
Axiomatization of Aggregates in Answer Set Programming

Jorge Fandinno*, Zachary Hansen*, Yuliya Lierler*

University of Nebraska at Omaha
{jfandinno,zachhansen,ylierler}@unomha.edu

Abstract

The paper presents a characterization of logic programs with
aggregates based on a many-sorted generalization of opera-
tor SM that refers neither to grounding nor to fixpoints. This
characterization introduces new function symbols for aggre-
gate operations and aggregate elements, whose meaning can
be fixed by adding appropriate axioms to the result of the SM
transformation. We prove that for programs without positive
recursion through aggregates our semantics coincides with
the semantics of the answer set solver clingo.

Introduction
Answer set programming (ASP; Lifschitz 2008) is a form
of declarative logic programming well-suited to solving
knowledge-intensive search problems. Its success relies on
the combination of a rich knowledge representation lan-
guage with efficient solvers for finding solutions to problems
expressed in this language (Lifschitz 2019). One of the most
useful constructs of this language are aggregates: intuitively,
these are functions that apply to sets. The semantics of ag-
gregates has been extensively studied in the literature (Si-
mons, Niemelä, and Soininen 2002; Dovier, Pontelli, and
Rossi 2003; Pelov, Denecker, and Bruynooghe 2007; Son
and Pontelli 2007; Ferraris 2011; Faber, Pfeifer, and Leone
2011; Gelfond and Zhang 2014, 2019; Cabalar et al. 2019).
In most cases, papers rely on the idea of grounding — a
process in which all variables are replaced by variable-free
terms. Thus, first a program with variables is transformed
into a propositional one, then the semantics of the proposi-
tional program is defined. This makes reasoning about pro-
grams with variables cumbersome. For instance, it prohibits
using first-order theorem provers for verifying properties of
programs as advocated by Fandinno et al. (2020).

To the best of our knowledge, only two approaches
defined the semantics of aggregates without referring to
grounding. Lee, Lifschitz, and Palla (2008) translate cer-
tain count aggregates with a ground guard into an existen-
tially quantified first-order formula. Yet, this approach is in-
applicable to more general count aggregates as well as to
the common sum aggregates. Cabalar et al. (2018) introduce

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

intensional sets as first-class citizens into Quantified Equi-
librium Logic (Pearce and Valverde 2005) with partial func-
tions (Cabalar 2011) and provide a formalisation of aggre-
gates that directly corresponds to the idea that aggregates are
functions that apply to sets. This approach is truly general: it
covers arbitrary aggregates including nested ones. The price
for the generality of this formalism is complexity.

Similar to the work by Cabalar et al. (2018), our approach
provides a direct formalisation of the idea that aggregates
are functions that apply to sets, but it aims to exclusively
use the language of classical logic (instead of adding inten-
sional sets as a new construct in the language). To achieve
this goal, we assume two restrictions. First, aggregates can-
not be nested and second, there cannot exist positive recur-
sion through aggregates. Note that, in practice, solvers can-
not process nested aggregates. Regarding the second restric-
tion, solvers may process programs with recursion through
aggregates. Yet, different solvers may compute distinct an-
swers for the same input program. For the sake of uncon-
troversial semantics, the ASP-Core-2 standard does not con-
sider recursion through aggregates (Calimeri et al. 2012).

In this paper, we introduce a translation from logic pro-
grams to second-order logic formulas and define the seman-
tics of aggregates using two equivalent characterizations.
The expressive power of the answer set semantics cannot
be captured by first-order logic, making second-order logic
the prime candidate for this task. The first characterization
uses a simpler language, where we restrict the considered
interpretations at the meta-logic level. The second charac-
terization fixes the meaning of some symbols in this lan-
guage by providing an axiomatization at the object-level.
The first characterization is easier to understand, while the
second provides greater mathematical precision. In many
cases we can replace second-order formulas by first-order
formulas (Ferraris, Lee, and Lifschitz 2011; Lee and Meng
2011). Here we show that for programs with aggregates that
apply to finite sets, we can replace the second-order axiom-
atization of aggregates by a first-order one. This paves the
way for using first-order theorem provers to reason about
programs with aggregates; to the best of our knowledge this
was not yet possible. The restriction to finite aggregates is
not a practical limitation as solvers cannot deal with infinite
sets. In the studied fragment, our semantics coincide with
the semantics of the solver clingo (Gebser et al. 2015).

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

5634

Preliminaries
Syntax of programs with aggregates. We assume a (pro-
gram) signature with three countably infinite sets of sym-
bols: numerals, symbolic constants and program variables.
We also assume a 1-to-1 correspondence between numer-
als and integers; the numeral corresponding to an integer n
is denoted by n. Program terms are either numerals, sym-
bolic constants, variables or either of the special symbols inf
and sup. A program term (or any other expression) is ground
if it contains no variables. We assume that a total order on
ground terms is chosen such that

• inf is its least element and sup is its greatest element,
• for any integers m and n, m < n iff m < n, and
• for any integer n and any symbolic constant c, n < c.

An atom is an expression of the form p(t), where p is a sym-
bolic constant and t is a list of program terms. A comparison
is an expression of the form t ≺ t′, where t and t′ are pro-
gram terms and ≺ is one of the comparison symbols:

= 6= < > ≤ ≥ (1)

An atomic formula is either an atom or a comparison. A ba-
sic literal is an atomic formula possibly preceded by one or
two occurrences of not. An aggregate element has the form

t1, . . . , tk : l1, . . . , lm (2)

where each ti (1 ≤ i ≤ k) is a program term and each li
(1 ≤ i ≤ m) is a basic literal. An aggregate atom is of form

#op{E} ≺ u (3)

where op is an operation name, E is an aggregate ele-
ment, ≺ is one of the comparison symbols in (1), and u
is a program term, called guard. We consider operation
names names count and sum. For example, expression
#sum{K,X, Y : in(X,Y), cost(K,X, Y)} > J is an ag-
gregate atom. An aggregate literal is an aggregate atom pos-
sibly preceded by one or two occurrences of not. A literal is
either a basic literal or an aggregate literal.

A rule is an expression of the form

Head :- B1, . . . , Bn, (4)

where

• Head is either an atom or symbol ⊥; we often omit sym-
bol ⊥ which results in an empty head;

• each Bi (1 ≤ i ≤ n) is a literal.

We call the symbol :- a rule operator. We call the left hand
side of the rule operator the head, the right hand side of the
rule operator the body. When the head of the rule is an atom
we call the rule normal. A program is a finite set of rules.

We assume that aggregates do not have positive recur-
sion. This is a less restrictive assumption than the one
used in the ASP-Core-2 semantics (Calimeri et al. 2012),
which requires aggregates have neither positive nor nega-
tive recursion. Formally, a predicate symbol is a pair p/n,
where p is a symbolic constant and n is a nonnegative
integer. About a program or another syntactic expression,

we say that a predicate symbol p/n occurs in it if it con-
tains an atom of the form p(t1, . . . , tn). We say that an oc-
currence of a predicate symbol p/n in a literal is strictly
positive if it is not in the scope of negation. For exam-
ple, literals not r(X,Y, Z), #sum{Y,Z : not r(X,Y, Z)}
and not #sum{Y,Z : r(X,Y, Z)} contain no strictly posi-
tive occurrence of r/3. For a program Π, its (directed predi-
cate) dependency graph is defined by

1. a set of vertices containing all predicate symbols occur-
ring in Π ,

2. a set of edges containing an edge (h, b) for every nor-
mal rule (4) with h being the predicate symbol occurring
in the atom Head of the rule and b being any predicate
symbol that has a strictly positive occurrence in one of
the literals B1, . . . , Bn of the rule.

The aggregates in Π have no positive recursion if, for every
normal rule R of form (4), there is no path in the program’s
dependency graph from any predicate symbol with a strictly
positive occurrence in an aggregate element of one of the
literals B1, . . . , Bn in R to the predicate symbol occurring
in Head of R. For instance, a program consisting of rule
r(X,Y, Z) :- q(X,Y, Z),#sum{Y,Z : not r(X,Y, Z)}
has no aggregate with positive recursion; a program consist-
ing of r(X,Y, Z) :- q(X,Y, Z),#sum{Y, Z : r(X,Y, Z)}
has an aggregate with positive recursion.

Each operation name op is associated with a function ôp
that maps every set of tuples of ground terms to a ground
term. If the first member of a tuple t is a numeral n then we
say that integer n is the weight of t, otherwise the weight
of t is 0. For any set ∆ of tuples of ground terms,

• ĉount(∆) is the numeral corresponding to the cardinal-
ity of ∆, if ∆ is finite; and sup otherwise.

• ŝum(∆) is the numeral corresponding to the sum of the
weights of all tuples in ∆, if ∆ contains finitely many
tuples with non-zero weights; and 0 otherwise.1 If ∆ is
empty, then ŝum(∆) = 0.

Operator SM for many-sorted signature. Here, we re-
call the standard definition of many-sorted first-order logic.
A signature σ consists of function and predicate constants
and a set of sorts. The arity of every function or predicate
constant is a tuple of sorts; the arity of function constants
is a nonempty tuple. A predicate constant whose arity is the
empty tuple is called a proposition. We assume that there
are infinitely many variables for each sort. Atomic formulas
are built similar to the standard unsorted logic with the re-
striction that in a term f(t1, . . . , tn) (an atom p(t1, . . . , tn),
respectively), the sort of term ti must be a subsort of the i-
th argument of f (of p, respectively). In addition, t1 = t2
is an atomic formula if the sorts of t1 and t2 have a com-
mon supersort. A many-sorted interpretation I has a non-
empty universe |I|s for each sort s. When sort s1 is a subsort
of sort s2, an interpretation additionally satisfies the condi-
tion |I|s1 ⊆ |I|s2 . The notion of satisfaction is analogous

1The sum of a set of integers is not always defined. We could
choose a special symbol to denote this case, we chose to use 0
following the description of abstract gringo (Gebser et al. 2015).

25635

to the unsorted case with the restriction that an interpreta-
tion maps a term to an element in the universe of its associ-
ated sort.

The following symbols are considered to be the logical
primitives:

∧ ∨ → ⊥ ∀ ∃
Negation, truth and equivalence are assumed to be abbrevi-
ations: F → ⊥ stands for ¬F , ⊥ → ⊥ stands for >, and
(F → G) ∧ (G → F) stands for F ↔ G. The definition
of the operator SM for a many-sorted signature is a straight-
forward generalization of the unsorted case (Ferraris, Lee,
and Lifschitz 2011). If p and u are predicate constants or
variables of the same arity (note that while the original defi-
nition does not account for sort information, here arity refers
to both number and sort of the arguments), then u ≤ p stands
for the formula

∀W(u(W)→ p(W)),

where W is a tuple of distinct object variables matching
the arity of p and u. If p and u are tuples p1, . . . , pn
and u1, . . . , un of predicate constants or variables such that
each pi and ui have the same arity, then u ≤ p stands for
the conjunction

(u1 ≤ p1) ∧ · · · ∧ (un ≤ pn),

and u < p stands for (u ≤ p) ∧ ¬(p ≤ u). For any many-
sorted first-order formula F and a list p of predicate con-
stants, by SMp[F] we denote the second-order formula

F ∧ ¬∃u
(
(u < p) ∧ F ∗(u)

)
where u is a list of distinct predicate variables u1, . . . , un of
the same length as p, such that the arity of each ui is the
same as the arity of pi, and F ∗(u) is defined recursively:

• F ∗ = F for any atomic formula F that does not contain
members of p,

• pi(t)∗ = ui(t) for any predicate symbol pi belonging
to p and any list t of terms,

• (F ∧G)∗ = F ∗ ∧G∗

• (F ∨G)∗ = F ∗ ∨G∗

• (F → G)∗ = (F ∗ → G∗) ∧ (F → G)

• (∀xF)∗ = ∀xF ∗

• (∃xF)∗ = ∃xF ∗

If the list p is empty, then we understand SMp[F] as F .
For a finite theory Γ, we write SMp[Γ] to represent SMp[F],
where F is the conjunction of all formulas in Γ.

Programs With Aggregates as Many-Sorted
First-Order Sentences

In this section we present the translation τ∗ that turns a pro-
gram Π (whose aggregates lack positive recursion) into a
first-order sentence with equality over a signature σΠ of two
sorts. We start by defining this signature. To do so, we must
first introduce the concepts of a global variable and an ag-
gregate symbol.

A variable is said to be global in a rule if

1. it occurs in any non-aggregate literal, or
2. it occurs in a guard of any aggregate literal.
For instance, in rule

p(X) :- q(X),#sum{Y, Z : r(X,Y, Z)} ≥ 1. (5)

the only global variable is X .
An aggregate symbol is a pair E/X, where E is an ag-

gregate element and X is a list of variables occurring in E.
We say that E/X occurs in rule R if this rule contains an
aggregate literal with the aggregate element E and X is the
list of all variables in E that are global in R. For instance,
Y,Z : r(X,Y, Z)/X is the only aggregate symbol occurring
in rule (5). We say thatE/X occurs in a program ifE/X oc-
curs in some rule of the program. For the sake of readability
we associate each aggregate symbol E/X with a different
name |E/X|.

As stated earlier, the signature σΠ is defined over two
sorts. The first sort is called the program sort; all program
terms are of this sort. The second sort is called the set sort;
it contains entities that are sets (of tuples of object constants
of the program sort). We denote the two sorts in an intuitive
manner: sprg and sset . For a program Π, signature σΠ con-
tains:
1. all ground terms as object constants of the program sort;
2. all predicate symbols occurring in Π as predicate con-

stants with all arguments of sort program;
3. the comparison symbols other than equality and inequal-

ity as predicate constants of arity sprg × sprg ;
4. function constants count and sum of arity sset → sprg ;
5. for each aggregate symbol E/X occurring in Π, a func-

tion constant set |E/X| of arity sprg × · · · × sprg → sset .
This function symbol takes as many arguments of the
program sort as there are variables in X. If X is the empty
list, then set |E/X| is an object constant.

Intuitively, the result of count is the cardinality of the
set passed as an argument; the result of sum is the
sum of all elements of the set passed as an argument;
and set |E/X|(t1, . . . , tk) represents the set of elements cor-
responding to the aggregate element E once all global
variables in X = X1, . . . , Xk are replaced by ground
terms t1, . . . , tk. We formalize these claims below.

As customary in arithmetic we use infix notation in con-
structing atoms that utilize predicate symbols >,≥, <,≤.
Expression t1 6= t2 is considered an abbreviation for the
formula ¬(t1 = t2). In the following, we use letters X,Y, Z
and their variants to denote variables of sort sprg and letter S
and its variants to denote variables of sort sset . We use their
bold face variants to denote lists of variables of that sort.

We now describe a translation τ∗ that converts a program
into a finite set of first-order sentences. Given a list Z of
global variables in some rule R, we define τ∗Z for all ele-
ments of R as follows:
1. for every atomic formula A occurring outside of an ag-

gregate literal, its translation τ∗ZA is A itself; τ∗Z⊥ is ⊥;
2. for an aggregate atom A of form #count{E} ≺ u

or #sum{E} ≺ u, its translation τ∗Z is the atom
count(set |E/X|(X)) ≺ u or sum(set |E/X|(X)) ≺ u

35636

respectively, where X is the list of variables in Z occur-
ring in E;

3. for every (basic or aggregate) literal of the form not A
its translation τ∗Z(not A) is ¬τ∗ZA; for every literal of the
form not not A its translation τ∗Z(not not A) is ¬¬τ∗ZA.

We now define the translation τ∗ as follows:

4. for every rule R of form (4), its translation τ∗R is the
universal closure of the implication

τ∗ZB1 ∧ · · · ∧ τ∗ZBn → τ∗Z Head ,

where Z is the list of the global variables of R.
5. for every program Π, its translation τ∗Π is the first-order

theory containing τ∗R for each rule R in Π.
For example, the result of applying τ∗ to a program consist-
ing of rule (5) and the rules

s(X) :- q(X),#sum{Y : r(X,Y, Z)} ≥ 1. (6)
t :- #sum{Y, Z : r(X,Y, Z)} ≥ 1. (7)
q(a). q(b). q(c). (8)
r(a, 1, a). r(b,−1, a). r(b, 1, a). r(b, 1, b). r(c, 0, a). (9)

is the first-order theory composed of the universal closure of
the following formulas:

q(X) ∧ sum(sete1(X)) ≥ 1 → p(X) (10)
q(X) ∧ sum(sete2(X)) ≥ 1 → s(X) (11)
sum(sete3) ≥ 1 → t (12)
q(a) q(b) q(c) (13)
r(a, 1, a) r(b,−1, a) r(b, 1, a) r(b, 1, b) r(c, 0, a) (14)

where e1 and e2 are the names for aggregate symbols
Y,Z : r(X,Y, Z)/X and Y : r(X,Y, Z)/X , respectively;
e3 is the name for an aggregate symbol Y, Z : r(X,Y, Z).
Note that the aggregate symbols corresponding to names e1
and e2 have a global variable X . Consequently, function
symbols sete1 and sete2 have arity sprg → sset . The ag-
gregate symbol corresponding to e3 has no global variables.
Consequently, sete3 is an object constant of sort sset .

Semantics of programs with aggregates. For the sake of
clarity, we describe the semantics of programs with aggre-
gates in two steps. We start by assuming some restrictions
on the form of interpretations of interest. These interpreta-
tions have fixed meanings for the symbols of signature σΠ

introduced in conditions 3-5. In the next section, we remove
these restrictions on symbols count , sum and set |E/X| and
fix their meaning by providing appropriate axioms. In both
cases, we assume that the interpretation of the symbolic con-
stants is the identity.

Consider additional notation. For a tuple X of distinct
variables, a tuple x of ground terms of the same length as X,
and an expression α that contains variables from X, αX

x
denotes the expression obtained from α by substituting x
for X. An agg-interpretation I is a many-sorted interpreta-
tion that satisfies the following conditions:

1. the domain |I|sprg is the set containing all ground terms
of program sort (or ground program terms, for short);

2. I interprets each ground program term as itself;

3. I interprets predicate symbols >,≥, <,≤ according to
the total order chosen earlier;

4. universe |I|sset is the set of all sets of non-empty tuples
that can be formed with elements from |I|sprg ;

5. if E/X is an aggregate symbol, where E is an aggre-
gate element of form (2), Y is the list of all variables
occurring in E that are not in X, and x and y are
lists of ground program terms of the same length as X
and Y respectively, then set |E/X|(x)I is the set of all
tuples of form 〈(t1)XY

xy , . . . , (tk)XY
xy 〉 such that I satis-

fies (l1)XY
xy ∧ · · · ∧ (lm)XY

xy ;

6. for term tset of sort sset , count(tset)I is ĉount(tIset);

7. for term tset of sort sset , sum(tset)
I is ŝum(tIset);

An agg-interpretation satisfies the standard name assump-
tion for object constants of the program sort, but not for ob-
ject constants and function constants of the set sort.

We say that an agg-interpretation I is a stable model
of program Π if it satisfies the second-order sentence
SMp[τ∗Π] with p being the list of all predicate symbols oc-
curring in Π (note that this excludes predicate constants for
the comparisons >,≥, <,≤).

In general, ASP solvers do not provide a complete
first-order interpretation corresponding to a computed stable
model. Rather, they list the set of ground atoms correspond-
ing to it. Formally, for an agg-interpretation I , by Ans(I),
we denote the set of ground atoms that are satisfied by I and
whose predicate symbol is of sort program. If I is a stable
model of Π, we say that Ans(I) is an answer set of Π.

For example, take Π1 to denote a program composed of
rules (5-9). Let I be an agg-interpretation over σΠ1 such that

qI = {a, b, c}

rI = {(a, 1, a), (b,−1, a), (b, 1, a), (b, 1, b), (c, 0, a)}.
(15)

Conditions 5 and 7 imply that this agg-interpretation also
satisfies the following statements

sete1(a)
I = {(1, a)}

sete1(b)
I = {(−1, a), (1, a), (1, b)}

sete1(c)
I = {(0, a)}

sete2(a)
I = {(1)}

sete2(b)
I = {(−1), (1)}

sete2(c)
I = {(0)}

setIe3 = {(1, a),(−1, a),(1, b),(0, a)}

sum(sete1(a))
I = 1

sum(sete1(b))
I = 1

sum(sete1(c))
I = 0

sum(sete2(a))
I = 1

sum(sete2(b))
I = 0

sum(sete2(c))
I = 0

sum(sete3)
I = 1

(16)

Such an agg-interpretation I is a stable model of program Π1

when pI = {a, b}, sI = {a}, and tI = true. It turns out,
this program has a unique answer set

{ q(a), q(b), q(c), r(a, 1, a), r(b,−1, a), r(b, 1, a),
r(b, 1, b), r(c, 0, a), p(a), p(b), s(a), t }.

45637

Axiomatization of Aggregates
In this section we show that conditions 5-7 characteriz-
ing agg-interpretations can be removed from the meta-logic
level by adding new logical sentences to the theory repre-
senting a logic program. This provides higher mathemati-
cal rigor and allows us to build object-level proofs to reason
about programs with aggregates.

We introduce an extended signature σ∗Π that expands σΠ

with new symbols and new sorts. The new sorts are sint
and stuple that we refer to as integer and tuple, respectively.
We also assume countably infinite sets of integer and tuple
variables (variables of sorts sint and stuple). We use the let-
ter N and its variants to denote integer variables and the let-
ter T and its variants to denote tuple variables. Letters V,W,
and their variants denote variables where the sort is explic-
itly mentioned.

As customary in mathematics, we use infix notation
for the function symbol + and the predicate symbol ∈.
Informally, tuplek(t1, . . . , tk) is a constructor for the k-
tuple containing program terms t1, . . . , tk; atomic for-
mula ttuple ∈ tset holds iff tuple ttuple belongs to set tset ;
rem(tset , ttuple) encodes the set obtained by removing tu-
ple ttuple from set tset ; and weight(ttuple) encodes the
weight of tuple ttuple (recall that the syntactic object ttuple
is meant to be interpreted as an object of sort stuple).

Formally, for this extended signature, we extend the set of
conditions that an agg-interpretation I satisfies:
8. the domain |I|sint is the set of all numerals;
9. I interprets m+ n as m+ n,

10. universe |I|stuple is the set of all tuples of form
〈d1, . . . , dm〉 with m ≥ 1 and each di ∈ |I|sprg ;

11. I interprets each tuple term of form tuplek(t1, . . . , tk) as
the tuple 〈tI1, . . . , tIk〉.

12. I interprets object constant ∅ as the empty set ∅;
13. I satisfies t1 ∈ t2 iff tuple tI1 belongs to set tI2;
14. rem(tset , ttuple)I is the set obtained by removing tu-

ple tItuple from set tIset ; and

15. weight(ttuple)I is the weight of tItuple .

Note that |I|sset is the power set of |I|stuple . Also, each
agg-interpretation is extended in a unique way: there is a
one-to-one correspondence between the agg-interpretations
over σΠ and σ∗Π. In the sequel, we identify each
agg-interpretation in signature σΠ with its extension in σ∗Π.

In the remainder of this section, we show how an
agg-interpretation can be “axiomatized” in a theory that in-
terprets symbols for arithmetic, tuples, sets, and program ob-
ject constants in a standard way. Formally, a first-order inter-
pretation I is called standard when it satisfies conditions 1-4
and 8-13. Such an interpretation satisfies the standard name
assumption for ground program terms and tuples, the stan-
dard interpretation of arithmetic symbols, and the standard
interpretation of the set theoretic membership predicate. It
does not assign any special meaning to symbols count ,
sum , rem , weight , and any of the functions constants of
form set |E/X|. It is obvious that every agg-interpretation is
also a standard interpretation, but not vice-versa.

We now show that agg-interpretations can be character-
ized as standard interpretations that satisfy a particular class
of sentences. To begin with, consider condition 5 of the
agg-interpretation definition. It associates an aggregate sym-
bol E/X, where E has the form (2), with a unique set. We
characterize this set with the sentence

∀X T
(
T ∈ set |E/X|(X)↔
∃Y

(
T = tuplek(t1, . . . , tk) ∧ l1 ∧ · · · ∧ lm

))
,

(17)

where Y is the list of all the variables occurring in E that
are not in X. For instance, recall program Π1 and the aggre-
gate symbol Y, Z : r(X,Y, Z)/X named e1 (introduced in
the previous section). For this symbol, sentence (17) has the
form

∀XT
(
T ∈ sete1(X)↔
∃Y Z

(
T = tuple2(Y, Z) ∧ r(X,Y, Z)

))
For a standard interpretation I over signature σ∗Π1

satis-
fying conditions (15) and this sentence, sete1(b)I is the
set {(−1, a), (1, a), (1, b)}. This set is identical to the one
stated in (16) for an agg-interpretation satisfying conditions
(15). This observation hints at a general result:
Proposition 1. Let I be a standard interpretation. Then, I
satisfies condition 5 iff it satisfies sentence (17) for every
function symbol of form set |E/X|.

Similarly, the meaning of function symbols rem
and weight provided by conditions 14 and 15 of the defi-
nition of agg-interpretations can be fixed in standard inter-
pretations using the following sentences:

∀STS′(rem(S, T) = S′ ↔
∀T ′(T ′ ∈ S′ ↔ (T ′ ∈ S ∧ T ′ 6= T)

)) (18)

∀NX2 . . . Xk weight(tuplek(N,X2, . . . , Xk)) = N
)

(19)

∀X1X2 . . . Xk

(
(¬∃N X1 = N)→
weight(tuplek(X1, X2, . . . , Xk)) = 0

)
.

(20)

Proposition 2. Let I be a standard interpretation. Then,
• I satisfies condition 14 iff it satisfies sentence (18); and
• I satisfies condition 15 iff it satisfies all sentences of form

(19-20).
Formalizing condition 6 requires determining when a set

is finite or not, that is, we need a formula Finite(tset) that
holds if and only if the set represented by tset is finite. We
can formalize this idea using a second-order formula, which
states that there is a natural number n and an injective func-
tion from tset into the set {i ∈ N | i ≤ n}. Before formal-
izing this statement, let us introduce some auxiliary defini-
tions. Given a term tset of sort sset and a function symbol f ,
we define Injective(f, tset) as the formula

∀T1T2 (T1 ∈ tset ∧ T2 ∈ tset ∧ f(T1) = f(T2)→ T1 = T2.)

Intuitively, formula Injective(f, tset) represents the fact that
the restriction of function f , whose domain is the set cor-
responding to tset , is injective. If the image of f is of
sort sprg and t1 and t2 are also terms of sort sprg , we de-
fine Image(f, tset , t1, t2) as the formula:

∀T (T ∈ tset → t1 ≤ f(T) ∧ f(T) ≤ t2)

55638

Formula Image(f, tset , t1, t2) holds when the image of
the restriction of function f , whose domain is the set
corresponding to tset , is between t1 and t2. Expres-
sion Finite(tset) stands for the second-order formula

∃f (Injective(f, tset) ∧ ∃N Image(f, tset , 0, N))

where f is a function variable of arity stuple → sint .
For a term tset of the set sort, we define for-
mula FiniteCount(tset) as

∀T
(
T ∈ tset →
∃N

(
count(rem(tset , T)) = N ∧ count(tset) = N + 1

))
Using these formulas we can formalize condition 6 with

the help of the following three sentences:

count(∅) = 0 (21)
∀S (Finite(S)→ FiniteCount(S)) (22)
∀S (¬Finite(S)→ count(S) = sup) (23)

Proposition 3. Let I be an interpretation that satisfies all
conditions for being an agg-interpretation except conditions
6 and 7. Then, I satisfies condition 6 iff it satisfies sen-
tences (21-23).

The axiomatization of aggregates with the operation sum
is similar, but requires characterizing that the set of tuples
with non-zero weight is finite (instead of the set of arbitrary
tuples). Given a term tset of sort sset and a function sym-
bol f , we define InjectiveWeight(f, tset) as the formula

∀T1T2

(
T1 ∈ tset ∧ T2 ∈ tset ∧ weight(T1) 6= 0∧
weight(T2) 6= 0 ∧ f(T1) = f(T2)→ T1 = T2

)
If the image of f is of sort sprg and t1 and t2 are also terms of
sort sprg , we define ImageWeight(f, tset , t1, t2) as formula

∀T
(
T ∈ tset ∧ weight(T) 6= 0→ t1 ≤ f(T) ∧ f(T) ≤ t2

)
.

Expression FiniteWeight(tset) stands for the second-order
formula
∃f
(
InjectiveWeight(f, tset) ∧ ∃N ImageWeight(f, tset , 0, N)

)
where f is a function variable of arity stuple → sint . For a
term tset of the set sort, we define formula FiniteSum(tset)
as

∀T
(
T ∈ tset → ∃N(sum(rem(tset , T)) = N∧

sum(tset) = N + weight(T))
)

We can define sum to have arity sset → sint and simplify
the formula that stands for FiniteSum(tset) as follows:

∀T
(
T ∈ tset → sum(tset) = sum(rem(tset , T)) + weight(T)

)
Note that a similar simplification cannot be made for count
because sometimes it returns sup, which is not of sort int.
We also define ZeroWeight(tset) as

∀T (T ∈ tset → weight(T) = 0)

which holds when all members of tset have zero-weight.
Using these formulas we can formalize condition 7 with

the help of the following three sentences:
∀S
(
ZeroWeight(S)→ sum(S) = 0

)
(24)

∀S (FiniteWeight(S)→ FiniteSum(S)) (25)

∀S
(
¬FiniteWeight(S)→ sum(S) = 0

)
(26)

In particular, note that (24) entails sum(∅) = 0.

Proposition 4. Let I be an interpretation that satisfies all
conditions for being an agg-interpretation except conditions
6 and 7. Then, I satisfies condition 7 iff it satisfies sen-
tences (24-26).
The theorem below follows directly from Propositions 1-4.
Symbol p refers to the list of all predicate symbols occurring
in Π.
Theorem 1. A set of ground atoms M is an answer set
of a program Π iff there exists some standard model I
of SMp[τ∗Π] that satisfies all sentences of form (17-26)
and M = Ans(I).

First-Order Characterization
There is a wide class of programs without aggregates for
which the second-order SM operator can be replaced by a
first-order formalization. This includes completion in the
case of tight programs (Ferraris, Lee, and Lifschitz 2011)
or, more generally, loop formulas (Lee and Meng 2011).
The same replacement also works for our translation for pro-
grams with aggregates. Yet the resulting formula, when we
consider the axiomatization approach, is not a first-order for-
mula due to the quantification over function symbols in for-
mulas Finite(tset) and FiniteWeight(tset). These formu-
las are necessary to distinguish between finite and infinite
sets. However, in practice, ASP solvers impose restrictions
on programs that ensure that programs have finite answer
sets and finite aggregates.

Formally, we say that an interpretation I has finite ag-
gregates if the set set |E/X|(x)I is finite for every aggregate
symbol E/X and any list x of ground program terms of the
same length as X. A program Π has finite aggregates if all
standard models of SM[τ∗Π] have finite aggregates. In the
rest of this section, we focus on programs with finite aggre-
gates and we disregard how this property is obtained.

Given two terms tset , t′set of the set sort, we define the
formula Subset(tset , t′set) as

∀T
(
T ∈ tset → T ∈ t′set

)
stating that tset is a subset of t′set . In the case of pro-
grams that have finite aggregates, we can replace sen-
tences (22,23;25,26) by the sentences of the form

∀X S
(
Subset(S, set |E/X|(X))→ FiniteCount(S)

)
(27)

∀X S
(
Subset(S, set |E/X|(X))→ FiniteSum(S)

)
(28)

where E/X is an aggregate symbol. Intuitively, sentences
(27) and (28) have the same meaning as the pairs of sen-
tences (22,23) and (25,26), respectively, but with some re-
strictions. First, this formalization is appropriate only if
the interpretation of set |E/X|(x) results in a finite set.
Furthermore, the interpretation of count and sum is only
fixed for subsets of sets corresponding to terms of the
form set |E/X|(x). Hence, there may be non standard in-
terpretations that satisfy these sentences, which interpret
those symbols differently than their intended meaning when
applied to other sets. Interestingly, those sets do not cor-
respond to any term in the theory we are interested in.
The reason to include all subsets in these sentences is
that FiniteCount(S) and FiniteSum(S) recursively refer

65639

to some of their subsets. The following result shows that in
the case of programs with finite aggregates we can use the
introduced first-order axiomatization.
Theorem 2. A set of ground atoms M is an answer set
of some program Π with finite aggregates iff there is some
standard model I of SMp[τ∗Π] that satisfies all sentences
of form (17-21,24,27,28) and M = Ans(I).

Relation With Abstract Gringo
The abstract gringo semantics of logic programs use a trans-
lation which turns a program into a set of infinitary propo-
sitional formulas (Gebser et al. 2015). These semantics cap-
ture the behavior of the answer set solver clingo when it
evaluates a program with aggregates. For space reasons, we
refer to this work for formal definitions of infinitary propo-
sitional formulas and stable models of these formulas.

We now present a simplified version of the abstract gringo
translation which is equivalent to the original in the studied
fragment. A rule or an aggregate (in a rule) is called closed if
it has no global variables. An instance of a ruleR is any rule
that can be obtained fromR by substituting ground terms for
all global variables.

For a closed aggregate element E of form (2) with Y
being the list of non-global variables occurring in it, ΨE

denotes the set of tuples y of ground program terms of
the same length as Y. Let E be an aggregate atom of
form (3), ∆ be a subset of ΨE and [∆] = {tYy | y ∈ ∆}
with t being the tuple 〈t1, . . . , tk〉. Then, ∆ justifies an
aggregate atom if relation ≺ holds between ĉount([∆])
(resp. ŝum([∆])) and u. For example, if E is aggre-
gate element 3, X, Y : p(X,Y), then ΨE is the set of
all tuples of ground program terms of length 2. If ∆
is {〈a, b〉, 〈5, b〉}, then [∆] = {〈3, a, b〉, 〈3, 5, b〉}. Thus, ∆
justifies aggregate atom #sum{3, X, Y :p(X,Y)} ≥ 5, but
not #sum{3, X, Y :p(X,Y)} ≥ 7.

The abstract gringo translation τ is defined as follows:
1. for every ground atom A, its translation τA is A itself;
τ⊥ is ⊥,

2. for every ground comparison t1 ≺ t2, its transla-
tion τ(t1 ≺ t2) is > if the relation ≺ holds between
terms t1 and t2 according to the total order selected above
and ⊥ otherwise;

3. for aggregate atom A of form (3), τA is formula

∧
∆∈χ

∧
y∈∆

lYy →
∨

y∈ΨE\∆

lYy

 (29)

where χ is the set of subsets ∆ of ΨE that do not jus-
tify A, and l stands for the conjunction τ l1 ∧ · · · ∧ τ lm;

4. for every (basic or aggregate) literal L of form not A,
its translation τL is ¬τA; if L is of form not not A, its
translation τL is ¬¬τA;

5. for every closed rule R of form (4), its translation τR is
the implication

τB1 ∧ · · · ∧ τBn → τHead ;

6. for every non-closed ruleR, its translation τR is the con-
junction of the result of applying τ to all its instances;

7. for every program Π, its translation τΠ is the infinitary
theory containing τR for each rule R in Π.

A set of ground atoms A is a gringo answer set of a pro-
gram Π if A is a stable model of τΠ in infinitary proposi-
tional logic.

Theorem 3. The answer sets of any program (whose aggre-
gates have no positive recursion) coincide with its gringo
answer sets.

Conclusions and Future Work
In this paper, we have provided a characterization of the se-
mantics of programs with aggregates that bypasses ground-
ing. This is achieved by introducing a translation from logic
programs to many-sorted first-order sentences together with
an axiomatization in second-order logic. Interestingly, in the
studied fragment (programs whose aggregates have no pos-
itive recursion), our semantics coincides with the semantics
of the widely used solver clingo (Gebser et al. 2015). Fur-
thermore, for many practical programs the second-order ax-
iomatization can be replaced by first-order sentences. This
paves the way for the use of first-order theorem provers for
reasoning about this class of programs, something that, to
the best of our knowledge, was not possible before our char-
acterization. The potential utility of this contribution is best
showcased by anthem: a proof assistant that relies on the
theorem prover vampire (Kovács and Voronkov 2013) to
check the correctness of clingo programs. Currently, this
tool can only be applied to programs without aggregates.
This paper opens the door to extend this tool to programs
that contain aggregates without positive recursion. This is
one of the directions for our future research. Another future
line of work is to extend our characterization to programs
with positive recursion through aggregates. This is some-
thing that requires further study as there are several com-
peting semantics. In addition, we plan to investigate how
the methodology for constructing formal arguments about
the correctness of logic programs as advocated in (Cabalar,
Fandinno, and Lierler 2020) can be extended to programs
with aggregates.

Acknowledgements
We would like to thank Vladimir Lifschitz for his valuable
feedback on multiple iterations of this project. We also grate-
fully acknowledge the anonymous reviewers whose com-
ments have improved the quality of this paper.

References
Cabalar, P. 2011. Functional answer set programming. The-
ory and Practice of Logic Programming, 11(2-3): 203–233.
Cabalar, P.; Fandinno, J.; Fariñas del Cerro, L.; and Pearce,
D. 2018. Functional ASP with Intensional Sets: Application
to Gelfond-Zhang Aggregates. Theory and Practice of Logic
Programming, 18(3-4): 390–405.
Cabalar, P.; Fandinno, J.; and Lierler, Y. 2020. Modular An-
swer Set Programming as a Formal Specification Language.
Theory and Practice of Logic Programming, 20: 767–782.

75640

Cabalar, P.; Fandinno, J.; Schaub, T.; and Schellhorn, S.
2019. Gelfond-Zhang aggregates as propositional formulas.
Artificial Intelligence, 274: 26–43.
Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski, R.;
Krennwallner, T.; Leone, N.; Ricca, F.; and Schaub, T. 2012.
ASP-Core-2: Input language format.
Dovier, A.; Pontelli, E.; and Rossi, G. 2003. Intensional
Sets in CLP. In Palamidessi, C., ed., Logic Programming,
19th International Conference, ICLP 2003, Mumbai, India,
December 9-13, 2003, Proceedings, volume 2916 of Lecture
Notes in Computer Science, 284–299. Springer.
Faber, W.; Pfeifer, G.; and Leone, N. 2011. Semantics and
Complexity of Recursive Aggregates in Answer Set Pro-
gramming. Artificial Intelligence, 175(1): 278–298.
Fandinno, J.; Lifschitz, V.; Lühne, P.; and Schaub, T. 2020.
Verifying Tight Logic Programs with anthem and vampire.
Theory and Practice of Logic Programming, 5(20): 735–
750.
Ferraris, P. 2011. Logic programs with propositional con-
nectives and aggregates. ACM Transactions on Computa-
tional Logic, 12(4): 25.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2011. Stable mod-
els and circumscription. Artificial Intelligence, 175(1): 236–
263.
Fox, D.; and Gomes, C., eds. 2008. Proceedings of the
Twenty-third National Conference on Artificial Intelligence
(AAAI’08). AAAI Press.
Gebser, M.; Harrison, A.; Kaminski, R.; Lifschitz, V.; and
Schaub, T. 2015. Abstract Gringo. Theory and Practice of
Logic Programming, 15(4-5): 449–463.
Gelfond, M.; and Zhang, Y. 2014. Vicious Circle Principle
and Logic Programs with Aggregates. Theory and Practice
of Logic Programming, 14(4-5): 587–601.
Gelfond, M.; and Zhang, Y. 2019. Vicious Circle Princi-
ple, Aggregates, and Formation of Sets in ASP Based Lan-
guages. Artificial Intelligence, 275: 28–77.
Kovács, L.; and Voronkov, A. 2013. First-Order Theorem
Proving and Vampire. In Sharygina, N.; and Veith, H., eds.,
Proceedings of the Twenty-fifth International Conference on
Computer Aided Verification (CAV’13), volume 8044 of Lec-
ture Notes in Computer Science, 1–35. Springer-Verlag.
Lee, J.; Lifschitz, V.; and Palla, R. 2008. A Reductive Se-
mantics for Counting and Choice in Answer Set Program-
ming. In (Fox and Gomes 2008), 472–479.
Lee, J.; and Meng, Y. 2011. First-Order Stable Model Se-
mantics and First-Order Loop Formulas. J. Artif. Intell. Res.,
42: 125–180.
Lifschitz, V. 2008. What Is Answer Set Programming? In
(Fox and Gomes 2008), 1594–1597.
Lifschitz, V. 2019. Answer Set Programming. Springer
Publishing Company, Incorporated, 1st edition. ISBN
3030246574.
Pearce, D.; and Valverde, A. 2005. A First Order Nonmono-
tonic Extension of Constructive Logic. Studia Logica, 30(2-
3): 321–346.

Pelov, N.; Denecker, M.; and Bruynooghe, M. 2007. Well-
founded and stable semantics of logic programs with aggre-
gates. Theory and Practice of Logic Programming, 7(3):
301–353.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics. Artificial In-
telligence, 138(1-2): 181–234.
Son, T.; and Pontelli, E. 2007. A Constructive Seman-
tic Characterization of Aggregates in Answer Set Program-
ming. Theory and Practice of Logic Programming, 7(3):
355–375.

85641

