
On the Complexity of Inductively Learning Guarded Clauses

Andrei Draghici, Georg Gottlob, Matthias Lanzinger
University of Oxford

andrei.draghici@stcatz.ox.ac.uk, georg.gottlob@cs.ox.ac.uk, matthias.lanzinger@cs.ox.ac.uk

Abstract

We investigate the computational complexity of mining
guarded clauses from clausal datasets through the framework
of inductive logic programming (ILP). We show that learning
guarded clauses is NP-complete and thus one step below the
ΣP

2 -complete task of learning Horn clauses on the polyno-
mial hierarchy. Motivated by practical applications on large
datasets we identify a natural tractable fragment of the prob-
lem. Finally, we also generalise all of our results to k-guarded
clauses for constant k.

Introduction
Finding complex relationships in large datasets with current
data analysis methods primarily relies on the computation
of statistical measures or simple aggregations over numeri-
cal data. Especially when relationships between some parts
of the data are conditional on other data elements, stan-
dard methods such as correlation analysis reach their limits.
To better identify conditional relationships, one can alterna-
tively approach the problem by trying to learn logical rela-
tionships in the data, i.e., searching for non-trivial logical
formulas that hold true over the data set.

Learned logical formulas should ideally be intuitively in-
terpretable as well as usable in automated reasoning. A nat-
ural fit for these requirements are logical rules (i.e., Horn
clauses) as used in Datalog (Ullman 1989) and the associ-
ated task of finding rules that are satisfied in a dataset is of-
ten called rule mining (Fürnkranz, Gamberger, and Lavrac
2012). Not only are modern rule-based languages highly ex-
pressive and theoretically well understood, but there also ex-
ist real-world systems that are capable of efficient reasoning
over large amounts of data, e.g. (Bellomarini, Sallinger, and
Gottlob 2018). In combination with such reasoning systems,
learned rules can also be used for data synthesis, anomaly
detection, and similar tasks.

This paper investigates the underlying theoretical prob-
lems when viewing the rule mining problem through the lens
of inductive logic programming (ILP). Recall, in the ILP set-
ting we are given a set of positive examples and a set of neg-
ative examples and wish to find some logical formula (the
hypothesis) that subsumes all of the positive examples while

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

not subsuming any of the negative examples. We are particu-
larly interested in the computational complexity of the prob-
lem and therefore consider the associated decision problem,
also referred to as the ILP consistency problem, whether any
solution exists for the given sets of examples.

The complexity of the ILP consistency problem depends
critically on the logical languages that are used for exam-
ples and the hypothesis. In line with our motivation of learn-
ing rules, particular historical attention has been given to
the case where examples and hypotheses are Horn clauses,
for which the ILP consistency problem was shown to be
ΣP2 -complete (Gottlob, Leone, and Scarcello 1997). While
some problems in NP can now be solved efficiently in prac-
tical settings, the second level of the polynomial hierarchy is
still generally out of reach for even moderately sized prob-
lems. In the context of mining rules from large datasets, ΣP2 -
completeness is therefore clearly prohibitive and limits po-
tential applications to only small and simple scenarios.

To address this challenge we consider the learning of
guarded clauses, i.e., we restrict the language of the hy-
pothesis to only guarded clauses. Informally, a clause is
said to be guarded if there exists one literal in the clause
that covers all variables that occur in the clause. Our inter-
est in guarded clauses is motivated from two sides. First,
as discussed below, we see that learning guarded clauses
can reduce the complexity of the problem. Second, in com-
mon rule-based languages, e.g., Datalog or Datalog± (Calı̀,
Gottlob, and Lukasiewicz 2009), programs consisting only
of guarded rules also enjoy various desirable computational
properties (Gottlob, Grädel, and Veith 2002; Calı̀, Gottlob,
and Lukasiewicz 2009)1. While guarded rules are of partic-
ular interest in practice, we present our results for the more
general problem of learning guarded clauses, i.e., disjunctive
rules. However, all results hold also for Horn clauses.

Importantly, guarded clauses and corresponding rule-
based languages are still highly expressive. The guarded
fragment of Datalog± captures popular logical languages,
such as the description logics DL-LiteR and EL which form
the theoretical foundation of the OWL 2 QL and EL profiles,

1Guarded rules in the context of Datalog± and guarded clauses
have slight technical differences. These differences are inconse-
quential to our results which all also apply to learning guarded rules
in way the term is used in Datalog±, see the discussion after Algo-
rithm 1.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

5600

respectively (Calı̀, Gottlob, and Lukasiewicz 2012). In addi-
tion to the expressiveness, reasoning over guarded clauses
can be more efficient than over general clauses (Calı̀, Gott-
lob, and Lukasiewicz 2012). The following example aims to
further clarify our setting.
Example 1. Consider the following clauses, which make up
a set of positive examples {E+

1 , E
+
2 } and the single negative

example E−1 (with constants a, b, c, d, e).

E+
1 : ¬TalkAbout(a, b, a) ∨ ¬FanOf(a, a)∨
¬Influences(a, b) ∨ FanOf(b, a),

E+
2 : ¬TalkAbout(a, c, d) ∨ ¬FanOf(a, d)∨
¬Influences(a, c) ∨ FanOf(c, d) ∨ Parent(c, b)

E−1 : ¬TalkAbout(d , b, e) ∨ ¬Influence(d , b)∨
FanOf(d , e)

The following guarded clause (written as a rule) is a natural
ILP-hypothesis that can be learned from the above examples.

FanOf(y, z)← TalkAbout(x, y, z),FanOf(x, z),
Influences(x, y)

Intuitively, the rule can be interpreted as: if x and y talk
about z, x is a fan of z, and x influences y, then y will also
be a fan of z. Here, the atom TalkAbout(x, y, z) contains
all three variables that are used in the clause, and therefore
guards the clause. Alternatively, if we drop the guardedness
requirement, the following clause would also be a valid hy-
pothesis

¬Influences(x, y) ∨ FanOf(y, z)

Note that it is difficult to interpret this clause intuitively, es-
pecially when viewed at as a rule: if x influences y, then y is
a fan of t.

Related Work Inductive logic programming and learning
clauses in particular is a classic theme of AI research and ef-
ficient algorithms for learning clauses have been the topic of
a number of classic works, e.g. (Muggleton 1991; Muggle-
ton and Feng 1990; Kietz and Lübbe 1994). The complex-
ity of learning clauses has been studied in many other con-
texts and under a broad range syntactical restrictions. One
particularly important case is the learning of Horn clauses.
There, the ILP consistency problem is ΣP2 -hard (Gottlob,
Leone, and Scarcello 1997), even without the presence of
background knowledge. Despite the large body of work on
learning clauses, to the best of our knowledge, guardedness
has not yet been studied in this context. One common fea-
ture of ILP settings that we do not explicitly consider here is
specifying target predicates (cf., (Cohen and Jr. 1995)). Our
algorithm and hardness proof can be adapted to cases where
a specific target predicate is considered. Note that specifi-
cally for our algorithm, even enumerating a set of all repre-
sentative solutions is tractable and choice of a certain target
predicate is therefore not a critical factor.

Recently, the inductive synthesis of Datalog programs,
using a variety of different techniques, has received par-
ticular attention (Si et al. 2019; Raghothaman et al. 2020).
The resulting systems are able to synthesise complex logic

programs, including advanced use of recursion, background
knowledge and predicate invention.

However, our motivation of rule mining in large datasets
is not fully aligned with this direction of research. In our
setting we prefer learning many individual rules instead
of complex programs while also requiring stronger upper
bounds on the computational complexity to deal with large
inputs. Our results may be applicable to the synthesis of
guarded Datalog programs when considered in conjunction
with some of the methods noted above. For further details
on new developments in the synthesis of logic programs and
various other directions of current ILP research, we defer to
a recent survey article (Cropper, Dumancic, and Muggleton
2020).

Our Contributions Our goal is to study the computational
complexity of learning guarded rules and find expressive but
tractable fragments that can support real-world rule mining.
We show that in the general case, the problem is no longer
ΣP2 -hard but still intractable. However, we are able to iden-
tify the source of the intractability and demonstrate that an
important fragment of the problem is indeed tractable. The
full contributions of this paper can be summarised as fol-
lows:

1. First we show that guardedness in general improves the
complexity in versus the restriction to Horn clauses. In
particular, the problem moves one step down on the poly-
nomial hierarchy from ΣP2 to NP.

2. We show not only NP-completeness of the general prob-
lem but also for various common further restrictions such
as bounded arity of relations and bounded number of
variables in the hypothesis.

3. In response, we identify the notion of straight clauses.
We show that learning guarded clauses from a clausal
dataset is tractable if the positive examples are straight.
We present a polynomial time algorithm and further-
more, show that our algorithm also allows tractable enu-
merate of an class of representative solutions of the prob-
lem.

4. Finally, we argue that our results also apply analogously
to the much more general case of guardedness by not
one literal, but a constant number of literals (so-called
k-guardedness).

Preliminaries
We assume that the reader is familiar with typical notions
of computational complexity as defined in (Papadimitriou
2007), in particular polynomial time reductions and the first
two levels of the polynomial hierarchy.

We begin by recalling some important standard notions
of inductive logic programming. We roughly follow the pre-
sentation from (Kietz and Dzeroski 1994). We assume basic
familiarity with standard terminology of first-order logic as
used, e.g., in (Fitting 1996). In general, for a literalLwe will
use vars(L) to denote the set of variables occurring in the
atom. Likewise, we write terms(L) for the set of all terms
occurring in L, and ar(L) for the arity of L.

5601

Let L be the language of first order logic. An ILP setting
is a tuple 〈LB ,LH ,`,LE〉 where LB ,LH ,LE are subsets
of L and ` is a correct provability relation.

For a set of formulasE, T ` E is short for T ` e for every
e ∈ E, and T 6` E is short for T 6` e for every e ∈ E. Hence,
a valid hypothesis must subsume all positive examples and
none of the negative examples.

The ILP consistency problem for a ILP setting S denotes
the following decision problem: Given sets B,Ex+ ∪ Ex−

where B ⊆ LB , and Ex+,Ex− ⊆ LE , does there ex-
ist a hypothesis H ∈ LH such that B ∪ {H} ` Ex+,
B ∪ {H} 6` Ex−, and B ∪ {H} 6` ⊥ (B ∪ H is con-
sistent). In such an instance, B is commonly referred to as
the background knowledge, while Ex+, Ex−are the positive
and negative examples, respectively. Furthermore, we will
refer to any such hypothesis as a solution to the respective
instance. By slight abuse of notation we will also consider
ILP settings where the languages for the examples LE is
split into separate languages for the positive and the nega-
tive examples. Thus Ex+ above will consist of clauses from
a language LE+ , while Ex− are clauses from a possibly dif-
ferent languageLE− . The languages can of course still over-
lap and this variation of ILP settings has no effect on other
definitions.

As is common in the field, we will consider specifically
languages of first order clauses. It will be convenient to treat
a clause as a set of the individual disjuncts and we will do
so implicitly throughout this paper. In this spirit we also as-
sume no duplicate literals in clauses. It will be useful to dis-
tinguish between a relation name occurring in a positive and
a negative literal. We use the term signed relation name to
refer to a relation name together with the polarity of the lit-
eral in which it occurs. Following common practice in the
field, we focus on θ-subsumption `θ as a provability rela-
tion here. Recall, we say that a clause φ θ-subsumes a clause
ψ, i.e., φ `θ ψ, if there exists a variable substitution θ such
that φθ ⊆ ψ. As we will always use `θ as the provability
relation, we will generally drop the subscript and use ` to
implicitly represent θ-subsumption.

We are now ready to recall the important result for Horn
clauses mentioned in the introduction. Let SHC be the ILP
setting 〈∅, function-free Horn clauses,`θ, ground clauses〉.

Proposition 1 ((Gottlob, Leone, and Scarcello 1997)). The
ILP consistency problem for SHC is ΣP2 -hard. When the
learned hypothesis is assumed to be polynomially bounded
in the size of the examples, the problem is ΣP2 -complete.

For the rest of this paper we are interested in the prob-
lem of learning guarded clauses. We say that a clause
C is guarded if there is some literal G ∈ C such that⋃
R∈C vars(R) ⊆ vars(G). Guardedness can also be gen-

eralised to so-called k-guarded clauses, where some group
of k literals in the clause covers all variables of the
clause. Much of this paper will focus on the ILP setting
G = 〈∅, function free guarded clauses,`θ, ground clauses〉.
Since G does not allow for background knowledge, we will
treat instances for the ILP consistency problem of G simply
as tuples of positive and negative examples.

NP-Completeness of Guarded ILP
Consistency

Note that the language of guarded clauses is incomparable
to the language of Horn clauses. Our setting is therefore not
simply a more restricted version of previously studied work
but an alternative restriction, which we will show to have
more desirable computational properties.

First, in this section, we show that the ILP consistency
problem for G is NP-complete. This represents a significant
improvement over the complexity of SHC . The proof details
will allow us to identify a practically useful tractable frag-
ment of the problem, which we present in next section.

We will first show a reduction from the hitting string prob-
lem (Garey and Johnson 1979) to establish NP-hardness.
Afterwards we present an argument for NP membership.
Note that membership of the problem is not straightfor-
ward. It is not trivial whether it is always sufficient to guess
a polynomially bounded hypothesis. Furthermore, it is not
easy to verify a guess in polynomial time since checking θ-
subsumption is NP-hard in general (Kietz and Lübbe 1994;
Garey and Johnson 1979).

Reduction from Hitting String
In the hitting string problem we are given a finite set of
strings S = {s1, . . . , sm}, all of length n, over the alpha-
bet {0, 1, ∗}. The task is to decide whether there exists a bi-
nary (over the alphabet {0, 1}) string x = x1x2 . . . xn such
that for each si ∈ S, si and x agree in at least one position.
Such a string x is called a hitting string for the set S. The
hitting string problem is known to be NP-complete (Garey
and Johnson 1979).
Theorem 2. The ILP consistency problem for G is NP-hard.
The problem remains NP-hard even when hypothesis and ex-
ample languages are additionally restricted to clauses with
any combination of the following properties:
• Horn,
• arity at most 2,
• at most 2 variables in the hypothesis,
• and no repetition of terms in a single literal.

Proof. Proof is by reduction from the hitting string problem.
Let S = {s1, . . . , sm} be set of length n strings over the
alphabet {0, 1, ∗}. Let the positive examples Ex+ be the set
{Ci | 0 ≤ i ≤ n} with the respective clauses defined as

C0 = G(a, b) ∨
∨

1≤j≤n (Aj(a) ∨Bj(b))
Ci = G(a, b) ∨G(b, a) ∨Ai(a) ∨Bi(a)∨∨

1≤j≤n,j 6=i (Aj(a) ∨Aj(b) ∨Bj(a) ∨Bj(b))
For string si ∈ S, we write si,j to refer to the symbol at
position j of the string. Let set of negative examples Ex−

be the set {Di | 0 ≤ i ≤ n} ∪ {Ni | 0 ≤ i ≤ m} where the
individual clauses are as follows

D0 =
∨

1≤j≤n (Aj(a) ∨Aj(b) ∨Bj(a) ∨Bj(b))
Di = G(a, b) ∨

∨
1≤j≤n,j 6=i (Aj(a) ∨Bj(b))

Ni = G(a, b) ∨
∨
j:si,j=1Bj(b) ∨

∨
j:si,j=0Aj(a)

∨
∨
j:si,j=∗ (Aj(a) ∨Bj(b))

5602

Now suppose there is a function-free guarded clause H
such that H ` Ex+ and H ` Ex−. We first make some
observations on the structure of H and then argue how this
connects to the original hitting string instance. First, observe
that any hypothesis H must contain some atom for relation
G to not subsume D0. On the other hand, by C0, we see that
both positions must contain different variables and only one
of G(x, y) and G(y, x) is in H . Hence, w.l.o.g., we assume
only G(x, y) is in H .

Since H must subsume C0, there can be no atoms Ai(y)
or Bi(x) in H . In consequence, since Di may not be sub-
sumed, at least one of Ai(x) or Bi(y) must occur in H . In-
deed, because H needs to subsume Ci it follows that only
exactly one of Ai(x) or Bi(y) is in H for every 1 ≤ i ≤ n.
Hence, we know that H is always of the form

G(x, y) ∨
∨

1≤i≤n

Γi, where Γi is either Ai(x) or Bi(y)

Note that H is clearly always guarded. We can associate a
binary string x(H) of length n to each clauseH of this form
by simply setting position i of the string to be 1 if Ai(x) ∈
H , or 0 if Bi(y) ∈ H .

We are now ready to show the correctness of the reduc-
tion, in particular we argue that x(H) is a hitting string for
S if and only if H ` Ex+ and H 6` Ex−.

Assume x is a hitting string for S and let H be the clause
associated to x. From our arguments above we know that
the only thing left to check is whether H does not subsume
any of the N clauses. Every string si ∈ S agrees with x
on some position, i.e., si,j = xj . If such a si,j is 1, then
Aj(x) ∈ H butAj(a) 6∈ Ni. The analogous reasoning holds
for the case where the position contains 0. Since x is a binary
string, these are the only two options and we see that for
every string si ∈ S, the clause Ni is not subsumed by H .
Hence, H ` Ex+ and H 6` Ex−.

For the other side of the implication, suppose there is a
guarded clause H with H ` Ex+, H 6` Ex−. From our
arguments before we know the structure of H and that the
clause determines a unique binary string x(H). Now, for
every 0 ≤ i ≤ m we have that H 6` Ni. By inspection
of H and Ni it follows that for some 0 ≤ j ≤ n, either
Aj(x) ∈ H and si,j = 1, or Bj(y) ∈ H and si,j = 0. In ei-
ther case, by definition of x(H) we see that the j-th position
of x(H) agrees with the value of si,j . Since this holds for all
positions, it follows that x(H) agrees with every string in S
at some position, i.e., x(H) is a hitting string for S.

This establishes the NP-hardness for G. By inspection of
the clauses in the reduction, we can deduce that the problem
remains hard under the stated additional restrictions. All of
the clauses are positive, i.e., polarity plays no role in the
argument. It is also easy to adapt each clause to be Horn in-
stead (make all atoms in the above reduction negative, add a
new redundant literal P (a) to every clause). Lastly, only ar-
ity 2 atoms, 2 variables inH and 2 constants in the examples
are necessary.

Note that our reduction also demonstrates that the restric-
tion to guardedness is not itself a source of difficulty. The
above argument does not require the restriction to guarded

hypothesis. It follows from our observations on the form of
solutions to our reduction that any clause that subsumes all
of Ex+ and none of Ex− must be guarded.

NP Membership
We first establish that it is sufficient to guess a polynomially
bounded hypothesis. Note that this is not true in every set-
ting and previous work has instead regularly considered the
bounded ILP consistency problem (Alphonse and Osmani
2009; Gottlob, Leone, and Scarcello 1997), where explicit
constraints on the hypothesis size are considered as part of
the decision problem.

While guardedness still allows for exponentially large so-
lutions, most literals in such a solution will be redundant.
In particular, we can observe that if a guarded hypothesis
does not subsume a clause, then there are only a few con-
crete variable assignments for which subsumption must fail
in addition to those cases where the guard itself can not be
subsumed. A solution then needs only one literal per such
case to guarantee non-subsumption of the clause. We can
therefore observe the following bound (a full argument is
given in the technical appendix).

Lemma 3. Assume the instance Ex+,Ex− for the ILP con-
sistency problem for G has a solution. Then it also has a
solution H with |H| ≤ 1 +

∑
E∈Ex− |E|.

The natural guess and check procedure for the ILP con-
sistency problem is to guess a hypothesis and then check
(non-)subsumption for each of the examples. However, in
general this does not result in an NP algorithm since decid-
ing whether φ ` ψ is NP-complete even for function-free
Horn clauses (Kietz and Lübbe 1994).

In the guarded setting, subsumption can be decided more
efficiently. It is not difficult to prove directly that subsump-
tion by a function-free guarded Horn clause is tractable. Due
to our later interest in k-guardedness it will be more conve-
nient to adapt a more general result on the complexity of
finding homomorphisms.

It is straightforward to translate the problem φ ` ψ, where
φ is a function-free clause, to a the question of whether
there exists a homomorphism from a relational structure
representing φ to a structure representing ψ. The compu-
tational complexity of homomorphism checking is well un-
derstood (Grohe 2007; Gottlob, Leone, and Scarcello 2002),
and by applying this knowledge to our setting we can make
the following important observation.

Lemma 4. Let k be an integer constant, let φ and ψ be
clauses such that φ is k-guarded. Then it is tractable to de-
cide whether φ `θ ψ.

Naturally, the complementary problem φ 6` ψ is
tractable under the same circumstances. Since we know
from Lemma 3, that it is sufficient to guess a polynomially
bounded H , it is clear that the ILP consistency problem for
G is in NP. In combination with Theorem 2 we arrive at the
main result of this section.

Theorem 5. The ILP consistency problem for G is NP-
complete.

5603

Tractability for Straight Positive Examples
In the previous section we have seen that considering
guarded clauses instead of Horn clauses improves the com-
plexity of the consistency problem form ΣP2 -completeness
to NP-completeness. However, in the context of our orig-
inal motivation of rule mining on large datasets this may
still be infeasible. Furthermore, Theorem 2 illustrates that
even severe restrictions to the clause languages are insuf-
ficient to achieve a polynomial time algorithm (assuming
NP 6= PTIME).

In this section we introduce the notion of straight clauses
which will allow us to define a tractable fragment of the
problem that can still express many common notions, such
as recursive rules. We then prove some important theoretical
properties under this new restriction and ultimately give a
polynomial time algorithm. Finally, we briefly discuss how
key results and our algorithm generalise to k-guardedness.
Definition 1 (Straight Clauses). A clause φ is called straight
if no relation name occurs twice in φ with the same polarity.

Note that straight clauses can still express recursive rules
since the same relation can appear twice with differing po-
larity. For example, all clauses and the resulting hypothesis
in Example 1 are straight clauses. In the context of Datalog
rules, straight rules correspond to rules with no self-joins.

It will not be necessary to restrict all clauses to be straight.
Indeed, we will only require positive examples to be straight
clauses, whereas the negative clauses and the hypothesis will
not need to be straight. To that end we define the new ILP
setting G∗ as the setting G where the positive examples ad-
ditionally have to be straight clauses.

Guarded Hypotheses for Straight Clauses
We first introduce some new notation. In a clause C where a
signed relational name P occurs only once we will use πCP,i
to denote the term at the i-th position of the literal over P .
Definition 2 (Relative Shields). Let Q and P be relational
names occurring in a straight clause C. The relative shields
of position i of Q are defined as the set

SCP,Q,i = {j | πCQ,j = πCP,j}

That is, the relative shields are all the positions of P that
contain the exact same term as position i of Q.

Let E be a set of straight clauses that all contain P andQ.
The relative shield of position i of Q by P (w.r.t. E) is the
set

SEP,Q,i =
⋂
C∈E

SCP,Q,i

Example 2. Consider the following two clauses

P (a, a, b, a), Q(a)
P (a, b, a, b), Q(b)

The relative shield of position 1 of Q by P is {1, 2, 4} in
the first clause and {2, 4} in the second clause. Thus, for the
set of clauses we have the relative shield {2, 4}. In situa-
tions where P is the guard of the hypothesis H the relative
shield corresponds to the variables from the guard clause in
H that can be used in the respective position ofQ. That is, if

P (x, y, x, z) is the guard in H , then only Q(y) or Q(z) are
possible candidates for the hypothesis.

The following lemma formalises the observation made at
the end of the example. It shows how the relative shield and
variable choice are tightly connected in guarded clauses.

Lemma 6. Let E be a set of straight clauses and let H be
a clause with guard P such that H ` E. For every literal
Q(x1, . . . , xn) ∈ H , we have that for every 1 ≤ i ≤ ar(Q),
if xi = πHP,j , then j ∈ SEP,Q,i.

We will see that beyond Lemma 6, the relative shield will
play a special role if we consider a particular guard, namely
the least general one.

Definition 3 (Least General Induced Guard). Let E be a set
of straight ground clauses that all contain the signed rela-
tion name P . The least general induced guard (lgig) for P
(induced by E) is the literal P (x̄) with the least number of
distinct variables such that P (x̄) ` {P (ā)}, for all P (ā) in
any clause in E.

It is easy to observe that the lgig for P has the same vari-
ables exactly in those positions that contain the same term in
every clause. That is, xi = xj if and only if ∀C ∈ E : πCP,i =

πCP,j , where xk refers to the variable in position k of the lgig.
It follows that the lgig is unique up to isomorphism.

In the next step, we will show how using an lgig as guard
can determine the exact argument list of all literals in the
hypothesis. This is an important observation for our even-
tual algorithm. Furthermore, it will allow us to show that it
is always sufficient to consider only lgigs as guards in our
scenario.

Lemma 7. Let E be a set of straight ground clauses and let
H be a clause guarded by the lgig for some signed relation
name P such that H ` E. For every literal Q(. . .) ∈ H , we
have that for every i ∈ ar(Q) and every j, k ∈ SEP,Q,i we
have πHP,j = πHP,k.

Proof. Suppose the statement fails for Q(x1, . . . , xn) ∈ H
at position i. That is, there are j, k ∈ SEP,Q,i such that there
are different variables at positions j and k in the guard
P , i.e., πHP,j 6= πHP,k. Observe that if j, k are both rela-
tive shields, then it holds that πCP,j = πCQ,i = πCP,k for all
C ∈ E. Therefore, for every C ∈ E there exists a θ such
that Hθ ⊆ C where θ maps πCP,j and πCP,k to the same term.
Thus, let θ′ be the substitution that maps πCP,j 7→ πCP,k and
everything else to identity. Clearly, Hθ′ ` E and the guard
in Hθ′ has symbol P and fewer distinct variables than the
guard inH , hence contradicting the assumption of the guard
in H being the lgig.

Since the above lemma uniquely determines the argument
list of each literal occurring in an lgig guarded hypothesis, it
also follows that no signed relation name can occur twice in
the hypothesis. Hence, the hypothesis is also always straight.

Another important property of the lgig is related to the
following notion of specialisation. We call a variable substi-
tution θ a specialisation if it maps from the variables X to
a subset X ′ ⊂ X such that θ(x) = x for all x ∈ X ′. The

5604

following lemma establishes not only that if there is a solu-
tion, there is also a solution guarded by the lgig, but that any
guard in a solution can be specialised to be an lgig.
Lemma 8. Let E be a set of straight grounded clauses and
let H be a clause with guard literal P (x̄) such that H ` E.
There exists a specialisation θ such that P (x̄)θ is the lgig of
P induced by E.

Proof. Let P (ȳ) be the lgig of P induced by E. Recall that
yi = yj if and only if ∀C ∈ E : πCP,i = πCP,j . Observe that
if two positions i, j of P differ in some clause in E (and if
H ` E), then the variables at the same positions of P (x̄) in
H can not be the same. Otherwise the same variable would
have to map to different terms to match the single occurrence
of P in the clause.

With this established, we see that in P (x̄) we have xi =
xj only if yi = yj in the lgig P (ȳ). Thus, clearly the substi-
tution θ : xi 7→ yi for all 1 ≤ 1 ≤ ar(P) is a specialisation
and P (x̄)θ is the lgig of P induced by E.

From these key lemmas we can derive the following key
theorem for the setting G∗. A full proof of the missing details
is given in the technical appendix.
Theorem 9. Let Ex+ be a set of straight ground clauses,
and let Ex− be a set of ground clauses. If there exists a
guarded clause H such that H ` Ex+ and H 6` Ex−,
then there also exists a guarded clauseH ′ with the following
properties:
1. The guard of H ′ is a least general induced guard (in-

duced by Ex+).
2. H ′ is a straight clause.
3. H ′ ` Ex+ and H ′ 6` Ex−.

A Polynomial-Time Algorithm
The results of the previous section show that we can use least
general induced guards to fix a mapping of terms in a pos-
itive example to variables in the hypothesis. By Lemma 7,
this mapping, in combination with a ground literal from the
example, determines the only possible way to include a cor-
responding literal (with the same polarity and relation sym-
bol) in the hypothesis.

Lemma 7 is a crucial observation for our algorithm. The
algorithm iteratively adds literals from a positive example
to the hypothesis by replacing the terms there with vari-
ables. In general, the choice of how exactly terms are re-
placed by variables leads to combinatorial explosion. How-
ever, Lemma 7 states that we can limit our search to one
particular choice if the hypothesis is guarded by an lgig.
Definition 4. Let E be a set of straight ground clauses and
let H be a clause guarded by the lgig for P . Let L be a
literal in some clause ofE. The lgig map µ of L is a function
terms(L) → vars(H) such that µ(ti) = πHP,j where j ∈
SEP,L,i and ti is the term at position i of L.

It follows from Lemma 7 that such a map always exists –
and is uniquely determined – if a literal with the same name
and polarity as L is part of a solution guarded by the lgig for
P . Note that no lgig map exists if the relative shield is empty
at any position i.

Algorithm 1: A polynomial time algorithm for ILP
consistency for setting G∗.

input : Examples Ex+ 6= ∅, Ex−as sets of
grounded straight clauses.

output: Guarded clause H s.t. H ` Ex+ and
H 6` Ex−

1 C ← an arbitrary clause in Ex+;
2 for G ∈ C do
3 G′ ← be the least general induced guard for G

induced by Ex+;
4 H ← {G′};
5 if H 6` Ex− then
6 return H;
7 for L ∈ C \ {G} do
8 if an lgig map of L w.r.t. G′ exists then
9 µ← lgig map of L w.r.t. lgig G′;

10 if H ∪ {µ(L)} ` Ex+ then
11 H ← H ∪ {µ(L)};
12 if H 6` Ex− then
13 return H;
14 Reject

With the above definition, we are now ready to present Al-
gorithm 1, our polynomial time algorithm for the ILP consis-
tency problem for G∗. To avoid redundant checks through-
out the algorithm we assume, w.l.o.g., that the instance is
non-trivial, i.e., that Ex+ 6= ∅ and that all signed relation
names occur in all clauses of Ex+. Clearly, any signed re-
lation name that does not occur in all clauses can never be
part of the hypothesis, as it would be impossible to subsume
a clause that does not contain the relation.

The algorithm operates by iteratively building hypothe-
ses. For some arbitrary clause C ∈ Ex+, the algorithm will
try every signed relation name in the clause as a potential
guard (line 2). For each such candidate, the lgig induced by
Ex+ is generated and added to a candidate hypothesis H .
From this point on the algorithm will try to add further lit-
erals from C to H via their lgig map as long as they do not
break subsumption of Ex+. This either continues until H is
identified as a solution (if also H 6` Ex−), or until all pos-
sible additions are exhausted. If no solution is found for any
choice of G, then the algorithm rejects.

It is straightforward to observe the soundness of Algo-
rithm 1. By definition, any returned clause H is a guarded
clause with H ` Ex+ and H 6` Ex−. What is left to show
is that the algorithm is complete, i.e., that it will always re-
turn a hypothesis if the instance has a solution, and that it
is tractable. Completeness follows from the observations on
lgig maps made above and Theorem 9, showing that if a so-
lution exists, then a straight solution guarded by a lgig exists.
A full argument is given in the technical appendix.

Theorem 10. Algorithm 1 is a correct algorithm for the ILP
consistency problem for G∗.

The worst-case time complexity of Algorithm 1 depends
on the complexity of computing the lgig, the lgig maps,

5605

and checking subsumption. Computing the lgig for literal P
is effectively in O(ar(P)2 · |Ex+|), since it only requires
the identification of positions that contain equal terms in
all clauses. Similarly, from Lemma 7 we see that the lgig
map for a literal L can be constructed directly from the
respective relative shields. Again this can be done in time
O(ar(L)2 · |Ex+|), followed by a lookup of the relevant po-
sitions in the guard literal. As stated previously in Lemma 4,
checking subsumption is indeed tractable for guarded for-
mulas. Clearly, the hypothesis is guarded in all subsumption
checks in Algorithm 1 and therefore all of the checks are in
polynomial time.

Theorem 11. The ILP consistency problem for G∗ is in
PTIME.

Enumerating representative solutions While the deci-
sion problem is important for theoretical considerations, in
practice the enumeration of solutions is of greater interest. In
our setting G∗, it is still possible to have exponentially many
solutions. We propose considering the (subset) maximal lgig
guarded solutions as the canonical solutions of the problem.
Note that there are only polynomially many such solutions.

This definition is motivated by Theorem 9 and the pre-
ceding lemmas, which show that every solution is either
guarded by a lgig or can be specialised to a solution guarded
by a lgig. In this sense, our canonical solutions are represen-
tative solutions of the problem. It is then straightforward to
adapt Algorithm 1 to instead enumerate all of the canonical
solutions in polynomial time.

Guarded rules in Datalog± Guarded rules are particu-
larly popular in Datalog±, where they guarantee decidability
for query answering. Recall, a rule in Datalog± can contain
existential quantification in the head. For example, the fol-
lowing Datalog ± rule can express that every person x has
an ancestor y.

∃yAncestor(y, x)← Person(x)

Hence, the notion of guardedness of a rule is adapted such
that the guard must cover only free variables.

This is not an issue for our algorithm. The analogue
to learning a guarded Datalog± rule in our setting, is to
learn Horn clauses where only the negative literals must be
guarded. Any unguarded variables in the positive literal then
correspond to existentially quantified variables. By adapting
the notion of lgig map accordingly for positive atoms (posi-
tions with no shield are mapped to fresh variables) and dis-
tinguishing positive and negative literals, Algorithm 1 can
easily be adapted to a polynomial time algorithm for learn-
ing guarded Datalog± rules.

Generalisation to k-Guardedness
We have shown that the restriction to guarded hypotheses
greatly reduces the complexity of the ILP consistency prob-
lem. While guarded clauses have been repeatedly shown to
exhibit a rare balance between expressiveness and low com-
plexity for reasoning, some important concepts are not ex-
pressible in guarded form. One particularly important such

case is transitive closure, e.g., we can construct the transitive
closure T over a relation R for example with the rule

T (x, y), R(y, z)→ T (x, z)

but not in terms of a guarded rule.
However, the clause is clearly 2-guarded, as are many

other common logical properties and – from anecdotal ob-
servations – as are many rules derived from expert knowl-
edge in industry. In this section we will briefly discuss how
our results from the previous sections can be generalised to
also hold for k-guarded clauses, where k is constant.

Overall, no major changes are necessary to accommodate
k-guardedness. Our observations on guarded hypotheses for
straight clauses rely on the fact that the variables in the guard
have a uniquely-determined assignment in any clause that is
subsumed by the guarded hypothesis. This observation can
be extended to the case of a set of k literals that k-guard the
hypothesis by viewing them as one merged literal G whose
argument list is simply the concatenation of the individual
argument lists. That is, in the transitive closure rule above
we could consider the merged guard G(x, y, y, z) instead of
the literals {¬T (x, y), negR(y, z)} that guard the respec-
tive clause. It is straightforward to verify that such a merged
guard behaves exactly the same as any normal guard literal.

There are
(|C|
k

)
≤ |C|k possible ways to replace k lit-

erals in a clause C with such a merged guard. Hence, an
adapted Algorithm 1 for k-guarded hypothesis would have
to try only |C|k possible guard candidates. The computation
of the lgig and lgig maps is also still polynomial since the
arity of the merged guard is simply the sum of the individual
literal arities. By Lemma 4 the subsumption checks remain
tractable under k-guardedness. We therefore can also state
the following more general tractability result.
Theorem 12. Fix an integer k. Let G∗k be the ILP setting
like G∗ where the hypothesis language is relaxed to allow k-
guarded clauses. Then the ILP consistency problem for G∗k
is in PTIME.

Conclusion & Outlook
We have studied the complexity of the ILP consistency prob-
lem when learning guarded clauses. In general, the problem
is NP-complete, in contrast to the case of learning Horn
clauses with Horn examples, which is ΣP2 -complete. We
show how further restriction of positive examples allows for
efficient learning of guarded clauses. The tractability result
also extends to the even more general class k-guarded rules.
An important question that was left open is the integration of
background knowledge. Once we allow background knowl-
edge with variables we are confronted with conceptual is-
sues on whether and how the guardedness constraint should
extend to background knowledge or not.

Acknowledgements
Andrei Draghici is supported by a grant from the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (Grant agree-
ment No. 852769, ARiAT). Georg Gottlob is a Royal Society
Research Professor and acknowledges support by the Royal

5606

Society in this role through the “RAISON DATA” project
(Reference No. RP\R1\201074). Matthias Lanzinger ac-
knowledges support by the Royal Society “RAISON DATA”
project (Reference No. RP\R1\201074).

References
Alphonse, É.; and Osmani, A. 2009. Empirical Study of Re-
lational Learning Algorithms in the Phase Transition Frame-
work. In Proc. ECML PKDD, volume 5781 of Lecture Notes
in Computer Science, 51–66. Springer.
Bellomarini, L.; Sallinger, E.; and Gottlob, G. 2018. The
Vadalog System: Datalog-based Reasoning for Knowledge
Graphs. Proc. VLDB Endow., 11(9): 975–987.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2009. A gen-
eral Datalog-based framework for tractable query answering
over ontologies. In Proc. PODS, 77–86. ACM.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2012. A gen-
eral Datalog-based framework for tractable query answering
over ontologies. J. Web Semant., 14: 57–83.
Cohen, W. W.; and Jr., C. D. P. 1995. Polynomial Learnabil-
ity and Inductive Logic Programming: Methods and Results.
New Gener. Comput., 13(3&4): 369–409.
Cropper, A.; Dumancic, S.; and Muggleton, S. H. 2020.
Turning 30: New Ideas in Inductive Logic Programming. In
Proc. IJCAI, 4833–4839. ijcai.org.
Fitting, M. 1996. First-Order Logic and Automated Theo-
rem Proving, Second Edition. Graduate Texts in Computer
Science. Springer. ISBN 978-1-4612-7515-2.
Fürnkranz, J.; Gamberger, D.; and Lavrac, N. 2012. Foun-
dations of Rule Learning. Cognitive Technologies. Springer.
ISBN 978-3-540-75196-0.
Garey, M. R.; and Johnson, D. S. 1979. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman. ISBN 0-7167-1044-7.
Gottlob, G.; Grädel, E.; and Veith, H. 2002. Datalog LITE: a
deductive query language with linear time model checking.
ACM Trans. Comput. Log., 3(1): 42–79.
Gottlob, G.; Leone, N.; and Scarcello, F. 1997. On the Com-
plexity of Some Inductive Logic Programming Problems. In
Proc. ILP, volume 1297 of Lecture Notes in Computer Sci-
ence, 17–32. Springer.
Gottlob, G.; Leone, N.; and Scarcello, F. 2002. Hypertree
Decompositions and Tractable Queries. J. Comput. Syst.
Sci., 64(3): 579–627.
Grohe, M. 2007. The complexity of homomorphism and
constraint satisfaction problems seen from the other side. J.
ACM, 54(1): 1:1–1:24.
Kietz, J.; and Dzeroski, S. 1994. Inductive Logic Program-
ming and Learnability. SIGART Bull., 5(1): 22–32.
Kietz, J.; and Lübbe, M. 1994. An Efficient Subsumption
Algorithm for Inductive Logic Programming. In Proc. Ma-
chine Learning, 130–138. Morgan Kaufmann.
Muggleton, S. 1991. Inductive Logic Programming. New
Gener. Comput., 8(4): 295–318.

Muggleton, S.; and Feng, C. 1990. Efficient Induction of
Logic Programs. In Proc. ALT, 368–381. Springer/Ohmsha.
Papadimitriou, C. H. 2007. Computational complexity. Aca-
demic Internet Publ. ISBN 978-1-4288-1409-7.
Raghothaman, M.; Mendelson, J.; Zhao, D.; Naik, M.; and
Scholz, B. 2020. Provenance-guided synthesis of Datalog
programs. Proc. ACM Program. Lang., 4(POPL): 62:1–
62:27.
Si, X.; Raghothaman, M.; Heo, K.; and Naik, M. 2019. Syn-
thesizing Datalog Programs using Numerical Relaxation. In
Proc. IJCAI, 6117–6124. ijcai.org.
Ullman, J. D. 1989. Principles of Database and Knowledge-
Base Systems, Volume II. Computer Science Press. ISBN
0-7167-8162-X.

5607

