
operator, denoted ⊕, is defined by rewrite rules as follows:
(1) for a term f(t1, . . . , tn) where f is arity zero or more,
f(t1, . . . , tn)⊕S ⇒ f ′(t1 ⊕S, . . . , tn ⊕S) where f/f ′ ∈ S
otherwise f = f ′; (2) for an atom p(t1, . . . , tn) where p is
arity zero or more, p(t1, . . . , tn)⊕S ⇒ p′(t1⊕S, . . . , tn⊕S)
where p/p′ ∈ S otherwise p = p′; (3) for a formula ¬φ, ¬φ⊕
S ⇒ ¬(φ⊕S); (4) for formulae φ#ψ, where # ∈ {∧,∨,→},

5731



φ#ψ⊕S ⇒ (φ⊕S)#(ψ⊕S); and (5) for a set of formulae
Γ, Γ⊕ S ⇒ {φ⊕ S′ ∣ φ ∈ Γ and S′ ⊆ S}.

So the rewrite rules are applied exhaustively, and the re-
sult is the substituted formula (or set of formulae).
Example 6. For S = {father/dad,Sue/Susan} we
get father(John,Sue)→ parent(John,Sue) ⊕ S rewrit-
ten to dad(John,Susan)→ parent(John,Susan) and
father→ parent⊕ S rewritten to dad→ parent.
Example 7. For S = {driven/chauffeured,John/Jon}
we get driven(the car(red),by(John)) ⊕ S is rewritten
to chauffeured(the car(red),by(Jon)).
Example 8. For Γ = {a(c,e)} and S = {a/b,c/d,g/h}, we
get Γ⊕ S = {a(c,e),b(c,e),a(d,e),b(d,e)}.

Substitution can be used on a lazy basis. In other words,
if we have an enthymeme that we wish to understand, we
look for appropriate substitutions in order to decode it. An
alternative would be to augment a knowledgebase with all
variants of the formula in the knowledgebase. For example,
if we have the formula dad → parent in the knowledge-
base, and the swap dad/father, then we could add variants
such as father→ parent to the knowledgebase.

However, augmenting the knowledgebase may involve
adding a very large number of variants, and thereby make
it difficult to maintain and use. For instance, suppose the
knowledgebase is a set of k clauses each with 4 disjuncts
(i.e. formulae of the form φ1 ∨ φ2 ∨ φ3 ∨ φ4), and each dis-
junct φi has n valid swaps, then the knowledgebase would
have k×n4 variants. So if there are 100 clauses in the knowl-
edgebase, and each disjunct has 4 synonyms, then the aug-
mented knowledgebase would have 100 × 54 = 62.5K vari-
ants. So there is a distinct advantage in using subsitution as
required rather than augmenting the knowledgebase.

We now consider properties of substitution to show that
the operation is well-behaved. The empty substitution is
idempotent (i.e. if S = ∅, then φ⊕S = φ). An identity substi-
tuion is also idempotent (i.e. if S = {s1/s1, . . . , sn/sn}, then
φ⊕S = φ). Since S is based on the symbols of the language,
the language is closed under substitutions (i.e. L = L ⊕ S
for all substitutions S ∈ S). However, substitution is not re-
versible in general: For formula φ and substitution S, there
is not necessarily a substitution S′ such that (φ⊕S)⊕S′ = φ
as illustrated by the following example.
Example 9. Let φ = nickname(Andrew,Andy) with
the substitution S = Andy/Andrew means φ ⊕ S =
nickname(Andrew,Andrew). So there is no substitution S′
such that (φ⊕ S)⊕ S′ = φ.

Substitution does not decrease the consequences from the
knowledge.
Proposition 1. For Γ ∈ K, S ∈ S , Cn(Γ) ⊆ Cn(Γ⊕ S).
Proof. By definition, Γ⊕ S ⇒ {φ⊕ S′ ∣ φ ∈ Γ and S′ ⊆ S}.
Also Γ = {φ⊕∅ ∣ φ ∈ Γ}. Hence, Cn(Γ) ⊆ Cn(Γ⊕ S).

As a corollary, if A is an argument from Γ (i.e.
Support(A) ⊆ Γ), then A is an argument from Γ ⊕ S for
any substitution S. However, a substitution can cause a con-
sistent set of formulae to become inconsistent as in the fol-
lowing example.

Example 10. For S = {Nik/Niki,dad/father}, and
Γ = {dad(Nik,Jo),¬father(Niki,Jo)}, Γ ⊕ S is
{dad(Nik,Jo), ¬father(Niki,Jo), father(Nik,Jo),
dad(Niki,Jo), father(Niki,Jo) } which is inconsistent.

Consequences are maintained under substitution as shown
next, and hence there is equivalence over formulae under
substitution (i.e. if φ ≡ ψ, then φ⊕ S ≡ ψ ⊕ S).
Proposition 2. Let S ∈ S . If Γ ⊢ φ, then Γ⊕ S ⊢ φ⊕ S
Proof. For each set of formulae Γ, there is a set of clauses
Ψ such that Γ ≡ Ψ. So Γ ⊢ φ iff Ψ ⊢ φ. For clauses
σ ∨ φ1 ∨ . . . ∨ φn and ¬σ ∨ ψ1 ∨ . . . ∨ ψm, φ1 ∨ . . . ∨ φn ∨
ψ1 ∨ . . . ∨ ψm is a resolvent. Let Resolvents(Ψ) be the set
of resolvents of Ψ. So Ψ ⊢ φ iff Resolvents(Ψ ∪ Θ) ⊢ �
where Θ is the set of clauses obtained from the negation of
φ (i.e. Θ ≡ {¬φ}). Furthermore, if ψ ∈ Resolvents(Ψ), then
ψ ⊕ S ∈ Resolvents(Ψ ⊕ S). So if Resolvents(Ψ ∪Θ) ⊢ �,
then Resolvents((Ψ ∪ Θ) ⊕ S) ⊢ �. Hence, Γ ⊢ φ implies
Γ⊕ S ⊢ φ⊕ S.

Proposition 3. Let S ∈ S . Cn(Γ)⊕ S ⊆ Cn(Γ⊕ S).
Proof. We extend the proof for Proposition 2. Assume ψ ∈
Cn(Γ). So if Θ ≡ {¬ψ} and Resolvents(Ψ ∪ Θ) ⊢ �, then
Resolvents((Ψ ∪ Θ) ⊕ S) ⊢ �. So ψ ⊕ S ∈ Cn(Γ ⊕ S).
Therefore Cn(Γ) ⊕ S ⊆ Cn(Γ ⊕ S). Now, we consider a
counterexample for Cn(Γ ⊕ S) ⊆ Cn(Γ) ⊕ S. Let Γ = {a ∨
b,¬c ∨ d} and S = {c/b}. So {a ∨ d} ∈ Cn(Γ ⊕ S) but
{a ∨ d} /∈ Cn(Γ)⊕ S.

Substitution is monotonic. So increasing the number of
swaps does not decrease the set of inferences. This is a gen-
eralization of Proposition 2.
Proposition 4. Let S,S′ ∈ S . If Γ⊕ S ⊢ φ⊕ S, and S ⊆ S′,
then Γ⊕ S′ ⊢ φ⊕ S.

However, if the set of outgoing symbols is maintained,
but the set of incoming symbols is decreased, then the set of
inferences does not necessarily increase or decrease.
Example 11. Let Γ = {a,b → c,d → e}. For S1 =
{b/a,d/f} and S2 = {b/a,d/a}, the set of outgoing sym-
bols is the same in both substitutions, but the set of incom-
ing symbols is decreased in S2, and Cn(Γ⊕S1) is neither a
subset nor superset of Cn(Γ⊕ S2).

Counterargument relationships (i.e attack relationships)
are also maintained under substitution as shown next.
Proposition 5. Let S ∈ S . If ⟨Φ, α⟩ is a defeater (resp.
undercut, direct undercut, or defeating rebuttal) for ⟨Ψ, β⟩,
then ⟨Φ⊕ S,α⊕ S⟩ is a defeater (resp. undercut, direct un-
dercut, or defeating rebuttal) for ⟨Ψ⊕ S,β ⊕ S⟩.
Proof. Assume ⟨Φ, α⟩ is a defeater for ⟨Ψ, β⟩. Hence α ⊢
¬⋀Ψ. Therefore, by Proposition 2, α ⊕ S ⊢ (¬⋀Ψ) ⊕ S.
Also by Proposition 2, Φ ⊢ α implies Φ ⊕ S ⊢ α ⊕ S, and
Ψ ⊢ β implies Ψ ⊕ S ⊢ β ⊕ S. Therefore, ⟨Φ ⊕ S,α ⊕ S⟩
is a defeater for ⟨Ψ ⊕ S,β ⊕ S⟩. Proofs for undercut, direct
undercut, and defeating rebuttal, are similar.

When we assume that the set of symbols is finite, it is
straightforward to show that substitution is decidable.

5732



build construct 0.26 fabricate construct 0.7
father dad 0.37 house bungalow 0.72
house home 0.5 train school 0.72
like love 0.51 saloon barroom 0.73
fish water 0.54 fish apple 0.79
saloon bar 0.61 teacher tree 0.88
father parent 0.69 truck cat 0.91

Table 1: Examples using the pre-trained GloVe word embed-
ding (6B.300d). Each entry is a pair of words and the cosine
similarity distance between them.

Proposition 6. Determining whether or not there is a sub-
stitution S ⊆ S such that Γ ⊕ S ⊢ φ ⊕ S holds is decidable
when Γ ∈ K and and φ ∈ L.

Proof. Assume the set of atoms A is finite. So the set of
substitutions S is finite. For each S ∈ S , determining Γ⊕S ⊢
φ ⊕ S is decidable for propositional logic. So determining
whether or not there is a substitution S such that Γ ⊕ S ⊢
φ⊕ S holds is decidable.

Word embeddings are a promising way of finding sub-
stitutions (see Table 1 for examples). Pre-trained embed-
dings contain vocabularies of 100K or more words, and are
trained across wide varieties of text (e.g. GloVe (Pennington,
Socher, and Manning 2014)). As seen in Table 1, we might
set a threshold under 0.75 for getting useful swaps. Though
swaps might not always be correct as they reflect words that
appear frequently in the same text but are not closely related
concepts (e.g. for fish and water) or they only work in
some contexts (e.g. for train and school).

In order to investigate the viability of using pre-trained
word embeddings, we can use WordNet to compare the dis-
tances obtained when pairs of words are in the same synset,
and when they are in different synsets. So we use Word-
Net as the gold standard for pairs of synonyms and pairs of
non-synonyms. Even when we restrict the number of arcs
between the two different synsets, the average distance (co-
sine similarity of the word vector representation) between
different words in the same synset are lower than different
words in different synsets. As an example, for the subnet-
work of WordNet rooted at the noun artefact, there are
7319 synsets, and in these there are 4830 different non-
compound nouns (i.e. tokens without underscore). There are
fewer words than synsets because each word can occur in
multiple synsets. In this example, for pairs of different words
in the same (respectively different) synset(s), the mean dis-
tance according to GloVe is 0.79 with standard deviation
of 0.19 (respectively 0.97 with standard deviation of 0.10).
Moveover, any pair of words with a distance of 0.8 (or be-
low) is much more likely to be in the same synset than
not. Similar results were obtained for other nouns in other
parts of WordNet and for verbs (see appendix1). If GloVe or
Word2Vec is trained for a specific domain, then a substantial
improvement in discrimination between closely related con-
cepts and less closely related concepts could be expected.

1Appendix: www0.cs.ucl.ac.uk/staff/a.hunter/papers/aaai22.zip

A key advantage of word embeddings is that they provide
connections between words based on co-occurrence, and so
provide a scaleable and quite robust proxy for when one
word can be substituted for another. Furthermore, these are
not restricted to identifying synonyms but also include iden-
tifying a wider range of closely related concepts. However,
substitutions as presented in this section, are not qualified by
context, and may make some incorrect connections.

Understanding via Abduction
The substitution approach involves changing formulae to al-
low inferences to be made. Essentially, it allows for connec-
tions between atoms arising in the formulae in the premises.
However, in order to understand some enthymemes, we
also need to bring in further default knowledge via ab-
duction. Consider the enthymeme ⟨{eagle},fly⟩. Suppose
we have default knowledge that includes bird→ fly, and
D(eagle,bird) < τ (and so eagle/bird is a valid swap),
then by abduction we can identify this knowledge.

Definition 2. An abductive solution for an approximate ar-
gument ⟨Φ, ψ⟩ is a pair (Γ, S) where Γ ⊆ Π and Π is a set of
default knowledge and a valid S ⊆ S w.r.t. distance measure
D and threshold τ such that

• (Φ ∪ Γ)⊕ S ⊢ ψ (entailment)
• (Φ ∪ Γ′)⊕ S /⊢ ψ for all Γ′ ⊂ Γ (min assumptions)
• (Φ ∪ Γ)⊕ S′ /⊢ ψ for all S′ ⊂ S (min swaps)

An abductive solution (Γ, S) is consistent for ⟨Φ, ψ⟩ iff (Φ∪
Γ)⊕ S /⊢ �.

Obviously, there can be multiple abductive solutions for
an enthymeme ⟨Φ, ψ⟩. Also, it is possible for an abductive
solution (Γ, S) to be such that either Γ = ∅ or S = ∅. How-
ever, (Γ, S) is an abductive solution for ⟨Φ, ψ⟩ where Φ /⊢ ψ
iff Γ ≠ ∅ or S ≠ ∅. If ⟨Φ, ψ⟩ is inconsistent, or if ⟨Φ, ψ⟩
is valid, then there is always an abductive solution (Γ, S)
for ⟨Φ, ψ⟩ where Γ = ∅ and S = ∅. Also, for any argument
⟨Φ, ψ⟩, if there is a formula ψ′ such that Φ ⊢ ψ′, and ψ and
ψ′ have isomorphic syntax trees, then there is an abductive
solution (∅, S) (i.e. ψ ⊕ S ≡ ψ′).

We also may want to make the connection identified by
the distance measure explicit. For this, we use the follow-
ing definition to decode the abductive solution for an ap-
proximate argument. Essentially, for each atom φ appear-
ing as subformulae in the formula in the premises and de-
fault knowledge, an implicational formula of the form φ →
(φ⊕ S′) is obtained where S′ ⊆ S and S′ ≠ ∅.

Definition 3. For an abductive solution (Γ, S) for an
approximate argument ⟨Φ, ψ⟩, a decoded argument is
⟨Φ ∪ Γ ∪ Ex(Φ,Γ, S), ψ⟩ where Ex(Φ,Γ, S) = {φ → (φ ⊕
S) ∣ φ ∈ Atoms(Φ ∪ Γ) and S′ ⊆ S and S′ ≠ ∅}.

If each φ ∈ Atoms(Φ∪Γ) is a propositional atom (i.e. not
a positive ground literal), then Ex(Φ,Γ, S) = {φ→ (φ⊕S) ∣
φ ∈ Atoms(Φ ∪ Γ)}.
Example 12. For enthymeme ⟨{eagle},fly⟩, the decoded
argument is ⟨{eagle,eagle→ bird,bird→ fly},fly⟩.
where bird→ fly is default knowledge, and
D(eagle,bird) < τ (i.e. eagle/bird ∈ S).

5733



A decoded argument therefore incorporates knowledge
about the substitution and default knowledge used in the ab-
ductive solution, and therefore provides the implicit knowl-
edge that allows for the claim to be derived from the conclu-
sions using the classical consequence relation as captured in
the following result.

Proposition 7. If (Γ, S) is an abductive solution for ⟨Φ, ψ⟩,
and ∆, Θ, and Ψ are sets of clauses s.t. ∆ ≡ Φ ∪ Γ, Θ ≡
{¬ψ}, and Ψ ≡ Ex(Φ,Γ, S), then Resolvents((∆∪Θ)⊕S) =
Resolvents(∆ ∪Ψ ∪Θ).

Proof. φ ∈ Resolvents((∆ ∪Θ) ⊕ S), iff there are φ′, φ′′ ∈
Resolvents((∆∪Θ)⊕S) s.t. φ is a resolvent of φ′ and φ′′, iff
there is an Ω ⊆ (∆∪Θ)⊕S s.t. φ ∈ Resolvents(Ω), iff there
is a Ξ ⊆ (∆ ∪Θ) and S′ ⊆ S s.t. φ ∈ Resolvents(Ξ⊕ S′), iff
there is an Υ ⊆ (∆∪Θ) and Ψ′ ⊆ Ψ s.t. φ ∈ Resolvents(Υ∪
Ψ′), iff φ ∈ Resolvents(∆ ∪Ψ ∪Θ)

The above result implies that entailment and consistency
coincide for an argument and a decoded argument, and
hence we get the following.

Proposition 8. If (Γ, S) is an abductive solution
(resp. a consistent abductive solution) for ⟨Φ, ψ⟩, then
⟨Φ ∪ Γ ∪ Ex(Φ,Γ, S), ψ⟩ is valid (resp. expansive).

To gain insights into the nature of abductive solutions, we
view abductive solutions via a consequence relation.

Definition 4. Let D be a distance measure and τ be a
threshold. The enthymeme inference relation, denoted⊩τD,
is defined as follows: Φ ⊩τD ψ iff there is an abductive solu-
tion (Γ, S) for ⟨Φ, ψ⟩ w.r.t τ and D.

Obviously, the enthymeme inference relation collapses to
the classical consequence relation when the abductive solu-
tion is empty (i.e. Φ ⊢ ψ iff Γ = ∅ and S = ∅ and Φ ⊩τD ψ).
Also, Φ ⊩τD ψ iff Φ ⊩τ ′D ψ and τ ′ ≤ τ . So it is supraclassical.
Further properties of the enthymeme consequence relation
are the following which are adapted from (Gärdenfors and
Makinson 1994).

• Reflexivity: Φ ∪ {α} ⊩τD α

• Equiv: Φ ∪ {β} ⊩τD γ if Φ ∪ {α} ⊩τD γ and ⊢ α↔ β

• Monotonicity: Φ ∪ {β} ⊩τD α if Φ ⊩τD α

• Cut: Φ ⊩τD α if Φ ⊩τD β and Φ ∪ {β} ⊩τD α

• And: Φ ⊩τD α ∧ β if Φ ⊩τD α and Φ ⊩τD β

• Or: Φ∪{α∨β} ⊩τD γ if Φ∪{α} ⊩τD γ and Φ∪{β} ⊩τD γ

Proposition 9. The enthymeme inference relation satisfies
Reflexivity, Equiv, Cut, Monotonicity, And, and Or.

Proof. (Reflexivity) If α ∈ Φ, then (∅,∅) is the solution,
and reflexivity holds. (Equiv) Assumeα ≡ β and Φ∪{α} ⊩τD
γ. So there is a solution (Γ, S) for ⟨Φ∪{α}, γ⟩. So (Γ, S) is
a solution for ⟨Φ∪{β}, γ⟩. So Φ∪{β} ⊩τD γ. (Monotonicity)
Assume Φ ⊩τD α. So there is a solution (Γ, S) for ⟨Φ, α⟩.
So there is a solution (Γ′, S′) for ⟨Φ ∪ {β}, α⟩ where Γ′ ⊆
Γ and S′ ⊆ S. So Φ ⊩τD β. (Cut) Assume Φ ⊩τD β and
Φ∪{β} ⊩τD α. So there is a solution (Γ1, S1) for ⟨Φ, β⟩ and
there is a solution (Γ2, S2) for ⟨Φ ∪ {β}, α⟩. So there is a
solution (Γ, S) for ⟨Φ, α⟩where Γ ⊆ Γ1∪Γ2 and S ⊆ S1∪S2.

Algorithm 1: The SUB algorithm where from atoms A,
Literals(A) is the set of literals, Clauses(A) is the set of
clauses each with 3 literals, and Subs(A, n) is the set of sub-
stitutions formed with n incoming symbols.
Input: Number of incoming symbols n in a substitution
Output: True if selection is unsatisfiable

A is a randomly selected set of atoms
β is a randomly selected literal from Literals(A)
∆ is a randomly selected subset from Clauses(A)
S is a randomly selected substitution from Subs(A, n)
return UNSAT((∆⊕ S) ∪ {¬β})

So Φ ⊩τD α. (And) Assume Φ ⊩τD α and Φ ⊩τD β. So there
are solutions (Γ1, S2) for ⟨Φ, α⟩ and (Γ2, S2) for ⟨Φ, β⟩. So
there is a solution (Γ, S) for ⟨Φ, α ∧ β⟩where Γ′ ⊆ (Γ1∪Γ2)
and S ⊆ (S1∪S2). So Φ ⊩τD α∧β. (Or) Assume Φ∪{α} ⊩τD
γ and Φ ∪ {β} ⊩τD γ . So there are solutions (Γ1, S2) for
⟨Φ ∪ {α}, γ⟩. and (Γ2, S2) for ⟨Φ ∪ {β}, γ⟩. So there is a
solution (Γ, S) for ⟨Φ ∪ {α ∨ β}, γ⟩ where Γ′ ⊆ (Γ1 ∪ Γ2)
and S ⊆ (S1 ∪ S2). So Φ ∪ {α ∨ β} ⊩τD γ.

So substitutions and abduction of default knowledge are
well-integrated with respect to the logical language. Our ap-
proach may be viewed as form of abductive reasoning with
abstraction axioms (Console and Dupré 1994).

Computing with Substitution and Abduction
We now consider our proposal from a computational point
of view. See appendix1 for code. First, we consider how the
cardinality of the substitution, and the proportion of atoms
that appear as incoming symbols in the substitution, affect
whether or not an inference follows from a set of clauses.
To investigate this, we implemented the SUB algorithm (Al-
gorithm 1) which randomly selects a set of atoms A, a set
of clauses ∆, a query β, and a substitution S, and then calls
UNSAT((∆⊕ S) ∪ {¬β}) which is a call to a SAT solver. If
the algorithm returns TRUE, the set (∆⊕S)∪{¬β} is incon-
sistent and hence the query follows from ∆⊕S, whereas if it
returns FALSE, the set (∆⊕S)∪{¬β} is consistent and hence
the query does not follow from ∆ ⊕ S. The SUB algorithm
is coded in Python, and uses the PySAT implementation (Ig-
natiev, Morgado, and Marques-Silva 2018) that incorporates
a range of SAT solvers (e.g. Glucose3).

Using Algorithm 1, we undertook an empirical investi-
gation on the number of substitutions required to influence
the inferences that follow from a knowledgebase. The results
are reported in Figure 1. The consistency ratio is the propor-
tion of runs that are consistent (i.e. the inference does not
follow). So we see that increasing the cardinality of the sub-
stitution (i.e. the number of swaps in the substitution), the
number of inferences rises. Each line in Figure 1 denotes
the number of atoms in the language. Since, the number of
incoming atoms is fixed, decreasing the number of atoms
means that the ratio of incoming atoms to all atoms rises.
So for each line in Figure 1 going from top to bottom, the
consistency ratio falls. In other words, increasing the ratio

5734



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Cardinality of substitution

C
on

si
st

en
cy

ra
tio

25
20
17
15
13
10

Figure 1: Experiments with the SUB algorithm (Algorithm
1). The knowledgebase size is 50 clauses with each substitu-
tion having 10 incoming symbols. Each line is for a specific
number of atoms in the language as defined in the legend
(top right corner). Consistency ratio is the proportion out of
100 runs where the selection is consistent.

of incoming atoms to all atoms, means the number of infer-
ences rises. These results show how substitution size, and
ratio of incoming atoms to all atoms, can effect the number
of inferences we get from a knowledgebase.

Next we consider a simple algorithm to compute ab-
ductive solutions (Algorithm 2). It considers smaller sets
of defaults and substitutions before considering larger sets
thereby ensuring minimality. Every pair (Γ, S) returned by
the algorithm is an abductive solution, and if there is an ab-
ductive solution, then the algorithm will find one.

Proposition 10. Let ∆ and Π be sets of clauses and β
be a literal. (1) If ABDUCE(∆,Π, β,S) returns (Γ, S), then
(Γ, S) is an abductive solution of (∆, β). (2) If there is an
abductive solution of (∆, β), then there is a (Γ, S) such that
ABDUCE(∆,Π, β,S) returns (Γ, S).

Proof. (1) Assume ABDUCE(∆,Π, β,S) returns (Γ, S). So
there is a S ⊆ S and Γ ⊆ Π s.t. UNSAT(((∆ ∪ Γ) ⊕ S) ∪
{¬β}), i.e. the entailment condition, and there is no S′ ⊂ S
s.t. UNSAT(((∆∪Γ)⊕S′)∪{¬β}), i.e. the minimum swaps
condition, and there is no Γ′ ⊂ Γ s.t. UNSAT(((∆ ∪ Γ′) ⊕
S)∪{¬β}), i.e. the minimum assumptions condition. Hence,
(Γ, S) is an abductive solution. (2) Follows similarly.

As an indication of the performance, for a knowledgebase
of 100 clauses, a set of 10 defaults, and a substitution of 10
swaps, with 5 outing symbols, randomly generated from 20
atoms, the ABDUCE algorithm takes 0.22 seconds (average of
50 runs) on a Windows 10 laptop (AMD A10 Radeon R8
with 8GB RAM). Since the implementation naively consid-
ers each subset of substitutions and defaults for finding ab-
ductive solutions, it does not scale well. However, if we can
accept approximate abductive solutions (i.e. a set of defaults
and a substitution that is sufficient for deriving the query, but
is not necessarily minimal), then we can scale the algorithm

Algorithm 2: The ABDUCE algorithm where ∣.∣ returns the
cardinality of the set.
Input: ∆ and Π are sets of clauses, β is a literal, and S is a
set of substitutions.
Output: Abductive solution (Γ, S).

for n = 0 to ∣S ∣ do
for m = 0 to ∣Π∣ do

for next (Γ, S) s.t. ∣S∣ = n and ∣Γ∣ =m do
if UNSAT(((∆ ∪ Γ)⊕ S) ∪ {¬β}) then

return (Γ, S)
return No abductive solution

substantially (e.g. we can identify a non-minimal solution
for a knowledgebase of 1000 clause, 1000 defaults, a sub-
stitution of 100, with 100 atoms, of which 50 are incoming
symbols, in 0.24 secs, as an average of 50 runs).

Discussion
The proposal in this paper can be used as part of a solution
to bridge argument mining and logic-based argumentation.
Argument mining can identify premises and claims within
text, whereas logic-based argumentation can be used to build
arguments from logical formulae so that the premises im-
ply the claim, and this can be constructed or checked al-
gorithmically. To bridge these two approaches, we can ex-
tract premises and claims from text using argument mining,
and then represent the premises and claims by logical for-
mulae. But as arguments in text are enthymemes, there will
be logical formulae missing. With our proposal, we can look
for appropriate commonsense knowledge and substitutions,
and then automatically check consistency or validity of the
logic-based arguments. Decodings might be incorrect, but
this may be tolerable for example when a dialogue allows
for the participants to ask questions and offer clarifications
(e.g. (Xydis et al. 2020)). The decoded enthymemes can
then be used for tasks such as updating an argument graph
(e.g. (Mailly 2016)), fusion (e.g. (Santini, Jøsang, and Pini
2018)), or explanations (e.g. (Becker et al. 2020)).

In future work, we will investigate extending the approach
to other approaches to structured argument including AS-
PIC+ (Prakken 2010), ABA (Toni 2014), and defeasible
logic programming (Garcı́a and Simari 2004), we will in-
vestigate more efficient algorithms (e.g. based on (Koitz-
Hristov and Wotawa 2020)), we will quantify the uncertainty
of a decoding being correct, and then use this in proba-
bilistic argumentation, we will investigate harnessing richer
non-monotonic formalisms for representing commonsense
knowledge (e.g. (Brewka 1991; Mueller 2006; Davis 2017;
D’Asaro et al. 2020; Vassiliades et al. 2020)), and we will
investigate how we can harness richer language models for
contextualized word embeddings (e.g. Elmo (Peters et al.
2018) and BERT (Chang et al. 2019)) in order to identify,
represent, and reason with, context-sensitive substitutions.

References
Atkinson, K.; Baroni, P.; Giacomin, M.; Hunter, A.;
Prakken, H.; Reed, C.; Simari, G.; Thimm, M.; and Villata,

5735



S. 2017. Towards Artificial Argumentation. AI Magazine,
38(3): 25–36.
Becker, M.; Hulpus, I.; Opitz, J.; Paul, D.; Kobbe, J.; Stuck-
enschmidt, H.; and Frank, A. 2020. Explaining arguments
with background knowledge. Datenbank-Spektrum, 20(2):
131–141.
Besnard, P.; and Hunter, A. 2001. A logic-based theory of
deductive arguments. Artificial Intelligence, 128: 203–235.
Black, E.; and Hunter, A. 2012. A relevance-theoretic frame-
work for constructing and deconstructing enthymemes. J.
Logic and Computation, 22(1): 55–78.
Brewka, G. 1991. Nonmonotonic Reasoning: Logical Foun-
dations of Commonsense. Cambridge University Press.
Budanitsky, A.; and Hirst, G. 2006. Evaluating WordNet-
based measures of lexical semantic relatedness. Computa-
tional Linguistics, 32(1): 13–47.
Chang, M.; Toutanova, K.; Lee, K.; and Devlin, J. 2019.
Language Model Pre-training for Hierarchical Document
Representations. CoRR, abs/1901.09128.
Console, L.; and Dupré, D. 1994. Abductive reasoning with
abstraction axioms. In Foundations of Knowledge Represen-
tation and Reasoning, volume 810, 98–112. Springer.
D’Asaro, F. A.; Bikakis, A.; Dickens, L.; and Miller, R.
2020. Probabilistic reasoning about epistemic action nar-
ratives. Artificial Intelligence, 287: 103352.
Davis, E. 2017. Logical Formalizations of Commonsense
Reasoning: A Survey. Journal of Artificial Intellegence Re-
search, 59: 651–723.
Dung, P. 1995. On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artificial Intelligence,
77(2): 321–358.
Garcı́a, A.; and Simari, G. 2004. Defeasible logic program-
ming: an argumentative approach. Theory and Practice of
Logic Programming, 4(1-2): 95–138.
Gärdenfors, P.; and Makinson, D. 1994. Nonmonotonic
Inference Based on Expectations. Artificial Intelligence,
65(2): 197–245.
Gorogiannis, N.; and Hunter, A. 2011. Instantiating ab-
stract argumentation with classical logic arguments: Pos-
tulates and properties. Artificial Intelligence, 175(9-10):
1479–1497.
Hosseini, S.; Modgil, S.; and Rodrigues, O. 2014. En-
thymeme construction in dialogues using shared knowledge.
In Proc. of COMMA’14, volume 266 of FAIA, 325–332. IOS
Press.
Hu, B.; Kalfoglou, Y.; Alani, H.; Dupplaw, D.; Lewis, P.; and
Shadbolt, N. 2006. Semantic Metrics. In Proc. of EKAW’06,
volume 4248 of LNCS, 166–181. Springer.
Hunter, A. 2007. Real arguments are approximate argu-
ments. In Proc. of AAAI’07, 66–71. AAAI Press.
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018.
PySAT: A Python Toolkit for Prototyping with SAT Ora-
cles. In Proc. of SAT’18, volume 10929 of LNCS, 428–437.
Springer.

Koitz-Hristov, R.; and Wotawa, F. 2020. Faster horn diag-
nosis - a performance comparison of abductive reasoning al-
gorithms. Applied Intelligence, 50(5): 1558–1572.
Mailly, J. 2016. Using enthymemes to fill the gap between
logical argumentation and revision of abstract argumenta-
tion frameworks. CoRR, 1603.08789.
Mendes, P.; Jakob, M.; Garcı́a-Silva, A.; and Bizer, C. 2011.
DBpedia spotlight: shedding light on the web of documents.
In Proc. of I-SEMANTICS’11, 1–8. ACM.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient estimation of word representations in vector space.
CoRR, 1301.3781.
Miller, G. 1995. WordNet: A lexical database for English.
Communications of the ACM, 38(11): 39–41.
Mintz, M.; Bills, S.; Snow, R.; and Jurafsky, D. 2009. Dis-
tant supervision for relation extraction without labeled data.
In Proc. of ACL’09, 1003–1011. Association for Computer
Linguistics.
Mueller, E. T. 2006. Commonsense Reasoning. Morgan
Kaufmann. ISBN 0-12-369388-8.
Paulheim, H. 2017. Knowledge graph refinement: A survey
of approaches and evaluation methods. Semantic Web, 8(3):
489–508.
Pennington, J.; Socher, R.; and Manning, C. 2014. GloVe:
Global vectors for word representation. In Proceedings of
(EMNLP)’14, 1532–1543.
Peters, M.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark,
C.; Lee, K.; and Zettlemoyer, L. 2018. Deep Contextualized
Word Representations. In Proc. of NAACL-HLT’18, 2227–
2237. CL.
Petroni, F. 2010. Measures of lexical distance between lan-
guages. Physica A: Statistical Mechanics and its Applica-
tions, 11(1): 2280–2283.
Prakken, H. 2010. An abstract framework for argumenta-
tion with structured arguments. Argument and Computation,
1(2): 93–124.
Rector, A.; and Brandt, S. 2008. Viewpoint paper: Why do
it the hard way? The case for an expressive description logic
for SNOMED. J. American Medical Informatics Associa-
tion, 15(6): 744–751.
Santini, F.; Jøsang, A.; and Pini, M. 2018. Are my arguments
trustworthy? Abstract argumentation with subjective logic.
In Proc. of FUSION’18, 1982–1989. IEEE.
Toni, F. 2014. A tutorial on assumption-based argumenta-
tion. Argument and Computation, 5(1): 89–117.
Vassiliades, A.; Patkos, T.; Bikakis, A.; Flouris, G.; Bassil-
iades, N.; and Plexousakis, D. 2020. Preliminary notions
of arguments from commonsense knowledge. In Proc. of
SETN’20, 211–214. ACM.
Walton, D. 2001. Enthymemes, common knowledge and
plausible inference. Philosophy and Rhetoric, 34(2): 93–
112.
Xydis, A.; Hampson, C.; Modgil, S.; and Black, E. 2020.
Enthymemes in dialogues. In Proc. of COMMA’20, volume
326 of FAIA, 395–402. IOS Press.

5736


