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Abstract

We study a model of preference revision in which a prior pref-
erence over a set of alternatives is adjusted in order to accom-
modate input from an authoritative source, while maintaining
certain structural constraints (e.g., transitivity, completeness),
and without giving up more information than strictly neces-
sary. We analyze this model under two aspects: the first allows
us to capture natural distance-based operators, at the cost of
a mismatch between the input and output formats of the re-
vision operator. Requiring the input and output to be aligned
yields a second type of operator, which we characterize us-
ing preferences on the comparisons in the prior preference.
Preference revision is set in a logic-based framework and us-
ing the formal machinery of belief change, along the lines
of the well-known AGM approach: we propose rationality
postulates for each of the two versions of our model and de-
rive representation results, thus situating preference revision
within the larger family of belief change operators.

1 Introduction
Preferences play a central role in theories of decision mak-
ing as part of the mechanism underlying rational choice:
they show up in economic models of rational agency (Sen
2017), as well as in formal models of artificial agents ex-
pected to interact with the world and each other (Domsh-
lak et al. 2011; Rossi, Venable, and Walsh 2011; Pigozzi,
Tsoukiàs, and Viappiani 2016). Since such interactions take
place in dynamic environments, it can be expected that pref-
erences change in response to new developments.

In this paper we are interested in preference change oc-
curring when new preference information becomes avail-
able and has to be taken at face value, thereby prompting
a change in the prior preference. The change, we require,
should preserve as much useful information from the prior
preference as can be afforded. Preference change thus de-
scribed is a pervasive phenomenon, arising in many contexts
spanning the realms of both human and artificial agency.
One prominent example is the distinguished tradition in
Economics and Philosophy looking at examples of conflict
between an agent’s subjective preference (what we call here
the prior preference π) and a second-order preference, of-
ten standing for a commitment or moral rule (what we call
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Figure 1: Revising π by µ can be thought of a choice be-
tween which comparisons to keep and which to give up.

here the new preference information µ): subjective versus
‘ethical’ preferences (Harsanyi 1955), lack of will, or akra-
sia (Jeffrey 1974), moral commitments (Sen 1977), second-
order volitions (Frankfurt 1988) and second-order prefer-
ences (Nozick 1994) all fall under this heading.

The same challenge can occur in technological applica-
tions, from updating CP-nets (Cadilhac et al. 2015) to chang-
ing the order in which search results are displayed on a page
in response to user provided specifications, as well as, more
generally, in issues related to the alignment problem (Rus-
sell 2019): an artificial agent dealing with humans will have
to learn their preferences, but as it cannot do so instanta-
neously, it must presumably do so in intermediate steps, re-
vising along the way. The following example illustrates the
problem in its most basic form.

Example 1. An online streaming service constructs a profile
tailored to a particular user, according to which the arthouse
movie (a) is preferred to the biopic (b), which is preferred to
the comedy (c), and thus displays them in this order, encoded
here with the preference statement π = (a≻b)∧(b≻c). When
the user volunteers information to the effect that they find
the comedy better than the arthouse movie, i.e., new infor-
mation µ = (c≻a), the streaming service must revise its
model of the user’s preference: it has to place c before a
and, in order to display the alternatives in a neat linear
fashion, it must decide on a position to slot b into. Prefer-
ences π and µ, together with possible values for the revised
result, e.g., π1 = (c≻a)∧(a≻b), π2 = (c≻a)∧(b≻c) and
π3 = (c≻a)∧(c≻b)∧(b≻a), are depicted in Figure 1. Intu-
itively, π3 veers far (too far) away from the input preference
π, in that it does not keep any of the still permissible com-
parisons contained in π, and should arguably be excluded,
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while π1 and π2 are viable contenders. If we go further and
insist on a decision between π1 and π2, we can take stock
of the information relayed by either choice. Accepting π1 in-
volves giving up the comparison of b over c, and we may sur-
mise this is because the comparison of a over b is given up
more reluctantly: preference of the arthouse movie over the
biopic is more intense! Acceptance of π2 implies the oppo-
site: b over c is now the stronger preference. Thus, restricting
the output of revision to a single linear order suggests that
the choice can be rationalized using an implicit preference
order over the comparisons.
Thus, whether it is the internal conflict of a moral agent or
a content provider aiming for a better user experience, many
cases of preference change involve a conflict between two
types of preferences, one of which has priority. But, despite
the fact that the problem is often signaled, a principled ap-
proach to how to handle it is often overlooked.

Our purpose here is to formalize the type of reasoning il-
lustrated in Example 1 by rationalizing preference change
as a type of choice function that utilizes the information
provided by the prior preference in adapting itself to new
information. In particular, we want to combine techniques
from standard belief change with Sen’s insight that con-
flicts among preferences should be resolved using prefer-
ences over the preferences themselves (Sen 1977).

Contributions. We put forward two models for preference
revision. The first, called here irresolute revision, is based on
minimizing distance to the input preference, expressed as a
formula, while allowing the output to be represented as a set
of formulas, and is the approach that follows most closely
the one from propositional revision. However, in an inter-
esting departure from the propositional model, we show that
insistence on representing the revised preference as a single
formula, what we call resolute revision, requires us to give
up appealing distance-based operators. The second model
picks up where this result leaves off, and we present a mech-
anism for resolute revision based on an underlying prefer-
ence relation over the adjacent comparisons of the prior pref-
erence, construed here as atomic elements that can be sub-
ject to change. In both cases we present desirable normative
principles, in the AGM mould (Alchourrón, Gärdenfors, and
Makinson 1985), and derive representation results.

Related work. Previous work dealing with preference re-
vision has studied preference change prompted by a change
in beliefs (Bradley 2007; Lang and van der Torre 2008; Liu
2011). Here we abstract away from the source of new infor-
mation, focusing exclusively on a mechanism for resolving
conflicts between preferences. Other work (Cadilhac et al.
2015) describes preference change when preferences are
represented using CP-nets (Boutilier et al. 2004), or dynamic
epistemic logic (Benthem and Liu 2014), in the context of
declarative debugging (Dell’Acqua and Pereira 2005), or
databases (Chomicki 2003), and therefore comes with addi-
tional structural constraints. The basic phenomenon of pref-
erence change has also been raised in explicit connection
to belief change (Hansson 1995; Grüne-Yanoff and Hans-
son 2009; Grüne-Yanoff 2013), but a representation in terms
of preferences on the comparisons present in the preference

orders, along the lines suggested here, has, to the best of
our knowledge, not yet been given. Much existing work pro-
ceeds by putting forward some concrete preference revision
mechanism, occasionally with a remark on the similarity to
belief revision (Freund 2004; Chomicki and Song 2005; Liu
2011; Ma, Benferhat, and Liu 2012). Our work adds an anal-
ysis in terms of postulates and representation results.

The framework studied here is inspired by proposi-
tional belief revision (Alchourrón, Gärdenfors, and Makin-
son 1985; Katsuno and Mendelzon 1992; Nebel 1992), and
the two problems are similar in spirit. The closest analogy
for Section 3 is belief revision in fragments of proposi-
tional logic (Delgrande, Peppas, and Woltran 2018), while
the equivalent for Section 4 would be an attempt to charac-
terize propositional revision operators using orders on the
atoms, with similar results derived in (Haret and Wallner
2021).

Outline. In Section 2 we introduce notation and the basic
elements of our model. Section 3 looks at irresolute revision
operators and Section 4 looks at resolute revision. Section 5
offers concluding remarks.

2 Preliminaries
We assume a finite set A of alternatives, with |A| = n. For
alternatives x, y ∈ A, we call the ordered pair (x, y) a com-
parison, and think of it as encoding the fact that the agent
prefers x to y. For ease of reading we write xy instead of
(x, y). A (strict) linear order ℓ on A is a binary relation (i.e.,
a set of comparisons) on A such that (i) xx /∈ ℓ, for any
x ∈ A (irreflexivity), (ii) if xy ∈ ℓ and yz ∈ ℓ then xz ∈ ℓ
(transitivity), (ii) for any distinct x, y ∈ A, either xy ∈ ℓ or
yx ∈ ℓ (connectedness). We write ℓ as the string x1 . . . xn,
where xixj ∈ ℓ, for i < j, and denote by LA the set of linear
orders over A. A strict partial order s on A is an irreflexive
and transitive (not necessarily complete) binary relation on
A. Note that irreflexivity and transitivity imply that if xy ∈ s
then yx /∈ s (antisymmetry). Note, also, that if ℓ1 and ℓ2 are
linear orders on A, then ℓ1 ∩ ℓ2 is not guaranteed to be a
linear order, though it is a strict partial order on A.

An atomic preference statement has the form x≻y, for
distinct alternatives x, y ∈ A. A preference statement π is
a conjunction of atomic preference statements, with PA as
the set of all preference statements over A. A linear order ℓ
satisfies the atomic preference statement x≻y if xy ∈ ℓ; ℓ
satisfies a preference statement π if it satisfies every atomic
preference statement in π, in which case we say that ℓ is a
model of π. The set [π] of models of π is defined as [π] =
{ℓ ∈ LA | ℓ satisfies π}. If Π = {π1, . . . , πn} is a set of
preference statements, the set [Π] of models of Π is defined
as [Π] =

⋃
1≤i≤n[πi], i.e., as the union of the models of the

formulas in Π . A preference statement π (set of preference
statements Π) is consistent if [π] ̸= ∅ ([Π] ̸= ∅).
Example 2. For A={a, b, c}, π = (a≻b)∧(a≻c) is a pref-
erence statement indicating that a is preferred, once, to b
and, second, to c. The set of models of π is [π] = {abc, acb}.
Note that abc ∩ acb = {ab, ac}, i.e., the intersection of abc
and acb is the partial order containing the comparisons that
abc and acb have in common.
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3 Irresolute Preference Revision
An irresolute preference revision operator ◦ is a function
◦ : PA × PA → 2PA, taking as input two preference state-
ments, typically denoted π and µ, and standing for the
agent’s prior and newly acquired preference information, re-
spectively, and returning a set of preference statements, de-
noted π◦µ. The representation of the result as a set of formu-
las is a slight departure from established revision practice,
but has precedent in belief change applied to formalisms
other than propositional logic, e.g., in work on the aggrega-
tion of abstract Argumentation Frameworks (Delobelle et al.
2016). Intuitively, π ◦ µ can be interpreted as a range of op-
tions, all of which, together, represent the agent’s adjusted
preferences in light of new information µ. We will have oc-
casion to reflect on the format of the result later on.

In typical revision fashion, we want to identify a set of
desirable normative principles that (irresolute) preference
revision operators ideally satisfy. To this purpose we use
an adapted version of the well-known AGM postulates (Al-
chourrón, Gärdenfors, and Makinson 1985), or rather, their
KM formulation (Katsuno and Mendelzon 1992):
(Ri

1) [π ◦ µ] ⊆ [µ].
(Ri

2) If π ∧ µ is consistent, then π ◦ µ = {π ∧ µ}.
(Ri

3) If µ is consistent, then π ◦ µ is consistent.
(Ri

4) If [π1]=[π2] and [µ1]=[µ2], then [π1◦µ1] = [π2◦µ2].
(Ri

5) [π ◦ µ1] ∩ [µ2] ⊆ [π ◦ (µ1 ∧ µ2)].
(Ri

6) If [π◦µ1]∩[µ2] ̸=∅, then [π◦(µ1∧µ2)] ⊆ [π◦µ1]∩[µ2].
Even though the underlying semantics of the formulas con-
cerns linear orders, the intuition and mechanics behind the
postulates is entirely similar to that of propositional revision,
and we direct the reader to standard references for more de-
tails (Alchourrón, Gärdenfors, and Makinson 1985; Katsuno
and Mendelzon 1992; Fermé and Hansson 2018). Owing to
the blend of different formats we write the axioms in their
semantic version (i.e., using the sets of models), rather than
in the more familiar syntactic formulation (i.e., using entail-
ment relations and conjunction operators), but their motiva-
tion is otherwise unchanged from the propositional case.

It turns out, as expected, that axioms Ri
1–Ri

6 characterize
a broad class of revision operators, one that can be described
using the familiar device of total pre-orders (i.e., complete,
transitive binary relations) on the set LA of linear orders
and the notion of a preference assignment f , i.e., a function
f : PA → TA, where TA is the set of total preorders on LA.
A preference assignment maps a preference statement π to
a total preorder on linear orders, denoted here as ≤π: the
preferences on preferences mentioned in Section 1. Using
established revision lingo (Katsuno and Mendelzon 1992), a
preference assignment is faithful if it satisfies the following
properties:
(fi1) If ℓ1, ℓ2 ∈ [π], then ℓ1 ≈π ℓ2.
(fi2) If ℓ1 ∈ [π] and ℓ2 /∈ [π], then ℓ1 <π ℓ2.
(fi3) If [π1] = [π2], then ℓ1 ≤π1

ℓ2 iff ℓ1 ≤π2
ℓ2.

A faithful preorder ≤π makes the models of π as the
uniquely most preferred elements of ≤π , regardless of the
syntax of π. The characterization, then, proceeds as follows.

Theorem 1. An irresolute revision operator ◦ satisfies pos-
tulates Ri

1-Ri
6 iff there exists a faithful preference assignment

mapping every preference statement π to a total preorder ≤π

such that [π ◦ µ] = min≤π
[µ].

The proof of Theorem 2 is analogous to its equivalent
version in propositional revision (Katsuno and Mendelzon
1992), with one notable exception, on which more shortly.

An important device for generating concrete revision op-
erators is a distance d between linear orders, i.e., a function
d : LA × LA → R≥0, such that d(ℓ1, ℓ2) = 0 if and only
if ℓ1 = ℓ2. This is a minimal requirement on d, on top of
which we will add more desirable properties later on. A typ-
ical distance we will use here is the Kendall tau distance dτ
(Kendall and Gibbons 1990) defined as dτ (ℓ1, ℓ2) = |{xy ∈
ℓ1 | yx ∈ ℓ2}|, i.e., as the number of disagreements (inverted
pairs of alternatives) between ℓ1 and ℓ2. Less discriminat-
ing, the drastic distance dD is defined as dD(ℓ1, ℓ2) = 0,
if ℓ1 = ℓ2, and k > 0, otherwise. Given a distance d, the
d-induced irresolute preference revision operator ◦d is de-
fined, for any preference statements π and µ, as a set of
preference statements π ◦d µ such that:

[π ◦d µ] = argminℓ∈[µ] min
ℓ′∈[π]

d(ℓ′, ℓ),

i.e., a set of preference statements whose models add up to
exactly those models of [µ] that minimize the Kendall tau
distance to any model of π. We write ◦τ and ◦D for the dτ -
and dD-induced revision operators, respectively. Note that
◦D can be written as:

π ◦D µ =

{
{π ∧ µ}, if π ∧ µ is consistent,
{µ}, otherwise.

Importantly, note that d-induced revision operators are well-
defined, as any individual linear order ℓ = x1. . .xn is the
sole model of the formula πℓ = (x1≻x2)∧· · ·∧(xn−1≻xn),
and any set {ℓ1, . . . , ℓm} of linear orders is the set of models
of the set {πℓ1 , . . . , πℓm} of preference statements.
Example 3. For A = {a, b, c} and π = (a≻b)∧(b≻c), µ =
(c≻a), we have that [π] = {abc} and [µ] = {cab, cba, bca}.
The Kendall tau distances between the model of π and the
models of µ are dτ (abc, cab) = 2, dτ (abc, cba) = 3,
dτ (abc, bca) = 2, and thus [π ◦τ µ] = {cab, bca}. We
can represent [π ◦τ µ] using preference statements π1 =
(c≻a)∧(a≻b) and π2 = (b≻c)∧(c≻a), noting that [π1] ∪
[π2] = {cab}∪{bca} = {cab, bca}, with π◦τ µ = {π1, π2}.
Given a distance function d we can define the d-induced
preorder ≤d

π by taking ℓ1 ≤d
π ℓ2 if minℓ∈[π] d(ℓ, ℓ1) ≤

minℓ∈[π] d(ℓ, ℓ2), and it is straightforward to see that the
dτ - and dD-induced preorders ≤τ

π and ≤D
π , respectively, are

faithful; this, via Theorem 1, implies that ◦τ and ◦D satisfy
axioms Ri

1–Ri
6. Throughout all this, though, a key detail is

the fact that for any set L of linear orders we can find, as
described earlier, a set Π of preference statements such that
[Π] = L. At the beginning of this section we offered an in-
tuition of what Π stands for, but we may now add to a con-
cern about this design choice, as it introduced a mismatch
between the input and output. This makes it harder, for in-
stance, to apply a revision operator iteratively. It would be
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desirable, therefore, to represent [π ◦ µ] as a single prefer-
ence statement, rather than as a set. However, as Proposi-
tion 1 below shows, this is possible only in special circum-
stances. To state Proposition 1, we introduce one additional
piece of notation. If s is a strict partial order, the linear order
ℓ is a completion of s if s⊆ ℓ, i.e., if ℓ preserves all the com-
parisons in s. We denote by comp(s) the set of completions
of s.
Proposition 1. If L ⊆ LA, then there exists π ∈ PA such
that [π] = L iff L = comp(

⋂
ℓ∈L ℓ).

Proof. Note that
⋂

ℓ∈L ℓ is a strict partial order, which we
denote by sL. Thus, if L = comp(

⋂
ℓ∈L ℓ), then π =∧

xy∈sL
(x≻y) is the preference statement we are looking

for, as [π] = L. Conversely, suppose there exists some
π ∈ PA such that [π] = L. Take, first, a linear order
ℓ ∈ comp(

⋂
ℓ∈L ℓ): we claim that ℓ ∈ [π]. To see why this is

the case, assume that ℓ /∈ [π]: this implies that there exists a
comparison xy ∈ ℓ, such that its opposite yx is implied by π.
The latter fact implies that yx ∈ ℓ′, for every ℓ′ ∈ [π], which
further implies that yx ∈

⋂
ℓ∈L ℓ. Thus yx ∈ ℓ′′, for every

ℓ′′ ∈ comp(
⋂

ℓ∈L ℓ): a fortiori, yx ∈ ℓ, which is a contra-
diction. We have thus obtained that comp(

⋂
ℓ∈L ℓ) ⊆ L.

Next, take ℓ ∈ L. Since ℓ satisfies every comparison in
π, we get that

⋂
ℓ′∈L ℓ′ ⊆ ℓ, and thus ℓ ∈ comp

⋂
ℓ′∈L ℓ′,

showing that L ⊆ comp(
⋂

ℓ∈L ℓ).

Thus, Proposition 1 shows that a set L of linear orders can be
encoded by a preference statement π only if L satisfies what
we may think of as a closure operation: L must be closed
under completions of the strict partial order that contains the
comparisons common amongst all the orders in L.1 Coming
back to the issue of whether outputs of distance-based ir-
resolute preference revision operators can be squeezed into
PA, we see that this result spells trouble.
Example 4. For A, π and µ as in Example 3, we get that
[π ◦τ µ] = {cab, bca}. Note that cab ∩ bca = {ca}, and
comp({ca}) = {cab, cba, bca} ̸= [π ◦τ µ]. Thus, using
Proposition 1, there is no preference formula π′ ∈ PA such
that [π ◦τ µ] = [π′].
In other words, we cannot have the output of a preference
revision operator be a single preference statement and, at
the same time, hold on to ◦τ . And it turns out that, under
mild assumptions on the distance function d, this situation
is unavoidable for any distance-based revision operator ◦d.
To state these properties, we introduce a number of new no-
tions. A renaming r is a bijective function r : A → A, with
the renaming r(ℓ) of ℓ = x1. . .xn defined as r(x1). . .r(xn).
For linear orders ℓ1 = x1. . .xm and ℓ2 = xm+1. . .xn on
distinct alternatives, the concatenation ℓ1ℓ2 of ℓ1 and ℓ2 is
the linear order defined as ℓ1ℓ2 = x1. . .xmxm+1. . .xn. The
properties we expect from the distance function d are:

1This issue does not show up in propositional revision, where
any set of truth-value assignments can be represented by a formula,
but it does occur in belief change in fragments of propositional
logic (Delgrande, Peppas, and Woltran 2018), or with respect to
Argumentation Frameworks (Diller et al. 2015; Haret, Wallner, and
Woltran 2018).

(D1) d(ℓ1, ℓ2) = d(ℓ2, ℓ1).
(D2) d(ℓ1, ℓ2) = d(r(ℓ1), r(ℓ2)).
(D3) If dτ (ℓ1, ℓ2) < dτ (ℓ1, ℓ3), then d(ℓ1, ℓ2) < d(ℓ1, ℓ3).
(D4) d(ℓℓ1ℓ

′, ℓℓ2ℓ
′) = d(ℓ1, ℓ2).

Property D1 requires d to be symmetric; D2 requires d to be
invariant under renamings; D3 is a monotonicity condition
requiring the distance function d to be consistent with the
tau distance dτ , i.e., the more adjacent pairs of alternatives
we flip, starting with ℓ1, the further away from ℓ1 we end up;
D4 requires the distance between ℓ1 and ℓ2 to depend only on
the distinct sections of ℓ1 and ℓ2. Finally, we say that an (ir-
resolute) preference revision operator ◦ is single-statement
compliant if for any set A of alternatives and preference
statements π, µ ∈ PA, there exists a preference statement
π′ ∈ PA such that [π ◦ µ] = [π′]. Under these conditions,
we can prove the following result.
Theorem 2. If a distance function d satisfies properties D1–
D4, the operator ◦d is not single-statement compliant.

Proof. Assume ◦d is single-statement compliant and take
A = {a, b, c}. Using the renaming r(a) = c, r(b) = a
and r(c) = b, we have that:

d(abc, bca) = d(cab, abc) by D2, applying r

= d(abc, cab). by D1

By property D3, it holds that d(abc, bca) < d(abc, cba) and
d(abc, cab) < d(abc, cba). Consider preference statements
π = (a≻b)∧(b≻c) and µ = (c≻a) with [π] = {abc} and
[µ] = {cab, cba, bca}. Using the just derived distance rela-
tionships we infer that [π ◦d µ] = {bca, cab}. By the as-
sumption that ◦d is single-statement compliant there must
exist some preference statement π′ ∈ PA such that [π′] =
{bca, cab}. By Proposition 1, however, this leads to a con-
tradiction. Using property D4, we can extend this result to
any alphabet with at least three elements.

Note that dτ satisfies properties D1–D4, while dD satisfies
all but D3 and thus does not fall within the scope of The-
orem 2. However, dD does satisfy a weaker version of D3

where the inequality is non-strict, and a slightly more in-
volved argument shows that dD is the only distance function
that satisfies these properties and is single-statement com-
pliant for three alternatives. In fact, we conjecture that ◦D is
the only irresolute preference revision operator that is single-
statement compliant, for any number of alternatives.

4 Resolute Preference Revision
In the wake of Section 3, we want to understand how to align
the formats of the prior and revised preference information.
In this section we show that this is possible by assuming
that the user has some preference structure on the atomic
elements of its prior preference. We focus on the case in
which both prior and revised preferences encode single lin-
ear orders, which makes sense in light of Example 1, where
the alternatives need to be sequentially displayed, e.g., on a
webpage. As users cannot be expected to be exhaustive in
the information they provide, we continue to allow µ to be a
regular (not necessarily complete) preference statement.
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A preference statement is complete if it has exactly one
model, and we denote by CA the set of complete preference
statements on A. A resolute preference revision operator ◦ is
a function ◦ : CA × PA → CA, taking as input a complete
and a standard preference statement, typically denoted by
λ and µ, respectively, and returning a complete preference
statement, denoted by λ ◦ µ. Since λ ◦ µ has, by definition,
exactly one linear order ℓ as model, we often use ℓ and {ℓ}
interchangeably.

The road to representation starts by laying down some ad-
ditional items of notation. If C is a set of comparisons on A,
the transitive closure C+ of C is the smallest set such that
(i) C ⊆ C+ and (ii) if xy, yz ∈ C+, then xz ∈ C+. In-
tuitively, C+ is a transitive relation on A that may, or may
not, contain cycles between alternatives. If µ is a preference
statement on A, the set Cµ of comparisons of µ is defined
as Cµ = {xy ∈ A2 | x≻y is an atomic preference in µ},
i.e., Cµ contains the comparisons explicitly sanctioned by
µ, while C+

µ adds the comparisons inferred by transitivity.
For a complete preference statement λ, C+

λ is, by definition,
a linear order: the unique model of λ.

If [λ] = {x1. . .xn}, then xixi+1, for 1 ≤ i ≤ n−1 is an
adjacent comparison of λ, with Aλ being the set of adjacent
comparisons of λ. Adjacent comparisons are the basic atoms
we will take as the basis for the preference relations guiding
resolute revision operators. If µ is a preference statement, a
λ-model of µ is a linear order ℓ∗ such that ℓ∗ = (Cµ ∪ C)+

for some set of comparisons C ⊆ C+
λ . Intuitively, a λ-model

of µ is a linear order obtained by adding to µ some of the
comparisons expressed, either explicitly or implicitly, by λ.
We write [µ]λ for the set of λ-models of µ. Note that [µ]λ ̸=
∅ if [µ] ̸= ∅: if the order between two alternatives x and
y is not decided by µ, then we can complete the order by
reaching into C+

λ , since C+
λ is a linear order and either xy ∈

C+
λ or yx ∈ C+

λ . If λ ∈ CA and µ ∈ PA, the cycle-free
part CFµ(λ) of λ with respect to µ is defined as CFµ(λ) =
{xy ∈ C+

λ | xy is not involved in a cycle in C+
λ∧µ}, i.e., the

comparisons in λ (both explicit and implicit) that are not part
of a cycle in the relation obtained when adding µ to λ.
Example 5. Take λ = (a≻b)∧(b≻c)∧(c≻d), µ = (c≻a),
with [λ] = {abcd}, [µ] = {cabd, cbad, bcad, cadb, . . . },
C+

λ = {ab, ac, ad, bc, bd, cd}, Cµ = C+
µ = {ca}. The ad-

jacent comparisons of λ are Aλ = {ab, bc, cd}. The con-
junction of λ ∧ µ contains a cycle between a, b and c,
hence CFµ(λ) = {ad, bd, cd}. Note, next, that cabd =
(Cµ ∪CFµ(λ)∪{ab})+, i.e., it is the linear order obtained
by adding the comparison ab ∈ abcd as well as the cycle-
free part of λ to ca, and then taking the transitive closure of
the resulting set of comparisons. Similarly, bcad is obtained
by adding bc ∈ abc to Cµ and CFµ(λ). Adding to Cµ any
set of comparisons from abc that includes ac yields a cycle
between a, b and c and is therefore not fit to construct a lin-
ear order. Adding ∅ to Cµ is also no good, as the result is
not complete. Thus, [µ]λ = {cabd, bcad}.
The notion of a λ-model is important in allowing us to for-
mulate desirable axioms for resolute preference revision:

(Rr
1) If µ is consistent, then [λ ◦ µ] ⊆ [µ]λ.

(Rr
2) If µ is inconsistent, then λ ◦ µ = λ.

(Rr
3) If [λ1]=[λ2] and [µ1]=[µ2], then [λ1◦µ1] = [λ2◦µ2].

(Rr
4) If (λ◦µ1) ∧ µ2 is consistent, then [(λ ◦ µ1) ∧ µ2] =
[λ ◦ (µ1 ∧ µ2)].

Though built on familiar intuitions, axioms Rr
1–Rr

4 are par-
ticular enough to warrant discussion. Note, first, that λ ◦ µ
being a preference statement allows us to connect it to other
preference statements via the conjunction operator ∧. Then,
given that λ ◦µ is a complete statement by definition, Rr

1 re-
quires it to define a λ-model of µ, i.e., to be obtained using
only comparisons from λ in addition to those of µ: a restric-
tion meant to prevent λ ◦ µ from introducing comparisons
not justified by their presence in λ, as illustrated below.
Example 6. For λ and µ as in Example 5 we obtained
[µ]λ = {cabd, bcad}. The linear order cbad ∈ [µ] is not de-
sirable as a candidate for λ ◦ µ, as it is obtained by adding
cb and ba to ca (in addition to the cycle-free comparisons):
however, neither cb nor ca are in abcd, i.e., their addition is
unjustified based on the prior preference information.
Axiom Rr

2 ensures that λ◦µ is defined even when µ contains
a cycle. Together, axioms Rr

1 and Rr
2 have the additional de-

sirable effect of ensuring that λ ◦ µ holds on to any compar-
isons of λ not involved in a cycle with µ, or not explicitly
ruled out by µ.
Proposition 2. If λ ∈ CA µ ∈ PA, and xy ∈ C+

λ such
that yx ̸∈ C+

µ and there is no cycle involving xy in C+
λ∧µ,

then, if ◦ is a resolute preference revision operator satisfying
axioms Rr

1 and Rr
2, it holds that xy ∈ C+

λ◦µ.

Proof. Assuming that xy /∈ C+
λ◦µ, we conclude, by com-

pleteness of C+
λ◦µ, that yx ∈ C+

λ◦µ. By axiom Rr
1, we know

that C+
λ◦µ = (Cµ∪C)+, for some set of comparisons in C+

λ .
We cannot have that yx ∈ Cµ, or even that yx ∈ C+

µ , as this
would contradict our assumptions. It must be the case, then,
that yx is obtained as the transitive closure of comparisons
yz1, x1z2, . . . , yzt, with some comparisons coming from λ
and others from µ. But, since by assumption xy ∈ λ, we
now have a cycle in C+

λ∧µ involving xy, which is again a
contradiction given our assumptions.

Overall, axioms Rr
1 and Rr

2 guarantee that λ ◦ µ always pro-
duces a result of the right format, uses only information
present in µ and λ to obtain it, and, by Proposition 2, pre-
serves the acyclic part of λ ∧ µ, which we may reasonably
think of as uncontroversial and deserving to be withheld.
Thus, through the last observation, axioms Rr

1 and Rr
2 re-

cover another mainstay of AGM revision: if new informa-
tion µ is consistent with prior information λ, the result is,
reassuringly, λ ∧ µ ≡ λ, since in this case none of the com-
parisons of λ is involved in a cycle with µ.

Axiom Rr
3 expresses the familiar notion of irrelevance of

syntax. Axiom Rr
4 can be thought of as a compressed version

of axioms Ri
5 and Ri

6 and expresses the idea that if µ2 does
not contradict λ ◦ µ1, then revising by µ1 and adding µ2 is
equivalent to revising by (µ1 ∧ µ2).

Having presented the axioms, we want to move on now to
a preference-driven mechanism for performing preference

5680



revision—a mechanism that uses, as advertised, preferences
over the adjacent comparisons of λ. We do this through a res-
olute preference assignment, i.e., a function f : CA → TA
mapping every λ ∈ CA to a strict linear order <λ on the set
Aλ of adjacent comparisons of λ. We further require <λ to
be insensitive to syntax, i.e., to satisfy property fi3 adapted
in the obvious way to the present context, in which case
we call the assignment faithful. Intuitively, a faithful rank-
ing <λ requires the adjacent comparisons of λ to be ranked
in a linear fashion, with the intention of formalizing a re-
vision mechanism that uses this ranking in order to itera-
tively construct the new preference order: we read a state-
ment like xixi+1 <λ xjxj+1 as saying that xixi+1 is more
intensely held, or less eagerly given up, than xjxj+1. We use
preferences on adjacent comparisons under the assumption
that they are basic in the sense that they cannot be inferred
by transitivity using other comparisons in λ, and therefore
likely to be the result of explicit information.

Given a linear order <λ, level i of Aλ according to <λ,
denoted levi(<λ), is defined as follows:

lev1<λ
(Aλ) = min

<λ

(Aλ),

levi+1
<λ

(Aλ) = min
<λ

(
Aλ \

( ⋃
1≤j≤i

levj<λ
(Aλ)

))
.

Intuitively, level i contains the ith best comparison on A
according to <λ. Note that the levels of <λ partition Aλ

and, since Aλ is finite, there exists an index j > 0 such
that levi<λ

(Aλ) = ∅, for all i ≥ j. The addition operator
addi<λ

(µ) is defined as follows:2

add0<λ
(µ) = (Cµ ∪ CFµ(λ))

+,

addi<λ
(µ) =

{(
addi−1

<λ
(µ) ∪ (levi<λ

(Aλ)
)+

, if acyclic,
addi−1

<λ
(µ), otherwise.

Intuitively, add starts with the comparisons of µ, plus the
cycle-free part of λ with respect to µ, and, at every further
step i > 0, tries to add the comparison on level i: if the
resulting set of comparisons does not contain a cycle (by
taking its transitive closure) the operation is successful, and
the new comparison is added; if not, the addition operator
does nothing. Since the addition of new comparisons fol-
lows the order <λ, this ensures that more highly valued com-
parisons are considered before lower quality ones. Note that
add0<λ

(µ) ⊆ add1<λ
(µ) ⊆ . . . . Also note that the number

of non-empty levels of Aλ is finite and the addition opera-
tion eventually reaches a fixed point, i.e., there exists j ≥ 0

such that addi<λ
(µ) = addj<λ

(µ), for any i ≥ j. We denote
by add∗<λ

(µ) the fixed point of this operator and first check
that it actually results a linear order.
Proposition 3. If λ ∈ CA, µ ∈ PA, and <λ is a faithful
linear order on Aλ, then add∗<λ

(µ) is a strict linear order.

Proof. The relation add∗<λ
(µ) is irreflexive and transitive by

construction. Consider, next, two distinct alternatives x and
2The addition operator is different from the eponymous opera-

tion in (Benferhat et al. 1993).

λ

d

c

b

a

µ
d

c

b

a

⇝

add0
<λ

(µ)

d

c

b

a

add1
<λ

(µ)

d

c

b

a

add∗
<λ

(µ)

d

c

b

a

<λ

ab

bc

cd

Figure 2: Revision according to a faithful linear order <λ.
Lower comparisons are better. Comparisons inferred by
transitivity are omitted.

y. If xy (or yx) is in C+
µ or CFµ(λ) then xy (or yx) is in

add0<λ
(µ) ⊆ add∗<λ

(µ). If neither xy, nor yx, is in either
of C+

µ or in CFµ(λ), then we can assume wlog that xy is
implied by λ (either xy or yx has to be implied by λ, since λ
describes a linear order), and thus there exist t ≥ 0 adjacent
comparisons z0z1, . . . , zt−1zt in λ, z0 = x and zt = y, that
imply xy by transitivity. By our present assumption, z0z1,
. . . , zt−1zt are involved in a cycle with the edges of µ. Since
they are linearly ordered in <λ, the addition operator goes
through them successively: t− 1 out of them eventually get
chosen, and thus either xy or yx ends up inferred at some
point. In all cases, though, either xy or yx is in add∗<λ

(µ),
which shows that add∗<λ

(µ) is connected.

The proof of Proposition 3 shows that add∗<λ
(µ) is not just

a linear order, but that it is obtained using only comparisons
from µ and λ, i.e., that it is a λ-model of µ. This observation
will come in handy later.

Corollary 1. If λ ∈ CA, µ ∈ PA, and <λ is a faithful linear
order on Aλ, then add∗<λ

(µ) ∈ [µ]λ.

For now, Proposition 3 gives us all we need to define a res-
olute preference revision operator: the f -induced preference
revision operator ◦f is defined as:

[λ ◦f µ] = {add∗<λ
(µ)}.

Example 7. Take λ and µ as in Example 5, with [λ] =
{abcd} and C+

µ = {ca}, and <λ depicted in Figure 2. The
order λ ◦ µ is assembled in steps, starting with the compar-
isons in µ and the cyclic-free part of λ: Cµ ∪ CFµ(λ) =
({ca} ∪ {ad, bd, cd})+, depicted in Figure 2. Then, in the
first step ab is added; the second step tries to add bc, but
finds that this leads to a cycle with the previously added com-
parisons; the third step adds cd, which had been added al-
ready, and the process stops. The result is [λ◦f µ] = {cabd}.

The next step is to show that the constructive procedure us-
ing the addition operator fits within the framework delin-
eated by axioms Rr

1–Rr
4. This involves proving a represen-

tation result consisting of two parts: on the one hand, we
show that an f -induced revision operator satisfies axioms
Rr
1–Rr

4; in the second part, we show that a resolute operator
assumed to satisfy axioms Rr

1–Rr
4 can be rationalized using

a resolute faithful assignment. This involves reconstructing
<λ one pair of adjacent comparisons at a time, and involves

5681



λ

xi xj+1

xjxi+1

xi+2 xj−1

x1 xn

µxixi+1, xjxj+1

xi xj+1

xjxi+1

xi+2 xj−1

x1 xn

Figure 3: To force a choice between xixi+1 and xjxj+1 we
revise by µxixi+1,xjxj+1 : the comparison that survives is as-
sumed to be the more preferred.

solving an issue taken for granted in propositional revision:
how to decide which is better of two adjacent comparisons?
We address this issue by creating a spcial type of preference
order that, when added to λ, forces a choice between any
two adjacent comparisons.

Thus, if ℓ = x1. . .xn is the model of λ and xixi+1 and
xjxj+1 are adjacent comparisons in ℓ, with i < j, the pref-
erence statement µxixi+1,xjxj+1 is defined as:

µxixi+1, xjxj+1
=

∧
i+1≤s≤j−1

(xs≻xs+1)∧∧
j+1≤t≤i−1

(xt≻xt+1),

with the convention that xsxs is ignored, if it occurs, and
that indices are computed modulo n, i.e., xn+k stands for
xk. Intuitively, µxixi+1,xjxj+1 defines a partial order that in-
cludes the paths from xi+1 to xj and from xj+1 to x1 in
λ (see Figure 3). Under the assumption that revision has to
create a λ-model of µ, the gadget µxixi+1,xjxj+1 forces us to
make a choice between xixi+1 and xjxj+1.
Proposition 4. If ◦ is a resolute preference revision operator
satisfying axioms Rr

1 and Rr
2, then exactly one of xixi+1 and

xjxj+1 is in x1 ∈ λ ◦ µxixi+1,xjxj+1 .

Proof. At least one of xixi+1 and xjxj+1 must be added,
since they are adjacent comparisons and cannot be otherwise
inferred from other comparisons through transitivity; but it
is impossible to add both, as this would lead to a cycle.

Thus, exactly one of the two comparisons ends up in λ ◦
µxixi+1, xjxj+1

: the one, we want to say, that is held more
intensely. With this we can finally prove our main result.
Theorem 3. A resolute preference revision operator ◦ satis-
fies axioms Rr

1–Rr
4 iff there exists a resolute faithful assign-

ment mapping every complete preference statement λ to a
linear order <λ on Aλ such that [λ ◦ µ] = {add∗<λ

(µ)}.

Proof. For one direction we show that if f is a resolute faith-
ful assignment, the f -induced operator ◦f satisfies the ax-
ioms. Corollary 1 shows that ◦f satisfies axioms Rr

1 and Rr
2.

Axiom Rr
3 follows using the insensitivity to syntax of <λ.

For axiom Rr
4 note that if (λ◦µ1)∧µ2 is consistent, then all

the comparisons in µ2 are in λ ◦ µ1, since the latter encodes

a linear order. This means that all the comparisons in λ that
get added to µ1 to form λ ◦ µ1 can be added to µ2 as well.

For the other direction take a resolute operator ◦ satisfying
all the postulates, and define <λ on Aλ as follows:

xixi+1 <λ xjxj+1 if xixi+1 ∈ λ ◦ µxixi+1,xjxj+1
.

Axioms Rr
1 and Rr

2 imply, via axioms Rr
1–Rr

2, that <λ is
a strict, total order on Aλ. To show that <λ is transi-
tive, take three adjacent comparisons such that xixi+1 <λ

xjxj+1 <λ xkxk+1. From the facts that xixi+1 ∈ λ ◦
µxixi+1,xjxj+1

and that xjxj+1 ∈ λ ◦ µxjxj+1,xkxk+1
we

infer, using axiom Rr
4 that xixi+1 ∈ µxixi+1, xjxj+1, xkxk+1

,
where xixi+1 ∈ µxixi+1, xjxj+1, xkxk+1

is a preference state-
ment defined, as expected, as a cycle going from x1 to
xn to x1, from which we remove comparisons xixi+1,
xjxj+1 and xkxk+1. Then, by adding xjxj+1 to xixi+1 ∈
µxixi+1, xjxj+1, xkxk+1

, we infer, again using axiom Rr
4, that

xixi+1 ∈ λ ◦ µxixi+1, xkxk+1
.

For the final step, we have to show that [λ ◦ µ] =
{add∗<λ

(µ)}. Assume, to the contrary, that there exists xy ∈
C+

λ◦µ and that xy /∈ add∗<λ
(µ). This implies that yx ∈

add∗<λ
(µ). We further infer that neither xy nor yx is in C+

µ

(if yx ∈ C+
µ , then xy could not be in C+

λ◦µ, which has to be,
by axiom Rr

1, a λ-model of µ). Then either yx gets added
by the addition operator directly, as an adjacent compari-
son of λ, or is inferred bt transitivity. If it is added as an
adjacent comparison of λ, we first note that it must be in-
volved in a cycle with µ (otherwise it would be in C+

λ◦µ,
per Proposition 2), and that it must have priority in <λ over
some other adjacent comparison zt, which must be sacri-
ficed in order to break the cycle, i.e., yx <λ zt. But, from
the fact that xy ∈ C+

λ◦µ we can infer, using axiom Rr
4, that

xy ∈ C+
λ◦µyx,zt

, which then implies that zt <λ yx, a con-
tradiction. If yx is inferred by transitivity rather than added
directly, the reasoning is similar.

5 Conclusions
We have presented two models of preference change. The
first works by minimizing distances, and was found to be
difficult to square with the requirement that prior and revised
preference information are of the same type. The second, ad-
vanced in part to address this issue, is based on the idea that
revising a preference λ goes hand in hand with having pref-
erences over the comparisons inherent in λ. In formalizing
these two approaches we believe to have provided a rigorous
formal treatment to intuitions found elsewhere in the litera-
ture (Sen 1977; Grüne-Yanoff and Hansson 2009).

There is also ample space for future work, in particular
with respect to understanding the distance functions under-
lying operators that are both axiom-abiding and that sat-
isfy desirable constraints on the format of output. The initial
work in Section 3 shows that combining these two types of
requirements is a delicate matter, and further research is cer-
tain to yield interesting possibility or impossibility results.
With respect to the framework of Section 4, an obvious way
forward is to relax the assumption of linearity on the com-
parisons of λ in order to characterize choice mechanisms
operating on a more general form of preference structure.
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