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Abstract

In order to be trusted by humans, Artificial Intelligence agents
should be able to describe rationales behind their decisions.
One such application is human action recognition in criti-
cal or sensitive scenarios, where trustworthy and explainable
action recognizers are expected. For example, reliable pedes-
trian action recognition is essential for self-driving cars and
explanations for real-time decision making are critical for
investigations if an accident happens. In this regard, learning-
based approaches, despite their popularity and accuracy, are
disadvantageous due to their limited interpretability.
This paper presents a novel neuro-symbolic approach that
recognizes actions from videos with human-understandable
explanations. Specifically, we first propose to represent videos
symbolically by qualitative spatial relations between objects
called qualitative spatial object relation chains. We further
develop a neural saliency estimator to capture the correlation
between such object relation chains and the occurrence of
actions. Given an unseen video, this neural saliency estimator
is able to tell which object relation chains are more important
for the action recognized. We evaluate our approach on two
real-life video datasets, with respect to recognition accuracy
and the quality of generated action explanations. Experiments
show that our approach achieves superior performance on
both aspects to previous symbolic approaches, thus facilitating
trustworthy intelligent decision making. Our approach can
be used to augment state-of-the-art learning approaches with
explainability.

Introduction
While learning-based approaches are very popular (LeCun,
Bengio, and Hinton 2015), criticisms remain over their
reliability and explainability in making high-stake deci-
sions (Rudin 2019). Video action recognition (i.e. recognize
which action occurs in a video) is one such typical task.
For example, failures in recognizing pedestrian actions by
self-driving cars may lead to critical safety issues and those
failures could be caused by incorrect reasoning. Most state-
of-the-art action recognition approaches (Lin, Gan, and Han
2019; Tran et al. 2019; Carreira and Zisserman 2017; Fe-
ichtenhofer et al. 2019; Li et al. 2020a,c,b; Qian et al. 2021)
cannot be easily understood or justified by humans as they
use neural networks in a black-box fashion (Rudin 2019).
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We argue that a video action recognizer is trustworthy or at
least its trustworthiness is measurable if it is able to justify its
decisions in a human-understandable way. Such justifications
can be the existence of certain objects, object relations, or
changes in object relations (Zhuo et al. 2019; Li et al. 2021).
For example, in soccer matches, offside occurs if there is a
particular change in positional relations between ball and
players.

We will investigate action recognition and explanation
by qualitative spatial relations; it is not difficult to extend
our approach and relevant discussions to non-qualitative or
non-spatial relations. A spatial relation is a relation that is
relevant to the spatial properties of objects. For example,
connectivity, direction, size, distance, moving direction or
moving speed. Spatial relations between objects are essential
in many real-world actions and one typical example is shown
in Figure 1a. A relation is qualitative if it is a symbol with
specific meaning (e.g. “close”) rather than a numeric value
(e.g. “0.1 meter away from”). We choose qualitative spatial
relations for two reasons: first, qualitative spatial relations are
intuitive and close to human cognition and thus being human-
understandable (Chen et al. 2015); second, it is possible to
detect such relations without involving much human labor
(Gatsoulis et al. 2016).

Figure 1: (a) Essential spatial relations when performing
the action of car parking: at first, the car (grey rectangle)
is disconnected from the parking space (dotted rectangle)
and then they overlap; in the end, the car is included in the
parking space. (b) An accidental interaction between the car
and the parking space.

Qualitative spatial relations are formally defined in quali-
tative spatial calculi (Renz and Nebel 2007; Cohn and Renz
2008). One of the most widely applied qualitative spatial
calculi is Region Connection Calculus (RCC) (Randell, Cui,
and Cohn 1992), which consists of topological relations (or
connectivity relations) between regions (e.g. disjoint or over-
lapping). The car parking example in Figure 1a can be de-
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scribed as a chain of objects and their relations: o1-o2-dc-po-
pp, where o1 stands for the car (grey rectangle), o2 stands
for the parking space (dotted rectangle), and dc, po and pp
are RCC relations that indicate two regions are disconnected,
partially overlapping, or included respectively.

In this paper, we aim to achieve explainable action recog-
nition by exploring critical qualitative spatial relations or
relation changes between objects. The motivation of our ap-
proach is to provide explanations for some of the results from
“black-box” approaches. Our main contributions are three-
fold: (1) we introduce a novel symbolic action representation
based on qualitative spatial object relation chains (or object
relation chains in short); based on this representation, (2) we
develop a neural saliency estimator that measures the corre-
lation between object relation chains and actions in different
contexts; and (3) we generate action explanations by identify-
ing salient object relation chains. Based on these innovations,
our action recognizer achieves better performance than previ-
ous symbolic approaches in both recognition accuracy and
the quality of generated action explanations.

Related Work
In this section, we give a brief introduction to previous re-
search on qualitative spatial calculi and attempts attempts to
apply them to recognize or explain actions.

Qualitative Spatial Calculi
As mentioned in the introduction, qualitative spatial relations
are defined in qualitative spatial calculi. In this subsection, we
will first introduce several representative qualitative spatial
calculi and then overview qualitative spatial calculi to show
that qualitative spatial relations are able to describe spatial
relations in different aspects; involving multiple forms of
objects; and in various granularities.

Representative qualitative spatial calculi The Region
Connection Calculus (RCC) (Randell, Cui, and Cohn 1992)
describes the topological relations between regions. Its very
original form is RCC-8, which consists of eight relations as
shown in Figure 2a. Other RCC variations are with different
granularities (e.g. RCC-2, RCC-3, RCC-4, or RCC-5) and
their mapping relations are shown in Figure 2b (Gatsoulis
et al. 2016). From RCC-8 to RCC-2, topological relations are
defined with gradually coarser granularities: RCC-2 only dis-
criminates whether two regions are connected. The ST AR
(Renz and Mitra 2004) calculus originates from the Cardinal
Direction Calculus (CDC) (Frank 1991; Ligozat 1998) and it
consists of qualitative direction relations between points with
arbitrary granularity (Figure 3a and 3b). In contrast, Cardinal
Direction Relations (CDR) (Skiadopoulos and Koubarakis
2004) focuses on binary direction relations between regions
in a specific granularity: the space is divided into 9 tiles
with the first region in the middle tile; the relation between
the second region and the referencing region is decided by
which tile(s) the second region is located in. As shown in
Figure 3c and 3d, the Qualitative Distance Calculus (QDC)
(Clementini, Di Felice, and Hernández 1997) is also designed
with arbitrary granularity and is able to describe qualitative
distance relations and the span of each distance relation is

flexible and can be either predefined by users or learnt by
clustering metric distances, which is similar to the case in
(Tayyub et al. 2014) where time durations are clustered into
short, equal and long.

Figure 2: (a) RCC-8 is the initial form of RCC and it con-
sists of eight relations: dc (disconnected), ec (externally con-
nected), po (partially overlapping), eq (equal), tpp (tangential
proper part), tppi (tangential proper part inverse), ntpp (non-
tangential proper part) and ntppi (non-tangential proper part
inverse). (b) The mappings between RCC relations with dif-
ferent granularities. c, pp, ppi are three new relations defined
from those mappings: pp is the union of tpp and ntpp, ppi is
the union of tppi and ntppi; and c is the union of po and pp.

Figure 3: (a) In ST AR2 the 2D space is divided into 8
sectors by 2 lines. The ST AR2 relations between ab1 and
ab2 are both 1. (b) In ST AR4 the 2D space is divided into
16 sectors by 4 lines. The ST AR4 relation between a and b1
is 1 while that between a and b2 is 3. (c) QDC4: the 2D space
is divided into 4 sectors by 3 circles. The QDC4 relation
between a and b1 is 1 while that between a and b2 is 2. (d)
QDC3: the 2D space is divided into 3 sectors by 2 circles.
The QDC2 relation between ab1 and ab2 are both 1.

Spatio-temporal aspects There are different taxonomies
of spatio-temporal aspects in (Renz and Nebel 2007; Dylla
et al. 2017). Based on both of them, there are at least five
essential spatio-temporal aspects: direction, distance, mo-
tion, size, and topology. Time is regarded as a special and
implicit aspect because it has to be considered in almost
all spatio-temporal actions (as long as there are changes in
spatial relations). Most qualitative spatial calculi only cover
one aspect: the ST AR Calculus (Renz and Mitra 2004) fo-
cuses on qualitative direction relations between points with
arbitrary granularity (Figure 3a and 3b); the Qualitative Dis-
tance Calculus (QDC) (Clementini, Di Felice, and Hernández
1997) is also designed with arbitrary granularity and is used
to describe qualitative distance relations as in Figure 3c and
3d; the Qualitative Trajectory Calculus (QTC) (Van de Weghe
et al. 2006) models the moving direction and speed relations
between objects; Point Algebra (PA) (Van Beek 1992) (which
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consists of three relations >, < and =) can be used to de-
scribe the relative size of objects; RCC-m consists of only
topological relations as in Figure 2. There are also q-models
that cover multiple aspects. For example, the Ternary Point
Configuration Calculus (TPCC) (Moratz and Ragni 2008) is
a combination of direction and distance relations and CORE-
9 (Cohn, Renz, and Sridhar 2012) is relevant to multiple
spatio-temporal aspects: direction, topology, etc.

Object forms and relation arities Qualitative spatial cal-
culi that are relevant to the same aspect can vary because of
different abstract forms of objects and relation arities. For
example, the ST AR Calculus consists of binary direction
relations between points; Cardinal Direction Relations (CDR)
(Skiadopoulos and Koubarakis 2004) focuses on binary di-
rection relations between regions; while the Double Cross
Calculus (DCC) (Freksa 1992) deals with ternary direction
relations between points.

Granularities Some qualitative spatial calculi have differ-
ent variations to be flexible with different granularities. For
example, the granularities of ST ARm and QDCm can be
different positive integers (as shown in Figure 2). A spe-
cial case is the RCC family: there are at least five variations
of RCC-m with different granularities. Namely, m can be
2, 3, 4, 5, or 8. As shown in Figure 4b, coarser variations are
generated from finer variations by mapping multiple finer
relations into a single coarser relation or dropping some of
the finer relations. For example, as shown in Figure 2, two
RCC-3 relations po and pp are mapped into a RCC-2 relation
c (which indicates two regions are connected) (Gatsoulis et al.
2016). The granularity of a qualitative spatial calculus can
be decided by users or learnt by clustering metric relations,
which is similar to the case in (Tayyub et al. 2014) where
numeric time durations are clustered into short, equal and
long. For example, in (Galata et al. 2002), numeric direction,
velocity, and distance relations between cars are clustered
into qualitative spatio-temporal relations, which is the basis
of describing high-level interactive behaviors between cars.
Similar technique is also utilized in (Bleser et al. 2015).

Qualitative Spatial Action Description
In this subsection, we will introduce previous work that
utilizes qualitative spatial relations to describe actions. In
(Dubba et al. 2015), actions like airplane arrival or departure
are represented as changes in the RCC relations between air-
planes, vehicles, and ground zones. Such representations are
then used to recognize actions in unseen videos (Dubba et al.
2015). In (Tayyub et al. 2014), the occurrence of various ob-
ject relation chains like o1-o2-dc, o2-o3-dc-po, o1-o3-dc-po-
dc has been counted and used as features of machine learning
approachs to recognize daily activities. A similar but more
sophisticated representation strategy is applied in (Sridhar,
Cohn, and Hogg 2010; Duckworth, Hogg, and Cohn 2019) to
achieve unsupervised action clustering. In (Young and Hawes
2015), four qualitative spatial calculi RCC, ST AR, QDC,
and QTC have been applied to describe the qualitative move-
ment states of agents in a RoboCup soccer simulator. Their
qualitative spatial relation based system models soccer player
actions like kick or dash.

In most previous work, the set of candidate qualitative
spatial relations is decided by human knowledge. Namely,
most previous researchers manually determine which set of
qualitative spatial calculi is chosen to describe actions. An ex-
perimental study has been conducted in [Sridhar et al., 2011]
where the performance of applying different categories of
qualitative spatial relations in five aspects in three different
tasks event classification, clustering, and detection has been
compared. These five categories are: topology, direction, rel-
ative size, relative speed, and relative trajectories. According
to their experimental results, the best performance is always
achieved by a combination of all the five categories. Three
categories of representations qualitative temporal, qualitative
spatial, and quantitative spatial have been applied in [Tayyub
et al., 2014] to recognized daily activities. Best recognition
performance is achieved by combining all three categories.

Qualitative Action Recognition Explanation
Given a set of positive and negative examples (namely videos
that are relevant or irrelevant to a specific action), (Dubba
et al. 2015) has proposed an inductive logic programming
framework that learns which object relation chains explain
actions like airplane arrival or airplane departure. Or, in
their terminology, a pipeline of methods is proposed to learn
relational models for actions. Their solution involves manual
annotation effort in labelling data, which can be problem-
atic when dealing with large-scale data: Deictic Supervision
requires a human to label roughly where and when actions
occur in videos; a predefined object hierarchy is required;
and some of the parameters (e.g. the weights of positive and
negative examples) are decided manually. Their algorithm
is also very sensitive to the initial positive example selected
and is very likely to provide multiple predictions for a sin-
gle video, which might lead to many false positive errors in
action recognition.

In (Zhuo et al. 2019; Li et al. 2018), actions are qualita-
tively (or symbolically) described as state transitions. A state
can be an object in a certain status (e.g. an open microwave)
or a pair of object in a particular relationship (e.g. hand hold-
ing cup). The qualitative action descriptions are used as “prior
knowledge” in action recognition and explanation. Specifi-
cally, first an object detector and state detector are trained;
second, these two detectors are applied to obtain the state
transitions of each object or object pair in each video; and
third, an action is detected if a state transition satisfies the
description of an action and this state transition is used as
the explanation for the recognized action. They re-annotate
the CAD120 dataset (Koppula, Gupta, and Saxena 2013)
and experiment on multi-action-label videos from this new
dataset. The experimental results show their approach can
detect most actions (high recall) but also cause many false
positive recognition errors (low precision).

Attention for Explanation
Attention is a mechanism (Vaswani et al. 2017) that has
become popular and widely applied in deep learning and
computer vision in recent years. Attention mechanism has
been proved to be useful in improving the performance of
recognition models (Selvaraju et al. 2017; Jetley et al. 2018;
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Fukui et al. 2019). The intuition of attention is similar to
human cognition in the sense that it helps recognition mod-
els find which parts of input data are more important and
pay more “attention” on these deciding parts. Technically, by
learning, an attention layer is able to assign greater weights
to features that are critical in accurate recognition. By visu-
alizing which features are more “attended”, attention is able
to improve the explainability of image classification neural
networks (Selvaraju et al. 2017; Fukui et al. 2019).

Proposed Approach
As shown in Figure 4, our proposed approach consists of
three main components: input, saliency estimation, and out-
puts. In each of the three components, there is an innovative
module that plays a key role: object relation chain extractor
in input, neural saliency estimator in saliency estimation, and
explanation generator in outputs.

We divide each video into several clips (Bleser et al. 2015)
and manipulate the object relation chains in each video clip
separately. In this way, object relation chains in the same
video clip are more likely to be semantically relevant; and it
is possible to find salient object relation chains in different
phases of an action.

The object relation chain extractor detects the set of object
relation chains in each video clip. Then each set of extracted
object relation chains is k-hot encoded into a vector so that
it can be manipulated by a neural network. These k-hot en-
coded vectors constitute a matrix, which is the input of our
neural saliency estimator. The output is a saliency score ma-
trix whose values indicate which object relation chains are
more salient in each video clip; and a saliency weighted ob-
ject relation chain matrix so that the saliency scores of object
relation chains can be utilized to boost performance in ac-
tion recognition. With the saliency weighted object relation
chain matrix as input, action in the video is recognized by
several fully connected layers and their corresponding acti-
vation functions. The recognized action is justified by the
explanations generated by our explanation generator.

Object Relation Chain Extraction
Assume we are given a set of qualitative spatial relations
R that are defined in a certain set of qualitative spatial cal-
culi, and a set of object categories O. Each object relation
chain c is a 2+n tuple o1-o2-r1-r2-...-rn, where o1, o2 ∈ O,
r1, r2, ..., rn ∈ R, n ∈ Z+, and ri 6= rj if j = i + 1. It is
actually a subset of the representation introduced in (Duck-
worth, Hogg, and Cohn 2019) that focuses on a consecutive
set of changes in the relation between the same object pair.

The set of all possible object relation chains is definite
given O,R, and n∗r , where n∗r is the maximum number of
relations an object relation chain can have. An object relation
extractor is a function E that maps a video clip into the set
of object relation chains in it. I.e., E(ν) denotes all object
relation chains that can be observed in a video clip ν. It’s
not difficult to implement an object relation chain extractor
since state-of-the-art computer vision algorithms (Wang et al.
2019; Li et al. 2019; Tan, Pang, and Le 2020) have already
been able to detect and track object locations in a very accu-
rate manner. Those object locations are mainly in the form

Figure 4: An overview of our approach: the input is a set
of video clips and the outputs are a recognized action and
its explanations. Our approach consists of three components:
input, saliency estimation, and outputs. Solid rectangles are
modules and dotted rectangles are data in different forms. Our
innovative modules in each component are object relation
chain extractor (blue), neural saliency estimator (yellow), and
explanation generator (green).

of minimal bounding boxes, and qualitative spatial relations
between objects are estimated by those between their cor-
responding bounding boxes. Relations between bounding
boxes can be automatically calculated because most quali-
tative spatial relations have geometric definitions (Gatsoulis
et al. 2016). Given the qualitative spatial relations in each
frame of a video clip, object relation chains are extracted by
looking for pairs of objects that are in different qualitative
spatial relations in two consecutive frames.

Neural Encoding of Object Relation Chains
Given a video clip ν, we propose to represent its ex-
tracted object relation chains E(ν) as a k-hot vector, x =
[x1, x2, ..., xN ]T , where N is the total number of distinct
object relation chains given O,R, and n∗r ; xi = 1 iff the cor-
responding object relation chain is observed in ν, otherwise,
xi = 0. A video that is divided into nν clips {ν1, ν2, ..., νnν}
is represented as a nν × N matrix Mv = [x1,x2, ...,xnν ],
where xi is the corresponding k-hot vector of νi. In this way,
we compactly represent object relation chains in a video as a
real-valued fixed-size matrix, which enables learning neural
models on symbolic video representations.

Saliency Estimation and Action Recognition
As aforementioned, agents usually have a noisy observation
of the target action in the presence of interfering or incorrect
object relation chains. In order to achieve robust recognition
in a noisy environment, we start from the observation that the
semantics of an object relation chain is context-dependent.
Namely, an agent has to jointly consider the co-occurrence of
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multiple object relation chains, in order to understand actions
correctly in context. One such example is shown in Figure
1: let o1 be car and o2 be parking space, if it occurs alone,
the object relation chain o1-o2-dc-po is very likely caused by
an accidental interaction (Figure 1b) while its co-occurrence
with another object relation chain o1-o2-po-pp is a strong
indicator of car parking (Figure 1a).

Following this observation, we propose an innovative neu-
ral saliency estimator, which measures the importance of
observed object relation chains in action recognition, while
taking into account other co-occurring object relation chains.
It is actually a neural network layer that takes the encoding
of observed object relation chains in a video clip as input and
learns to re-weight them by considering exhaustively all the
pair-wise co-occurrence of these chains.

As discussed above, the saliency of an object relation chain
is relevant to all co-existing chains. This relevance is de-
scribed in Equation 1, where si ∈ s is the saliency score of
its corresponding object relation chain and a weighted sum of
all co-existing chains. A higher Ms

ij indicates the occurrence
of object relation chains i and j is highly correlated while
lower values show such co-occurrence is likely accidental
thus being noise for recognition.

si =
N∑
j=1

Ms
ijxj (1)

So, as shown in Figure 5, given N distinct object relation
chains, the k-hot encoded object relation chain vector x is
mapped into the saliency score vector s by multiplying with
a N ×N matrix Mcs. Namely, s = Mcsx. The matrix Mcs

is named as the pairwise co-occurrence saliency mapping
matrix. Then the saliency score vector s will be exponentially
normalized into s′ by the softmax function σ as in Equation
(2), where si ∈ s and s′i ∈ s′.

s′i = σ(si) =
esi∑N
j=1 e

sj
(2)

Last, the k-hot encoded object relation chain vector x will be
re-weighted by the normalized saliency scores. As in Equa-
tion (3), each element xswi in the saliency weighted object
relation chain vector xsw is the result of its correspondence
in the original object relation chain vector xi multiplied by
the corresponding normalized saliency score s′i.

xswi = s′ixi (3)

Given a nν ×N object relation chain matrix Mv , the outputs
are a nν × N normalized saliency score matrix Mσs and a
nν ×N saliency weighted object relation chain matrix Msw.
As introduced earlier, the former will be used for explana-
tion generation while the latter will be the input of action
classification. We use the saliency scores to generate action
explanations. For action recognition, we apply multiple fully
connected layers to acquire the final action prediction.

Our neural-based saliency estimator and action classifier
are trained together by minimizing the cross entropy loss in
action classification, which is based on the assumption that
a better saliency estimator leads to a more accurate action
classifier. This assumption will be proved by experiments.

Figure 5: Our neural saliency estimator will be applied to
each object relation chain vector in Mv: each k-hot encoded
x is mapped into a saliency score vector s by our pairwise
co-occurrence saliency mapping matrix Mcs. Then s is nor-
malized by the softmax function. The normalized saliency
score vector s′ is used to constitute the normalized saliency
score matrix Mσs and produce the saliency weighted object
relation chain vector xsw by elementwise multiplied with
x. The saliency weighted object relation chain matrix Msw

consists of xsw from each video clip and it is the input of our
action classifier.

Explanation Generation
Our explanation generator produces action explanations in
the form of salient object relation chains (i.e. object relation
chains with the highest saliency scores). Using such an ex-
planation generator, our action recognizer is explainable with
salient object relation chains as our explanations. Such ex-
planations are human-understandable. For example, they can
be easily translated into natural language in the form of “this
action is performed in the video because we believe this set of
observed object relation chains is caused by it” and critically,
the spatial relations composing these chains are intuitively
understandable (Shariff, Egenhofer, and Mark 1998).

Given a video v, let Mσs be the output of our neural
saliency estimator and a be the output of the action clas-
sifier. Remember, each element in Mσs corresponds to the
saliency score of a certain object relation chain in a specific
video clip. So with Mσs, we can construct a function S that
maps an object relation chain c, a video clip ν, and an action
a into a saliency score. For example, S(c, ν, a) ∈ [0, 1] is
a real number that indicates how salient c is if the action
performed in v is predicted as a.

Our explanation for a certain action recognition is gen-
erated by the rule defined in (4), where ν is a video clip,
and Sk(E(ν), ν, a) denotes the kth highest saliency score
among all the saliency scores of object relation chains in
E(ν). Namely, we will select the top-k salient object relation
chains (i.e. object relation chains with top-k highest saliency
scores) in E(ν) as our explanation for a single video clip. The
explanation for the whole video is an orderly combination of
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the explanations for its video clips.

c ∈ X (ν, a)⇐ S(c, ν, a) ≥ Sk(E(ν), ν, a) (4)

Our approach can also be applied to enhance the explain-
ability of state-of-the-art action recognition models. If the
prediction from our approach is the same as that from those
approaches, the generated explanation describes the reason-
ing of the action recognition process. If not, their prediction
is preferred and our explanation helps further examination.

Experiments and Evaluation
In this section, we conduct experiments on two datasets to
evaluate our approach by comparing it with two other base-
line explainable action recognition approaches.
Baseline Approaches. We compare our method with two
baselines, intuitive thresholding and intuitive maximum that
generate explanations for actions. They originate from the
inductive and abductive reasoning algorithm in (Dubba et al.
2015) and we adapt it for our purposes as below.

For each action a ∈ A, we refer to the set of videos labeled
with a as its positive examples P (a) and the set of videos
not labeled with a as its negative examples N(a). Formally,
for each a ∈ A, P (a) = {v|L(v) = a, v ∈ V} and N(a) =
{v|L(v) 6= a, v ∈ V}. These two approaches are based on
the same intuitive assumption: the more frequent an object
relation chain exists in the positive examples of an action and
the less frequent it is in the negative examples of the same
action, the more likely this object relation chain is caused by
the action (Dubba et al. 2015). Based on this assumption, let
P (c, a) = {v|c ∈ E(v), v ∈ P (a)} be the set of a’s positive
examples that contain c and N(c, a) = {v|c ∈ E(v), v ∈
N(a)} be the set of a’s negative examples that contain c, the
saliency score of an object relation chain c for an action a
is denoted as Sit(c, a) and defined in Equation (5), where it
is short for intuitive and η is a hyper-parameter to adjust the
relative importance of these two ratios.

Sit(c, a) = |P (c,a)|
|P (a)| − η

|N(c,a)|
|N(a)| (5)

These two approaches share the same saliency estimator
as defined in (5) but are different in explanation generation
and action recognition. Intuitive thresholding is based on
the assumption that an object relation chain is caused by an
action if the saliency score of an object relation chain for an
action is higher than a certain threshold. Formally, let τ be
the threshold and D(a) be the set of causal object relation
chains for a,D(a) is constructed according to the assumption
that c ∈ D(a) ⇐ Sit(c, a) > τ . Given an unseen video v,
the set of v’s action labels Lτ (v) is decided by the principle
that a ∈ Lτ (v) iff there exists c that satisfies both c ∈ E(v)
and c ∈ D(a). Namely, a video v can be labelled with an
action a if there is an object relation chain in v that is also
in a’s set of causal object relation chains D(a). An action
explanation is a set of such causal object relation chains.

One obvious drawback of the first approach is: it is
very likely an unseen video is labelled with multiple ac-
tions, which is a property inherited from the approach in
(Dubba et al. 2015). To overcome this problem, similar to
our approach, the second baseline approach intuitive maxi-
mum focuses on object relation chains with top 1 saliency

scores: L(v) = a ⇐ c ∈ E(v), a ∈ A, and Sit(c, a) =
max({Sit(c∗, a∗)|c∗ ∈ E(v), a∗ ∈ A}). In this case, an ac-
tion explanation consists of only one object relation chain
(i.e. the one with the maximum saliency score and used
to determine the recognized action). We report results of
both approaches using optimized hyper-parameters for action
recognition from grid search.
Datasets. We use two datasets in our experiments: CAD120
(Koppula, Gupta, and Saxena 2013) and CAD120++ (Zhuo
et al. 2019). CAD120++ is a relabelled version of CAD120.
CAD120 consists of 124 videos that record 10 actions (e.g.
making cereal or taking medicine) performed by four dif-
ferent people. 12 categories of objects have been labelled
including hand, bowl, cup and so on. In contrast, there are
551 videos and 10 different action labels in CAD120++. Ac-
tions (e.g. pick or place) in CAD120++ are much simpler
than those in CAD120 in the sense that average number of
frames per video is much smaller: 55.7 v.s. 525.3. Accord-
ingly, videos in CAD120++ and CAD120 are divided into 1
and 10 video clips respectively. Only CAD120++ provides
ground truth action explanations, which enables to evaluate
the explanations generated by those three approaches.

In CAD120++, 7 out of 10 actions are explained in the
form of changes in relations between objects: there is no ex-
planation for null and the explanations for open and close rely
on changes in object attributes (e.g. one of the given explana-
tions for open is that the attribute of microwave has changed
from closed to open). Ground truth action explanations in
the form of object relation chains are generated by replacing
natural language relations (e.g. not holding, holding, apart,
or contacting) in CAD120++ explanations with RCC-4 rela-
tions. For example, one of the ground truth explanations of
pick is (hand,box,not holding,holding), which is translated
into an object relation chain hand-box-dc-po. So, for each of
the 7 actions, there is a ground truth explanation in the form
of a set of object relation chains Xgt(a).

We choose RCC-4 as the ground truth qualitative spatial
calculus because most of those natural language relations can
be described by topological relations between objects and in
a tentative experiment, the performance of RCC-4 is the best
out of other RCC variations and other calculi like QDC-4 and
CDR when it is individually used in action recognition.
Evaluation Metrics We follow the convention as in (Tayyub
et al. 2014; Zhuo et al. 2019) to divide each dataset into 4
folds based on which person performs the action (as men-
tioned earlier, there are 4 different actors). Namely, we ap-
ply 4-fold cross validation and results are averaged across
all the 4 folds. Action recognition is evaluated by the accu-
racy in classification. Saliency estimation accuracy (or the
quality of generated explanations) is evaluated by top k rate
(k ∈ {1, 2, 5}). Given a video v and its predicted action a,
X (v, a) is a top-k explanation if there is at least one of its
top-k object relation chains is in Xgt(a). Top k rate is the
rate of recognized videos with top-k explanations out of all
recognized videos.

Experimental Results and Analysis
A series of experiments have been conducted on CAD120++
and CAD120 and the results are listed in Table ??. The two
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baseline approaches and our approach have been evaluated
in Experiment 1, 2, and 3 respectively. One additional experi-
ment has been conducted to further analyze the relationship
between saliency estimation accuracy and action recognition
accuracy and the results are shown in Figure 6.
Action Recognition Accuracy As in Table 1, action recog-
nition accuracy is evaluated and our approach achieves much
better performance on both datasets when compared to the
two baseline approaches. This is mainly because the pro-
posed neural saliency estimator captures the co-occurrence
of object relation chains. In this way, our approach is less
vulnerable to interfering or incorrect object relation chains
thus achieving more robust and accurate recognition. These
results also support that our approach is data efficient and
works well on small-scale datasets like CAD120.
Quality of Explanation Generation As in Table 1, quality
of generated explanations (or saliency estimation accuracy)
is evaluated by “top1/2/5 rates”. The top1/2/5 rates of our
approach are much better than those of the two baseline
approaches. Our explanation generator learns to model the
relation between object relation chains and actions, which
makes it more adaptive in diverse scenarios.

No. approach CAD120++ CAD120
top1/2/5 rates accuracy accuracy

1 intui_thres 53.6/57.6/67.2 53.9 67.3
2 intui_max 29.8/33.8/35.4 54.3 71.0
3 ours 61.6/73.8/84.1 69.5 95.9

Table 1: Results of experiments on CAD120++ and CAD120.
No.: experiment indexes. approach: the approach to action
recognition and explanation generation. intui_thres is short
for intuitive thresholding; intui_max is short for intuitive
maximum; and ours stands for our approach. accuracy is
the metric for action recognition while top1/2/5 rates is to
evaluate generated explanations. Results in accuracy and
top1/2/5 rates are in percentage (%) and best results are
highlighted in bold.

Impact of Saliency Estimation on Recognition As shown
in Figure 6, during the training process, action recognition ac-
curacy and top1 rates are positively correlated. This indicates
that recognition benefits from improved saliency estimation,
which further supports the assumption that our neural saliency
estimator plays a key role in action recognition.
Qualitative Analysis As shown in Figure 7, the ground truth
object relation chain microwave-cloth-po-ppi is identified
with the highest saliency score. As a result, the action clean
in the top video is correctly recognized. As a failure case
analysis, in the bottom video, our approach mistakenly esti-
mates interactions between hand and microwave (i.e. the top
two object relation chains) as salient object relation chains,
which causes an incorrect prediction.

Conclusion and Future Work
In this paper, we have proposed an accurate neuro-symbolic
approach that achieves explainable action recognition. Our
main innovations are (1) object relation chain, a simple but

Figure 6: Changes in action recognition accuracy and top1
rates as the number of epochs increases. Results are from
training our approach on CAD120++ with different number
of epochs. The red and blue lines show the changes in action
recognition accuracy and top1 rate respectively.

Figure 7: A correctly recognized action (top) and a wrongly
recognized action (bottom). Right: top 5 salient object rela-
tion chains in the explanation. Ground truth object relation
chains are in bold. Objects in red are involved in ground truth
object relation chains while irrelevant objects are in yellow.

effective symbolic action video representation; (2) a neural
saliency estimator that estimates the importance of object
relation chains in action recognition; and (3) an explanation
generator that generates action explanations in the form of
salient object relation chains.

We believe that our approach makes an important con-
tribution towards solving a more general problem: explain-
able classification by finding critical symbolic features. Our
pipeline is to first extract symbolic features and then esti-
mate their importance in classification, which can also be
applied to many other similar problems that require trustwor-
thy and explainable agents. Our approach is data efficient and
performs well on accuracy and explainability in small-scale
datasets. While in large-scale datasets our approach might
not be as accurate as state-of-the-art learning approaches in
action recognition, our approach can be used to augment
these approaches and to provide them with explainability. In
the future, we aim to make more contributions on this gen-
eral problem by combining symbolic features with numeric
features and utilizing large-scale knowledge databases.
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