The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Sufficient Reasons for Classifier Decisions in the Presence of Domain Constraints

Niku Gorji, Sasha Rubin

School of Computer Science, The University of Sydney, Australia
niku.gorji @sydney.edu.au, sasha.rubin@sydney.edu.au

Abstract

Recent work has unveiled a theory for reasoning about the
decisions made by binary classifiers: a classifier describes a
Boolean function, and the reasons behind an instance being
classified as positive are the prime-implicants of the func-
tion that are satisfied by the instance. One drawback of these
works is that they do not explicitly treat scenarios where the
underlying data is known to be constrained, e.g., certain com-
binations of features may not exist, may not be observable, or
may be required to be disregarded. We propose a more gen-
eral theory, also based on prime-implicants, tailored to taking
constraints into account. The main idea is to view classifiers
as describing partial Boolean functions that are undefined on
instances that do not satisfy the constraints. We prove that this
simple idea results in more parsimonious reasons. That is, not
taking constraints into account (e.g., ignoring, or taking them
as negative instances) results in reasons that are subsumed by
reasons that do take constraints into account. We illustrate this
improved succinctness on synthetic classifiers and classifiers
learnt from real data.

Introduction

A recent line of enquiry for providing reasons for classifier
decisions is on supplying principled reasons for individual
instances with formal guarantees of subset- or cardinality-
minimality (Shih, Choi, and Darwiche 2018; Darwiche
and Hirth 2020; Ignatiev, Narodytska, and Marques-Silva
2019a). Contrary to the more scalable heuristic approaches
(Ribeiro, Singh, and Guestrin 2016; Lakkaraju et al. 2019;
Iyer et al. 2018), these principled approaches guarantee the
quality of produced reasons and therefore can serve to val-
idate, benchmark, and potentially provide insights for im-
proving the solutions of the heuristic approaches.

A noteworthy drawback of these methods however, is that
they do not deal with reasoning in the presence of constraints
or background knowledge.

Constraints may arise from the structure and inter-
dependencies between features present in data (Darwiche
2020). As a simple example, consider a medical setting in
which some combinations of drugs are never prescribed to-
gether and thus will not appear in any dataset: if we know
that drug A and drug B are never prescribed together (i.e.,

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the constraint), then a reason of the form “drug A was pre-
scribed and drug B was not prescribed” is overly redundant;
however, the current methods in the state of the art produce
such overly complicated reasons. We argue that in this situ-
ation, it is more parsimonious to supply the reason “drug A
was prescribed”. Although it might be obvious how to pro-
cess reasons to take such simple constraints into account, it
is by no means obvious how to handle semantic constraints
represented by arbitrarily complex Boolean formulas. It is
the purpose of this work to provide a simple and elegant ap-
proach for doing this. More precisely, we address the prob-
lem of how to incorporate background knowledge, specifi-
cally input (domain) constraints, into supplying reasons be-
hind individual decisions of classifiers.
Our contributions are as follows:

1. We provide a crisp formalisation of reasons for classi-
fier decisions that takes constraints into account, result-
ing in reasons that are as least (and sometimes more)
parsimonious, i.e., more general and more succinct, than
not taking constraints into account. The central insight,
both simple and powerful, is to treat a classifier as a par-
tial function that is not defined on input instances that
do not satisfy the constraint, and then to use the classic
definition of prime-implicant on partial functions (Coud-
ert 1994) as the instantiation of the word “reason”. This
immediately and naturally generalises the state of the art
from the unconstrained setting to the constrained setting.

2. We provide a simple reduction of the computational
problem of finding all reasons of a classifier’s decision
for a given instance in the presence of constraints to
the same problem in the unconstrained setting. This al-
lows one to reuse existing algorithms and tools from the
unconstrained setting. The idea is that if the constraint
is given by the Boolean formula «, and the decision-
function by ¢, then reasons of ¢-decisions that take
k into account are exactly the reasons of (k — ¢)-
decisions.! We prove that all other variations, including
the seemingly natural variation (x A), provide no more,
and sometimes less, parsimonious reasons.

3. We show, both theoretically and empirically on syn-
"This simple reduction can be done in linear-time for formulas

represented as strings or parse-trees, and in polynomial-time for
formulas represented as OBDD . (Darwiche and Marquis 2002).

Partial

Decision
CCISI0 Boolean

Fun}c;mn Function
Feo

T r

Data

Sufficient

Classifier
Reasons

[

Constraints
C

Figure 1: Workflow

thetic classifiers and classifiers learnt from data, that ap-
proaches that ignore constraints may supply reasons that
are unnecessarily long since they redundantly encode
knowledge already described in the constraints.

The workflow is illustrated in Figure 1. A classifier, typically
learnt from data, is transformed into a decision function F'.
Domain constraints C' are taken into account to produce a
partial Boolean function F-, which is used to compute suf-
ficient reasons for the classifier’s decisions.

Preliminaries

We begin by recalling just enough logical background to be
able to explain our theory.

Boolean logic. Let X = {X;, X5, -, X,} be a set of
n Boolean variables (aka features). The set of Boolean
formulas is generated from X, the constants T (true) and
L (false), and the logical operations A (conjunction),v
(disjunction),— (negation), — (conditional) and <« (bi-
conditional). Variables X and their negations —X are called
literals. A term t is a conjunction of literals; the empty-
conjunction is also denoted T. The size of a term ¢ is the
number of literals that occur in it. An instance (over X) is
an element of {0, 1}", and is denoted x (intuitively, it is an
instantiation of the variables X). An instance X satisfies a
formula ¢ if ¢ evaluates to true when the variables in ¢ are
assigned truth-values according to x. The set of instances
that satisfy the formula ¢ is denoted [], and is called the
set represented by ¢, i.e., a set C' of instances is represented
by ¢ if C' = [¢]. If [¢] = [¢] then we say that o, ¢ are log-
ically equivalent, i.e., they mean the same thing. For terms
s, t, we say that s subsumes t if [t] < [s], i.e., if every in-
stance that satisfies ¢ also satisfies s. If [¢] < [s] then we say
that s properly subsumes t; depending on the context, we
also describe this by saying that s is more general or more
parsimonious than t, or s is more succinct than ¢ (note that s
is smaller than t).

Partial Boolean functions, and prime-implicants. A
partial Boolean function F (over X) is a function {0, 1} —
{0,1,*}. For i € {0,1,x} define F* to be the set F'~1(i).
The instances in F', FO, F'* are called, respectively, the
positive, negative, undefined instances of F'. If the set F'*
is empty, then F is a total Boolean function. If [¢] = F*
we say that the formula ¢ represents the total Boolean func-
tion F. A term t is an implicant of F if [t] € F' U F*; it
is prime if no other implicant of F' subsumes t. Intuitively,
t is prime if removing any literal from ¢ results in a term

5661

that is no longer an implicant. This generalises the notion
of implicant and prime-implicant from total Boolean func-
tions, cf. (Quine 1952; Shih, Choi, and Darwiche 2018; Dar-
wiche and Hirth 2020), to partial Boolean functions, cf. (Mc-
Cluskey 1956; Coudert 1994).

We state a simple but useful lemma:

Lemma 1. If F, G are partial functions over X such that
F' U F* < G' U G*, then every prime implicant of F is
subsumed by some prime implicant of G.

Proof. Clearly, every implicant of F' is an implicant of G.
Now, apply the fact that every implicant of a function is sub-
sumed by some prime-implicant of that function. O

Decision-functions. Total Boolean functions naturally
arise as the decision-functions of threshold-based binary
classifiers (Choi et al. 2019; Shih, Choi, and Darwiche
2018): the decision-function F' of a threshold-based classi-
fier is the function that maps an instance x to 1 if Pr(d =
1|x) = T, and to 0 otherwise; here d is a binary class vari-
able, and Pr is the distribution specified by the classifier,
and 7' is a user-defined classification threshold.

Definition 1 (Sufficient reasons for total functions). (Dar-
wiche and Hirth 2020) Let F' be a total Boolean function
and let x be a positive instance of F. A term t is a sufficient
reason of the decision F'(x) = 1 if (i) ¢ is a prime-implicant
of F, and (ii) t is satisfied by x.

Sufficient reasons are called Pl-explanation in (Shih,
Choi, and Darwiche 2018), and abductive explanations in
(Ignatiev, Narodytska, and Marques-Silva 2019a).

Standard convention. We freely interchange between to-
tal Boolean functions and the formulas that represent them.
In particular, if ¢ represents the total Boolean function F,
we may refer to implicants, prime-implicants, and sufficient
reasons of ¢ (instead of F’).

Problem Setting

The problem we address is how to define reasons behind
the decisions of a classifier in the presence of domain con-
straints.

Definition 2. A constraint is a set C of instances over X.

We typically represent constraints by Boolean formulas.
Here are just a few examples that show that constraints
are ubiquitous. In a medical setting, constraints of the form
(X7 — X3) may reflect that people with condition X also
have condition X5, e.g., X1 may mean “is pregnant” and Xo
may mean “is a woman”. In a university degree structure:
constraints of the form X; — (X5 A X3) may reflect that
X5 and X3 are prerequisites to X; constraints of the form
X1 — —(X3 v X3) may reflect prohibitions; and constraints
of the form X; A X5 may reflect compulsory courses. In
configuration problems, e.g., that arise when users purchase
products, the user may be required to configure their prod-
uct subject to certain constraints, and constraints of the form
(X1 v X2) A =(X1 A X2) may reflect that the user needs to
choose between two basic models. These constraints also re-
sult from one-hot encodings of a categorical variables, e.g.,

if M is a 12-valued variable representing months, and X;
for?s =1,---,12is Boolean variable, then the induced con-
straint is (\/; X;) A (/\#j =(X; A Xj)). Combinatorial
objects have natural constraints, e.g., rankings are ordered
sets, trees are acyclic graphs, and games have rules, see the
Case Studies and Validation section. Finally, the assumption
in this paper is that constraints are hard, i.e., instances that
are not in C' will not appear in any data and can be ignored
(e.g., they will not appear in training or testing data).

Recall that threshold-based classifiers produce represen-
tations of rotal Boolean functions. This suggests the follow-
ing useful terminology:

Definition 3. A constrained decision-function is a pair
(F, C) consisting of a total Boolean function F and a con-
straint C.

We thus ask:

How should one define reasons behind decisions of con-
strained decision-functions?

We posit that a suitable notion of “reason” that takes con-
straints into account:

D1. does not depend on the representations of F or C, i.e., it

is a semantic notion;

D2. does not depend on the values F(x) for x ¢ C, i.e., if
F, G agree on C (and perhaps disagree on the comple-
ment of C), then reasons for (F, C) should be the same

as reasons for (G, C);

D3. in case there are no constraints, i.e., C = {0, 1}", recov-

ers the notion of sufficient reasons from Definition 1;

D4. eliminates redundancies that are captured by the con-

straints.

We offer a formalisation that satisfies these desiderata.

Reasons in the Presence of Constraints

In this section we provide the main definition of reasons
in the presence of constraints (Definition 5) and show that
it satisfies all of the desired properties D1-D4 listed in the
Problem Setting section.

D1 and D2 motivate the insight that constrained decision-
functions should be treated as partial Boolean functions:

Definition 4. For a constrained decision-function (F,C),
let F¢ be the partial Boolean function that maps x to F(x)
ifx € C, and to * otherwise.

Thus, we now define sufficient reasons that take con-
straints into account by considering the partial function Fi.

Definition 5 (Sufficient reasons that take constraints into ac-
count). Let (F,C) be a constrained decision function, and
let x be a positive instance of F such that x € C. A term t
is a sufficient reason of the decision F'(x) = 1 that takes the
constraint C' into account if (i) t is a prime-implicant of the
partial Boolean function F¢, and (ii) t is satisfied by x.

In this case, we will also say that t is a sufficient reason of
the decision F(x) = 1. We will also call prime-implicants
of F, sufficient reasons using Fe.

5662

To see that D3 holds, simply note that if C' = {0, 1}" then
Fc = F is a total function. Thus, a term ¢ is a sufficient
reason of the decision F'(x) = 1 that takes C' into account iff
it is a sufficient reason of the decision F'(x) = 1 according
to Definition 1.

Remark 1. Sufficient reasons of negative instances x can be
defined and handled dually: a term t is a sufficient reason of
the decision Fg(x) 0 if it is a sufficient reason of the
decision Go(x) = 1 where G is the “negation of F'”, i.e.,
Gx):=0ifF(x) =1 and G(x) := 1 if F(x) = 0. Thus,
we can reduce reasoning about negative instances of F¢ to
reasoning about positive instances of G¢.

Example 1. Consider the total Boolean function F' over
X = {Xi, X2} represented by the formula (X; < Xo).
Suppose a constraint C' is represented by the formula
(X7 — X5), thus C = {(0,0),(0,1),(1,1)}. Table 1 pro-
vides both F and the partial Boolean function Fo. The

X, Xo||F Fo
0 0 || 1 1
o 110 o
1 0|0 =
| | N

Table 1: The row corresponding to the instance not in the
constraint is greyed out.

prime-implicants of F are (X1 A X3) and (—=X1 A —X3).
The only sufficient reason of the decision F(0,0) = 1 is the
term (—X1 A —Xa), and the only sufficient reason of the
decision F(1,1) = 1 is the term (X1 A X3). The prime-
implicants of Fo are —Xo and X4. The only sufficient rea-
son of the decision F(0,0) = 1 is —Xs, and the only suffi-
cient reason of the decision Fo(1,1) = 1 is X;.

Finally, we provide a simple theorem that formalises D4.
We prove that every sufficient reason that does not take con-
straints into account is subsumed by some sufficient reason
that does.

Theorem 1. Suppose x is a positive instance of Fc. Then
every sufficient reason of the decision F(x) = 1 is subsumed
by some sufficient reason of the decision Fo(x) = 1.

Proof. Let x be a positive instance of F. In particular, it is
a positive instance of F. Let ¢ be a prime implicant of F' that
is satisfied by x. We show that there is some prime implicant
t' of F that subsumes ¢ (and thus is satisfied by x). To see
this, apply Lemma 1 taking G = F. The hypothesis of
the Lemma holds (i.e., that F'' U F* < G' U G*) since
F' U F* = F*! (since F is total) and (F¢)! U (Fo)* =
(F' ~ C) u C (by definition of F¢). O

To complement this theorem, we show that simply consid-
ering reasons of the total Boolean function F' (and ignoring
the constraint C'), may actually supply strictly less succinct
reasons.

Example 2. Continuing Example 1, note that the only suf-
ficient reason for F(0,0) = 1 is subsumed by a sufficient

reason of F(0,0) = 1, i.e., (—X1 A —X3) is subsumed by
—Xo. Similarly, the only sufficient reason for F(1,1) = 1
is subsumed by a sufficient reason of Fo(1,1) = 1, ie,
(X1 A Xo) is subsumed by X,. This accords with the infu-
ition that, in light of the constraint (X; — Xs), reason X
is preferred to reason (X1 A Xa).

It is not hard to find examples where every sufficient rea-
son of F'(x) = 1 is much larger than every sufficient reason
of Fe(x) = 1. E.g., let F be the function X1 A Xo A+ - - A X,
and C be the constraint X; — (Xo A X3 A -+ A X,);
then the only reason of the decision F'(1,1,---,1) = 1is
X1 A Xy A -+ A X, which is subsumed by the reason X
of the decision Fo(1,1,---,1) = 1.

Constraint-equivalent reasons. If one is interested in the
meaning of a reason, and not its syntactic structure, then one
should consider sufficient reasons up to logical-equivalence
modulo the constraints. That is, terms ¢, s are C-equivalent
(or simply, constraint-equivalent when the constraint is un-
derstood), if C' n [s] = C n [t]. For instance, if C' is rep-
resented by (X7 v X3) A =(X7 A Xo) thent = —X; is
C-equivalent to s = X5, and thus s and ¢ may be identified
as the same reason in the presence of C'.

Variations and Parsimony of Reasons

Subtle changes in the definition of sufficient reasons result
in radically different types of reasons. First, we have seen in
the Examples that ignoring the constraints does not provide
the most parsimonious reasons. Second, consider the varia-
tion in which, instead of using reasons of the partial function
Fo, one uses reasons of the total function that agrees with
F on C and assigns 0 to instances not in C'. Although seem-
ingly natural, it is not hard to see using Lemma 1, that this
results in less parsimonious reasons. Moreover, if F,C' are
represented by the Boolean formulas ¢ and « respectively,
then this total function is represented by the formula x A .
In the next section we will see that sufficient reasons using
Fo are the same as using the total function corresponding
to the formula kK — . We find it striking that this change
of perspective drastically changes the parsimony of the pro-
duced reasons; we provide an example of this difference in
the discussion of Case Study 1.

Computing Sufficient Reasons

In this section we discuss how to computationally find suffi-
cient reasons in the presence of constraints. In particular, we
show how to reduce this to the unconstrained case.

Definition 6 (Computational problems). Given a con-
strained decision-function (F,C), and a positive instance x

of Fe, find all (resp. one) sufficient reasons for the decision
FC (x) =1.

As usual (see the Preliminaries), we can think of the total
function F' and the set of instances C' as Boolean formulas,
say F'! = [p] and C' = [k] (we are agnostic about exactly
how to represent these formulas until we discuss complexity
and the experiments). The following proposition says that
we can reduce the computational problem of the constrained
case to the unconstrained case using the formula (x —).

5663

Proposition 1. Suppose ¢ represents F and k represents C.
For a positive instance x of F¢, the sufficient reasons of the
decision F¢o(x) = 1 are exactly the sufficient reasons of the
decision G(x) = 1 where G is the total function represented
by the Boolean formula (k —).

Proof. First, note that X is a positive instance of G. Indeed,
since Fo(x) = 1 we know thatx e C n Fl,ie,x = Kk A,
and thus also x = K — (. Thus, it is sufficient to show that
a term ¢ is an implicant of F iff it is an implicant of G. By
definition, ¢ is an implicant of F¢ iff [t] < (Fc)' U (Fo)*.
But (Fo)! = F1nC and (Fo)* = C (Definition 4). On the
other hand, ¢ is an implicant of the total function G iff [t] <
G'.ButG! = C U F'. Thus G = (Fo)* u (Fo)t. O

The significance of Proposition 1 is that it shows how to
reuse algorithms and tools that are already developed for
reasoning about total Boolean functions. Indeed, as long as
the formulas k, ¢ are represented in a language that allows
one to form the conditional x — ¢ formula in polynomial
time in the sizes of k, ¢, we have a polynomial time reduc-
tion of the problem of finding reasons with constraints to
those without. On the other hand, reasoning without con-
straints is a special case of reasoning with constraints, i.e.,
there is a trivial reduction in the other direction too, simply
take k = true. We summarise this important computational
fact as follows:

Theorem 2. Assume that formulas are represented in a for-
malism that allows one to form the conditional of two for-
mulas in polynomial time. Then, the problem of finding all
(resp. one) sufficient reasons for a decision that takes con-
straints into account is polynomial time interreducible with
the problem of finding all (resp. one) sufficient reasons for a
decision (without constraints).

Thus, if one uses representations that also allow one to
compute sufficient reasons of total Boolean functions in
polynomial time, then, by first applying the reduction in
Theorem 2 one can find sufficient reasons for constrained
decision-functions in polynomial time too.

We mention the two main approaches comprising the state
of the art for computing sufficient reasons for total Boolean
functions. First, (Shih, Choi, and Darwiche 2018) represent
formulas using OBDDs, which support polynomial negation
and conjunction (and thus implication). Their approach pro-
vides a polynomial time procedure for finding all sufficient
reasons, using the fact that OBDDs support polynomial-time
validity and entailment checking. To reuse their algorithm
in our setting, simply run it on the OBDD representation of
the formula (k — ¢). Second, (Ignatiev, Narodytska, and
Marques-Silva 2019a) take an agnostic view on the repre-
sentation of formulas, and only require that the chosen rep-
resentation allows polynomial time entailment checking. To
reuse their approach in the presence of constraints, one may
use it on formulas of the form (k —) instead of .

Note that if a representation also allows (a) polynomial
time validity checking, and (b) forming the conjunction of
a term and formula in polynomial time, then one can de-
cide if two terms are constraint-equivalent in polynomial
time. Thus, if one is interested in computing reasons up to

constraint-equivalence one can compute a set of represen-
tatives by, for instance, checking each pair of reasons for
constraint-equivalence.

Illustration

To clarify the introduced concepts, we illustrate sufficient
reasons on a complete synthetic example of a learnt classi-
fier, inspired by an example in (Kisa et al. 2014).

Consider a tech-company that is shortlisting recent CS
graduates for a job interview. The company considers can-
didates who took courses on Probability (P), Logic (L),
Artificial Intelligence (A) or Knowledge Representation
(K) during their studies. Suppose that the company uses
data on candidates who were hired in the past to learn a
threshold-based classifier, and let F' be the associated fo-
tal decision-function over X = {L, K, P, A} with F1 =
{(0011), (0110), (0111), (1100), (1101), (1110), (1111)}.

Consider an instance x = (0011) corresponding to candi-
dates that did not take L or K, but did take P and A. Note that
F(x) = 1,i.e., the classifier decides to grant such candidates
interviews. What is the reason behind this decision? Table 2
gives the reasons which were computed using (Shih, Choi,
and Darwiche 2018). We see that the only reason behind the
decision of F' for x = (0011) is (—L A P A A), i.e., that the
candidate did not take L, but did take P and A.

L K P A| Reasons using F' | using Fo

0 01 1I|(-LAPAA (=L A A)

0 1 1 1| (=LAPAA),(KAP) | (=L A A), K
110 0|(LAK K

111 0| (LAK),(KAP) |K

111 1| (LAK)L(KAP) |K

Table 2: Rows list the positive instances that satisfy the con-
straints, along with their reasons using F' and using F.

Suppose, that a student’s enrolments must satisfy the fol-
lowing constraints C'" a student must take P or L, (P v L);
the prerequisite for A is P, (A — P); the prerequisite for
KisAorL, (K — (A v L)). Reasons of the constrained
decision-function F- are given in Table 2. Note (—L A A)
and K are not constraint-equivalent.

Consider the reason behind the decision Fo(x) = 1 where
x = (0011), i.e., =L A A. This reason strictly subsumes the
reason —L A P A A used by the original (unconstrained) clas-
sifier F'. This phenomenon, that for every positive instance
x in C, every sufficient reason of F/(x) = 1 is subsumed
by some sufficient reason of Fo(x) = 1, can be seen in all
other rows of Table 2. This illustrates that our notion of suf-
ficient reason (Definition 5) eliminates such redundancies, a
fact we formalised in Theorem 1.

Case Studies and Validation

In this section we validate our theory on constrained
decision-functions learnt from binary data.> We provide a

Continuous data can be discretised, and discrete/categorical
data can be binarised (Breiman et al. 1984).

5664

prototype using a type of classifier that is often considered
interpretable, i.e., decision trees. The purpose of the proto-
type is to provide a proof of concept that shows that by using
constrained decision-functions: (1) we get no less succinct,
and sometimes more succinct, reasons compared with the
unconstrained setting; (2) we can seamlessly integrate two
major types of constraints that can arise in Al, namely con-
straints due to pre-processing of data (e.g. one-hot, or other
categorical, encodings), and semantic constraints that are in-
herent to the input domain.

Representation As discussed earlier, we can compute rea-
sons by reducing to the unconstrained case. We reuse the
algorithms in (Shih, Choi, and Darwiche 2018) by simply
building an OBDD representing x — ¢ (using the OBDD
operations for complementation and disjunction), and pass
this OBDD as input to their tool that computes sufficient
reasons for a given instance.

Case Study 1. We used the dataset of Corticosteroid Ran-
domization after Significant Head Injury (CRASH) trial
(Collaborators et al. 2008) to predict the condition of a pa-
tient after a traumatic head injury. There are eleven clini-
cally relevant input variables, including demographics, in-
jury characteristics and image findings, see (Zador, Sper-
rin, and King 2016) for a detailed description of the dataset.
Six variables are categorical, and the rest are Boolean.® The
outcome variable indicates moderate or full recovery at 6
months versus death or severe disability.

Categorical variables are encoded using a one-hot encod-
ing, which induces the constraint C' as follows. For a cate-
gorical variable X, let D denote a set of Boolean variables
corresponding to the set of categories of X. The correspond-
ing constraint says that exactly one of the variables in D
must be true. For example, variable Fye (shortened to E)
has 4 categories, which we encode by the Boolean variables
in Dg = {E, Es, E3, E4}. The corresponding constraint is
V,; Ein /\#j —(E; A Ej), where ¢, j vary over {1, 2, 3,4}.
The constraint C' is the conjunction of all such constraints,
one for each categorical variable.

Following (Steyerberg et al. 2008) we base our exam-
ple on 6945 cases with no missing values. RPART (seed:
25, train: 0.75, cp: 0.005) correctly classifies 75.69% of in-
stances in the test set (ROC 0.77). Figure 2 shows the model.

—_—
-P1 P1 AT a7
— .—‘—‘

AT -A7 M6 v

-EC
08 _op AB_,.
W]
| P

Figure 2: RPART decision tree for Case Study 1.
Consider the instance x that maps Ay, Fy, M5, Vs, Py,
OB, MD to 1, and the remaining four variables to 0. The

3Categorical are: Age(1-7), Eye(1-4) Motor(1-6), Verbal(1-5),
Pupils(1-3). Boolean are: EC, PH,OB,SA, M D, HM.

decision-rule in the decision tree that explains why x is posi-
tive is B1 A Py A—A7 A Mg A —Ag (size: 5). There is one suf-
ficient reason using F': =Ag A —=A7 A M5 A Py (size: 4). Up
to constraint-equivalence there are two sufficient reasons us-
ing Fo: (i) Ay A My A Py (size: 3), (i) ~Ag A— A7 AMs A Py
(size: 4).

Discussion of Case-Study 1. The explanation using the
decision tree is strictly subsumed by the sufficient reason
using F'. This shows that decision-rules may not be the most
succinct reasons. Further, incorporating constraints resulted
in having a smaller reason which would be missed if one just
used F'. The reason using F' is subsumed by some reason
using Fo, in fact it appears as reason (ii); cf. Theorem 1.

Note that reasons (i) and (ii) are not constraint-equivalent
(and thus should be considered different reasons). Which
reason should one prefer? On the one hand, (i) is more suc-
cinct, but on the other hand (ii) strictly constraint-subsumes
(1), i.e., it applies to more instances. Without additional pref-
erences there is no basis to prefer one over the other, and thus
we report both of them.

If one incorporated constraints by instead using the func-
tion represented by the formula (k A ¢) one would get
one sufficient reason for this decision that is highly redun-
dant in light of the constraint (as discussed in the Varia-
tions section), i.e., (A1 A By A Ms A Vo A Py A Ay —X)
where the conjunction is over all the remaining variables
A27A37"' 7E27E37""

Finally, the histogram in Figure 3 compares the sizes of
shortest reasons using F' and F- (omitting size 2 reasons
which would dominate the graph). Note that the percentage
of reasons using I’ increases with size, while those using Fio
decreases with size.

S 6ol 0o F ||
§D 44 |BBF.
s 40 - -
*g 27

5 200 ’_‘ 7

A~ 0 | ‘5|’””]

Size of shortest reason

Figure 3: Distribution of shortest reasons, restricted to in-
stances without length < 2 reasons (i.e., 5440 of 109120
instances). Percentages are rounded to the nearest decimal.

In summary, this case study empirically validates that rea-
sons that take constraints into account may be more suc-
cinct.

Case Study 2. To study semantic constraints, we used the
Tic-Tac-Toe (TTT) Endgame dataset from the UCI machine
learning repository (Dua and Graff 2017). This dataset con-
tains the complete set of board configurations that result
from X going first, until the game ends. The target concept
is “player X has three-in-a-row”.

We binarise the dataset as in (Verwer and Zhang 2019).
For each of the 9 board positions (labelled as in Table 3i.)

5665

012 X|X|X 01| 01 | 01
i 31415 ii. ii. 00 | 00 | 00
6|78 O o 10 | 00 | 10

Table 3: i. TTT board; ii. Positive instance; iii. Encoded in-
stance (cell 7 is labelled by the values of V; oV x).

introduce variables V; o (resp. V; x) capturing whether or
not O (resp. X) was placed in position 7. We trained a classi-
fier on this dataset using RPART (seed 1, train: 0.7, cp 0.01);
with 93% accuracy for the test set (ROC 0.97), see Figure 4.

70? ox L -00
| L
8 l y | y !
8 gx - 2x j‘i -20 8o -80
1x -6x —1'x_‘ 1lo 60 20
;13(_ 6x 1x |-lo | 60 2
70 73x—‘ 30 ‘ 50 60
-70 3x -30 -50 | -6o
70
=70
o @ (@ (1 11 (e 1 1

Figure 4: RPART decision tree for case study 2. We drop V
and write, e.g., 40 instead of V o for readability.

Let F' be the corresponding decision-function. In what
follows we focus on sufficient reasons for the instance in Ta-
ble 3iii. The sufficient reasons using F' are given in Table 4.

0---0- 0----- -——=0- -—0-—-
IL.-—0--- 2.--0-0- 3.0-0--- 4.0-0-0-
-—0-— -—0- - -—0-— -—0-—-
01-101 01-1-1 -1-101 -101-1
50— ——— 6.———0- 7.0-—-—- 8.0-—-0-
-—0--- -—0--- -—0- - -——0-—-
Table 4: Reasons using F’

-1-1-1 T

A —— —— — B. —— 0000

—— 0= —— --001-

Table 5: (A) a reason using F¢, (B) a reason using Fi-

Simple constraints for TTT The encoding induces a con-
straint C' that expresses that no position contains both an
O and an X, although, unlike the one-hot-constraints (as
in Case Study 1), it may have neither, i.e., C' is given by
No<i<s ~(Vi,o A Vi x). Again, consider the positive in-
stance in Table 3iii. The reasons for the decision using F
include Reasons 1-4 in Table 4, as well as Reason A from
Table 5 which strictly subsumes Reasons 5-8 in Table 4.

This shows that some reasons of F' are redundant in light
of the constraint C, e.g., as witnessed by the inclusion of the
literals —=Vj o and Vj, x in reason 5.

More complex constraints: adding game rules Define
the constraint C’ to include C as well as saying that the
board is the result of valid play, i.e., that X moves first
and players alternate moves. The additional constraint is
\/S,T('(/)S A 1) where S, T vary over all subsets of U =
{0,1,2,--- ,8}suchthat S n T = &, and 0 < |S| — |T| <
L, and s is (Njes Vix) A (Njerns —Vix) and o7 is
(Aier Vi,0) A (Nieonr —Vi,0)- The formula expresses that
the set S of positions where X has played is disjoint from the
set T where O has played, and that either there are the same
number of moves, or X has played one more. Using F¢-, the
sufficient reasons for the instance above include Reason B in
Table 5. This reason can be interpreted as follows: in light of
the constraint C', which says that the board is the result of
a valid play, if positions 4,5,7 are blank and position 8 has
an O, then player X must have won. This is indeed correct:
player O could not have won since with 5 moves in the game
player O can only move twice, and there could not be a draw
because not all positions were filled yet.

Discussion of Case-Study 2. This case study illustrates
how our framework seamlessly takes complex semantic
constraints, such as combinatorial constraints, into account
when producing reasons. This should be contrasted with po-
tential ad-hoc algorithms for incorporating any fixed con-
straint.

Related Work

We have generalised certain aspects of (Shih, Choi, and Dar-
wiche 2018) and (Ignatiev, Narodytska, and Marques-Silva
2019a) by incorporating domain constraints. We do not deal
with constraints on the possible outputs of a classifier (Xu
et al. 2018). To provide sufficient reasons in the presence of
domain constraints, we show how to reduce the constrained
case to the unconstrained case, thus allowing one to reuse
existing symbolic algorithms and tools (Shih, Choi, and Dar-
wiche 2018). (Marques-Silva and Ignatiev 2022) provide a
thorough summary of the recent developments in formal ex-
planations in Al

For explanations of classifiers with multi-valued features,
(Choi et al. 2020) study three different types of encoding.
They settle on a special type of one-hot encoding, and take
into account the induced exactly-one constraints in the same
manner that we have studied in this paper. Concurrently,
(Cooper and Silva 2021) define explanations in the presence
of general constraints, but do not study the properties and
benefits of this definition. Their focus, instead, is on proper-
ties of decision functions that ensure finding explanations is
tractable.

The ML literature has techniques for producing (post-hoc
local) rule-based explanations which are similar in spirit to
the logic-based method of this paper. Notably, the Anchors
of (Ribeiro, Singh, and Guestrin 2018) provide explanations
that may be more succinct than sufficient reasons, but may
fail to be implicants of F' as shown in (Ignatiev, Narodyt-
ska, and Marques-Silva 2019b). In Case Study 1, we ob-
serve that decision-tree branches may not supply the most
succinct reasons. This fact was studied by (Izza, Ignatiev,

5666

and Marques-Silva 2020) who demonstrate the significant
explanation-redundancy of decision tree branches.

Another notable parallel is from social science research,
namely in Configurational Comparative Methods (CCMs)
(Thiem 2014; Baumgartner and Thiem 2015; Thiem and
Dusa 2013) where prime-implicants of partial Boolean func-
tions are used for causality analysis.

Discussion

The crux of this paper shows how to handle constraints in a
principled manner, and establishes that ignoring constraints
could result in unnecessarily long/complex reasons, as well
as missing some reasons altogether. For computing reasons,
our approach reduces the constrained case to the uncon-
strained case. Thus, any advance in the efficiency of tools
for solving the latter will yield benefits for the former.

A general critique of the prime-implicant based approach
is that reasons may become too large to comprehend when
the number of variables is large. Notice that our method is
a step towards improving this problem in the presence of
constraints. If the shortest reason in the presence of con-
straints is still too large to comprehend, not taking con-
straints into account may result in reasons that are even
larger and even harder to comprehend. Observe, from the
case studies, that while adding constraints may decrease or
increase the number of reasons, it never increases the size
of the shortest reasons (a fact that is guaranteed by The-
orem 1). In cases of multiple (constraint-inequivalent) rea-
sons for a decision (even amongst the shortest ones), we do
not supply a way to pick one reason over another, a chal-
lenging problem (Lakkaraju et al. 2019). Indeed, preferring
one reason over another would require additional assump-
tions about preferred reasons, e.g., favouring shorter rea-
sons (Miller 2019).

Our framework for handling constraints is model-
agnostic, i.e., it supplies the underlying principle for han-
dling domain constraints for decision-functions that corre-
spond to binary classifiers, no matter how the classifiers
were learnt or modelled. As a proof-of-concept, we illus-
trated this by compiling decision trees into OBDDs. The
general problem of compiling ML models into compact cir-
cuits is being actively researched, e.g., (Shih, Choi, and Dar-
wiche 2018) for Bayesian networks, (Choi et al. 2019) for
Neural Networks, and (Audemard, Koriche, and Marquis
2020) for Random Forests.

Our work opens up applications that are currently only
available in the unconstrained setting, including the study of

classifier bias and counterfactual decisions (Darwiche and
Hirth 2020).

Acknowledgements

We thank Alrik Thiem and Lusine Mkrtchyan for insightful
discussions and comments on the utility of prime-implicants
of partial functions in social science research.

References

Audemard, G.; Koriche, F.; and Marquis, P. 2020. On
tractable XAl queries based on compiled representations. In
KR.

Baumgartner, M.; and Thiem, A. 2015. Identifying Complex
Causal Dependencies in Configurational Data with Coinci-
dence Analysis. R J.Jun 1;7(1):176.

Breiman, L.; Friedman, J.; Stone, C. J.; and Olshen, R. A.
1984. Classification and regression trees. CRC press.

Choi, A.; Shi, W.; Shih, A.; and Darwiche, A. 2019. Com-
piling neural networks into tractable Boolean circuits. AAAI
VNN.

Choi, A.; Shih, A.; Goyanka, A.; and Darwiche, A. 2020.
On Symbolically Encoding the Behavior of Random Forests.
CoRR abs/2007.01493.

Collaborators, M. C. T.; et al. 2008. Predicting outcome after
traumatic brain injury: practical prognostic models based on
large cohort of international patients. BMJ, 336(7641).
Cooper, M.; and Silva, J. M. 2021. On the tractability of ex-
plaining decisions of classifiers. In 27th International Con-
ference on Principles and Practice of Constraint Program-
ming (CP 2021), 21. Leibniz-Zentrum fiir Informatik.
Coudert, O. 1994. Two-level logic minimization: an
overview. Integration, 17(2).

Darwiche, A. 2020. Three Modern Roles for Logic in AL In
PODS.

Darwiche, A.; and Hirth, A. 2020. On The Reasons Behind
Decisions. In ECAI

Darwiche, A.; and Marquis, P. 2002. A knowledge compila-
tion map. Journal of Artif. Intell. Research, 17: 229-264.
Dua, D.; and Graff, C. 2017. UCI Machine Learning Repos-
itory.

Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019a.
Abduction-based explanations for machine learning models.
In AAAL

Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019b.
On validating, repairing and refining heuristic ML explana-
tions. CoRR abs/1907.02509.

Iyer, R.; Li, Y.; Li, H.; Lewis, M.; Sundar, R.; and Sycara, K.
2018. Transparency and explanation in deep reinforcement
learning neural networks. In AAAL

Izza, Y.; Ignatiev, A.; and Marques-Silva, J. 2020. On ex-
plaining decision trees. arXiv preprint arXiv:2010.11034.
Kisa, D.; Van den Broeck, G.; Choi, A.; and Darwiche, A.
2014. Probabilistic sentential decision diagrams: Learning
with massive logical constraints. In ICML LTPM.
Lakkaraju, H.; Kamar, E.; Caruana, R.; and Leskovec, J.

2019. Faithful and customizable explanations of black box
models. In AAAL

Marques-Silva, J.; and Ignatiev, A. 2022. Delivering Trust-
worthy Al through Formal XAI. In Proceedings of the AAAI
Conference on Artificial Intelligence.

McCluskey, E. J. 1956. Minimization of Boolean functions.
Bell Syst., 35(6): 1417-1444.

5667

Miller, T. 2019. Explanation in artificial intelligence: In-
sights from the social sciences. Artif. Intell., 267.

Quine, W. V. 1952. The problem of simplifying truth func-
tions. Am Math Mon, 59(8).

Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. “Why
should I trust you?” Explaining the predictions of any clas-
sifier. In SIGKDD.

Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2018. Anchors:
High-Precision Model-Agnostic Explanations. AAAL

Shih, A.; Choi, A.; and Darwiche, A. 2018. A symbolic ap-
proach to explaining bayesian network classifiers. In IJCAI.

Steyerberg, E. W.; Mushkudiani, N.; Perel, P.; Butcher, L;
Lu, J.; McHugh, G. S.; Murray, G. D.; Marmarou, A.;
Roberts, I.; Habbema, J. D. E; et al. 2008. Predicting out-
come after traumatic brain injury: development and inter-
national validation of prognostic scores based on admission
characteristics. PLoS medicine, 5(8).

Thiem, A. 2014. Unifying configurational comparative
methods: Generalized-set qualitative comparative analysis.
Sociological Methods & Research, 43(2): 313-337.

Thiem, A.; and Dusa, A. 2013. Boolean minimization in so-
cial science research: A review of current software for Quali-
tative Comparative Analysis (QCA). Soc. Sci. Comput. Rev.,
31(4).

Verwer, S.; and Zhang, Y. 2019. Learning optimal classifi-
cation trees using a binary linear program formulation. In
AAAL

Xu, J.; Zhang, Z.; Friedman, T.; Liang, Y.; and Broeck, G.
2018. A semantic loss function for deep learning with sym-
bolic knowledge. In ICML.

Zador, Z.; Sperrin, M.; and King, A. T. 2016. Predictors
of outcome in traumatic brain injury: new insight using re-

ceiver operating curve indices and Bayesian network analy-
sis. PLoS one, 11(7).

