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Abstract

The complete reason behind a decision is a Boolean formula
that characterizes why the decision was made. This recently
introduced notion has a number of applications, which in-
clude generating explanations, detecting decision bias and
evaluating counterfactual queries. Prime implicants of the
complete reason are known as sufficient reasons for the de-
cision and they correspond to what is known as PI explana-
tions and abductive explanations. In this paper, we refer to the
prime implicates of a complete reason as necessary reasons
for the decision. We justify this terminology semantically and
show that necessary reasons correspond to what is known as
contrastive explanations. We also study the computation of
complete reasons for multi-class decision trees and graphs
with nominal and numeric features for which we derive ef-
ficient, closed-form complete reasons. We further investigate
the computation of shortest necessary and sufficient reasons
for a broad class of complete reasons, which include the de-
rived closed forms and the complete reasons for Sentential
Decision Diagrams (SDDs). We provide an algorithm which
can enumerate their shortest necessary reasons in output poly-
nomial time. Enumerating shortest sufficient reasons for this
class of complete reasons is hard even for a single reason. For
this problem, we provide an algorithm that appears to be quite
efficient as we show empirically.

Introduction

Reasoning about the behavior of Al systems has been re-
ceiving significant attention recently, particularly the deci-
sions made by machine learning classifiers. Some meth-
ods operate directly on classifiers, e.g., (Ribeiro, Singh, and
Guestrin 2016, 2018) while others operator on symbolic
encodings of their input-output behavior, e.g., (Narodytska
et al. 2018; Ignatiev, Narodytska, and Marques-Silva 2019a)
which may be compiled into tractable circuits (Chan and
Darwiche 2003; Shih, Choi, and Darwiche 2018b, 2019; Shi
et al. 2020; Audemard, Koriche, and Marquis 2020; Huang
etal. 2021a). When explaining decisions, the notion of a suf-
ficient reason has been well investigated. This is a minimal
subset of an instance that is sufficient to trigger the deci-
sion and can therefore be used to explain why it was made.
Sufficient reasons were introduced in (Shih, Choi, and Dar-
wiche 2018b) under the name of PI explanations and later
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referred to as abductive explanations (Ignatiev, Narodytska,
and Marques-Silva 2019a).! Two related notions we discuss
later are contrastive explanations as formalized in (Ignatiev
et al. 2020) and counterfactual explanations as formalized
in (Audemard, Koriche, and Marquis 2020).

(Darwiche and Hirth 2020) introduced the complete rea-
son for a decision as a Boolean formula that characterizes
why a decision was made, and showed how it can be used
to gather insights about the decision. This includes generat-
ing explanations, determining decision bias and evaluating
counterfactual queries. For example, it was shown that suffi-
cient reasons correspond to the prime implicants of the com-
plete reason. Hence, if one has access to the complete reason
behind a decision, then one can abstract the computation of
sufficient reasons away from the classifier and its encoding
or compilation. Consider a classifier for admitting applicants
to an academic program based five Boolean features (Dar-
wiche and Hirth 2020): passing the entrance exam (F), be-
ing a first time applicant (F), having good grades (G), hav-
ing work experience (W) and coming from a rich hometown
(R). The positive instances of this classifier are specified by
the following Boolean formula: A = (e Vg) A (eVr)A(eV
w)A(fVr)A(fVgVw). Luna () passed the entrance exam,
has good grades and work experience, comes from a rich
hometown but is not a first time applicant (§ = e, f, g, 7, w).
The classifier will admit Luna. The complete reason for this
decisionis: I' = (eVg) A(eVw) A (r)A(f VgV w). There
are four prime implicants of I': {e, g, 7}, {e,r,w},{e, f,r}
and {g,r,w}. Each is a minimal subset of instance § which
is sufficient to trigger the admit decision. Even though the

'See, e.g., (Choi, Xue, and Darwiche 2012; Ribeiro, Singh, and
Guestrin 2018; Wang, Khosravi, and den Broeck 2021) for some
approaches that can be viewed as approximating sufficient reasons
and (Ignatiev, Narodytska, and Marques-Silva 2019b) for a study
of the quality of some of these approximations.

There is an extensive body of work in philosophy, social sci-
ence and Al that discusses contrastive explanations and counter-
factual explanations; see, e.g., (Garfinkel 1982; Lewis 1986; Tem-
ple 1988; Lipton 1990; Wachter, Mittelstadt, and Russell 2017;
van der Waa et al. 2018; Miller 2019; Mittelstadt, Russell, and
Wachter 2019; Goyal et al. 2019; Verma, Dickerson, and Hines
2020; Mothilal, Sharma, and Tan 2020). While the definitions of
these notions are sometimes variations or refinements on one an-
other, they are not always compatible.



number of sufficient reasons may be exponential, the com-
plete reason can be compact and computed in linear time if
the classifier is represented using a suitable form (Darwiche
and Hirth 2020). Further insights can be obtained about a
decision by analyzing its complete reason. For example, the
decision on Luna is biased as it would be different if she
did not come from a rich hometown. In that case, she would
be denied admission because she does not come from a rich
hometown and is not a first time applicant as this would be
the only sufficient reason for rejection. These conclusions
can be derived by operating directly, and efficiently, on the
complete reason as shown in (Darwiche and Hirth 2020).

More recently, (Darwiche and Marquis 2021) introduced
the notion of universal literal quantification to Boolean
logic and used it to formulate complete reasons. According
to this formulation, we can obtain the above complete rea-
son I' by computing Ve, f, g, r,w - A, to be explained later.
We will base our treatment on this formulation while operat-
ing in a discrete instead of a Boolean setting. The conclusion
section in (Darwiche and Marquis 2021) proposed a general-
ization of universal literal quantification to discrete variables
but without further discussion. We will adopt this definition,
study it further and exploit it to derive efficient, closed-form
complete reasons for multi-class decision trees and graphs
with nominal (discrete) and numeric (continuous) features.
We will show that the obtained complete reasons belong to
a particular logical form that arise when explaining the deci-
sions of a broader class of classifiers. We will further show
that the prime implicates of complete reasons correspond to
contrastive explanations, which will provide further insights
into the semantics and utility of these explanations. We will
refer to these prime implicates as necessary reasons for the
decision and semantically justify this terminology. We will
then propose an output polynomial algorithm for computing
the shortest necessary reasons of the identified class of com-
plete reasons. We will finally show that computing shortest
sufficient reasons is hard for this class of complete reasons
and propose an algorithm for computing them which appears
to be quite efficient based on an empirical evaluation. Proofs
of all results can be found in (Darwiche and Ji 2022).

Syntax and Semantics of Discrete Formulas

We start by defining the syntax and semantics of discrete
formulas which we use to capture classifiers with discrete
features. The treatment in this section is largely classical
and provides obvious generalizations of what is known on
Boolean logic. But we spell it out so we can provide a for-
mal treatment of our upcoming results, especially that we
sometimes depart from what may be customary.

For a discrete variable X with values x4, ..., z,, we will
call X =ux; a state for variable X. A discrete formula is de-
fined over a set of discrete variables as follows. Every state
or constant (T, L) is a discrete formula. If o and (8 are dis-
crete formulas, then —a, oV 3 and a A B are discrete formu-
las. A positive literal is a state X = x; typically denoted by
x;. A negative literal is a negated state —~(X =ux;), typically
denoted by Z;. A negative literal will also be called a state
if the variable has only two values. A clause is a disjunction
of literals with at most one literal per variable. A ferm is a
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conjunction of literals with at most one literal per variable.
A CNF is a conjunction of clauses. A DNF is a disjunction
of terms. An NNF is defined as follows. Constants and liter-
als are NNFs. If o and 8 are NNFs, then o V 3 and o A 8
are NNFs (hence, conjunctions and disjunctions cannot be
negated). An NNF is V-decomposable iff for each disjunc-
tion \/Z «; in the NNF, the disjuncts «; do not share vari-
ables. An NNF is A-decomposable iff for each conjunction
/\7‘, «; in the NNF, the conjuncts «; do not share variables.
An NNF is positive iff it contains only positive literals. Any
NNF can be made positive by replacing negative literals ;
with \/ i Lj- AnNNF is monotone iff it is positive and does
not contain distinct states x; and x; for any variable X.

A positive term contains only positive literals (i.e., states).
The conditioning of discrete formula A on positive term 7 is
denoted A|~ and obtained as follows. For each state z; € ,
replace the occurrences of x; with T and the occurrences
of z;, j # i, with L. The formula Alz; does not mention
variable X. An instance is a positive term which contains
precisely one state for each variable. If we condition a dis-
crete formula on an instance, we get a Boolean formula that
does not mention any variables (evaluates to true or false).

The semantics of discrete formulas is symmetric to the
semantics of Boolean formulas, except that the notion of a
world (truth assignment) is now defined as a function that
maps each discrete variable to one of its states (a world cor-
responds to an instance). A world w satisfies a discrete for-
mula «, written w = «, precisely when a|w evaluates to
true. In this case, we say that world w is a model of for-
mula «. Notions such as satisfiability, validity, implication
and equivalence can now be defined for discrete formulas as
in Boolean logic. For example, formula o implies formula
B, written « |= 3, iff every model of « is a model of 3. We
next define the notions of implicants and implicates. An im-
plicant of a discrete formula A is a term 6 such that § = A.
The implicant is prime iff no other implicant §* is such that
0* C 0. An implicate is a clause ¢ such that A |= 0. The im-
plicate is prime iff no other implicate §* is such that 6* C 4.

Our treatment will represent a classifier with discrete fea-
tures and multiple classes c1, . . . , ¢, by a set of mutually ex-
clusive and exhaustive discrete formulas Al . .. , A™, where
the models of formula A’ capture the instances in class c;.
That is, instance 0 is in class ¢; iff § = A, We refer to each
A% as a class formula. When & = A, we say that instance &
is decided positively by A*. The complete reason for this de-
cision will then be the formula V& - A%, The next section will
explain what V¢ is and how to compute it efficiently. In the
upcoming discussion, we may use the engineering notation
for Boolean operators when convenient, writing 1 y2+2223,
for example, instead of (z1 A y2) V (z2 A 23).

Quantifying States of Discrete Variables

(Darwiche and Marquis 2021) introduced universal literal
quantification for Boolean logic and suggested the following
generalization to discrete variables without further study.

Definition 1. For formula A and variable X with states

Z1,-..,Ty, the universal quantification of state x; from A
is defined as follows: Vx; - A = (Alxi) AN (2: V Alzy).



Quantification is commutative so we can equivalently
write Vo - (Vy - A), Vy- (Vo - A) or V{x, y} - A. We will study
Definition 1 and exploit it for computing complete reasons.

Definition 2. Ifinstance § is decided positively by class for-
mula A, then V6 - A is the ‘complete reason’ for the decision.

The next three results parallel Boolean ones in (Darwiche
and Marquis 2021). They are followed by two novel results.

Proposition 1. We have Va; - T = T and Vx; - L = 1;

Vo, x; = x; andVr;-%; = Ly Vx5 = Land Ve, 25 = o

when j #i; Y, - y; = y; andVx; - §; = y; when X #Y.
The next result shows when Vz; can be distributed.

Proposition 2. For discrete formulas o, [ and state x; of
variable X, we have Vz; - (a A B) = (Va; - «) A (Vz; - B).
Moreover, if variable X does not occur in both o and f3, then
Vo - (aV ) = (Yo, - a) V (Y, - B).

Given Propositions 1 and 2, we can universally quantify
states out of VV-decomposable NNFs in linear time while pre-
serving V-decomposability in the resulting NNF.

Proposition 3. Let A be a \V-decomposable NNF and -y be a
set of states. Then ¥y - A can be obtained from A as follows.
For each state x; € v, replace the occurrences of literals z;,
xjand Tj, j # 4, in Awith L, | and x;, respectively.

Consider the class formula A = Z1 (x2+71 ) (91 +21) over
ternary variables X, Y, Z and instance § = x5, Y2, 21 Which
is decided positively by A. The complete reason for this de-
cision is V6 - A. Since A is V-decomposable, Proposition 3
gives Voo, ya, 21-A = (22)(2+y2) (Y2 +21) = T2(y2+21).
Hence, this instance was decided positively because it has
characteristic x2 and one of the characteristics y» and z;.

We next identify conditions that allow the distribution of
Vz; over disjuncts that share variables.

Proposition 4. Consider positive NNFs «, B and state x; of
variable X. If ©; does not occur in ., 3, or x; does not occur
ina, Bforall j # i, thenVx;-(aVB) = (Vz;-a)V (Vz; - B).

For a Boolean variable X with states  and Z, Proposi-
tion 4 says that we can distribute Vz over disjuncts a and 3
even if they mention literal £ (but do not mention z). This is
a novel result compared to (Darwiche and Marquis 2021).

Next is another novel condition that licenses the distribu-
tion of Vz; over disjuncts, which we use to derive closed
forms for the complete reasons of decision trees and graphs.
Proposition 5. Let o be an NNE, S be a set of states for
variable X and 8 = \/,, cg k. If variable X occurs in o
only in disjunctions of the form \/ , s, x), where S" 2 S are
states of variable X, thenVx;-(aV ) = (Va;-a)V (Va;- ).

Consider variables X (x1,...,24) and Y (y1,y2) and the
formulas o = y1 (1 + 22 + x4) and 8 = x1 + x2. We can
invoke Proposition 5 to distribute Vz using S = {x1, 22}
and S" = {x1, 2,74} Hence, V1 - (aVB) = Va1 (y1 (1 +
To+x4)) V- (21 4+22) = Y121 +1 = 1. Propositions 2
and 4 do not license this distribution of Vx; though.

The Complete Reasons for Decision Graphs

We next provide closed forms for the complete reasons of
decision graphs, which subsume decision trees, in the form
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< 1450

> 1450

medium

Interview

Figure 1: A classifier in the form of a decision graph.

of monotone, V-decomposable NNFs. This will later facili-
tate the computation of their prime implicants and implicates
(sufficient and necessary reasons). We first treat multi-class
decision graphs with nominal features and then treat deci-
sion graphs with numeric features; see Figures 1 and 3.
Each leaf node in a decision graph is labeled with some

class c. Moreover, each internal node 7" in the graph has out-

. X, S X, Sn o
going edges ——5T1,..., =" T,,n > 2. We say in this

case that node 7' fests variable X. The children of node T’
are Ty, ..., T, and S1, ..., S, is a partition of some states of
variable X. A decision graph will be represented by its root
node. Hence, each node in the graph represents a smaller de-
cision graph. We allow variables to be tested more than once
on a path from the root to a leaf but under the following con-

dition, which we call the weak test-once property. Consider

X, 5, X, Ry,
path ..., T —=5Tj,...,T" =5 Tk, ... from the root

to leaf and suppose that nodes T' and T” test variable X . If
no nodes between T" and 7" on the path test variable X, then
{Ry}, must be a partition of states S;. Moreover, if T is
the first node that tests X on the path, then {.5;},; must be a
partition of all states for X . For binary variables, the weak
test-once property reduces to the standard test-once prop-
erty: A variable can be tested at most once on any path from
the root to a leaf. The weak test-once property is critical for
treating numeric features. As we show later, one can easily
discretize continuous variables based on the thresholds used
at decision nodes, which leads to decision graphs that satisfy
the weaker test-once property but not the standard one.

A decision graph classifies an instance J as follows. Sup-
pose §[X] is the state of variable X in instance 6. We start at
the graph root and repeat the following. When we are at node

T that has outgoing edges X’—S1>T1, e RN T,,, we fol-

low the (unique) edge X5, T; which satisfies §[X] € S;.
This process leads us to a unique leaf node. The label ¢ of
this leaf node is then the class assigned to instance § by the
decision graph (that is, instance 0 belongs to class c).



Amcdum

Interview=fail

Figure 2: A complete reason constructed by Proposition 7
for the decision graph in Figure 1 and instance SAT < 1450,
GPA=medium, Essay=fail, Interview=fail. This complete
reason is in the form of a monotone, VV-decomposable NNF.

We next provide a closed-form NNF that captures the in-
stances belonging to some class c in a decision graph.

Definition 3. The NNF for a decision graph T and class ¢
is denoted AT and defined inductively as follows:

T if T has class c
A°[T] = 1 if T has class ¢ # ¢

/\j (A°[T;] vV Vmiesj x;) if T has edges i>T]

Proposition 6. For decision graph T, class c and instance
d, we have § |= A°[T iff T assigns class c to instance 6.

This NNF is positive and can be constructed in linear time
but is not VV-decomposable: The disjuncts in \/wj ¢s, T; share

variables and variable X will appear in A°[Tj] if tested again
in graph 7. Yet, this NNF is tractable for universal quan-
tification as revealed in the proof of the next result, which
provides closed-form complete reasons for decision graphs.

Proposition 7. Let T be a decision graph, § be an instance
in class ¢ and 6| X| be the state of variable X in instance ).
The complete reason Y6 - A°[T] is given by the NNF:

T if T has class c
[T = 1 if T has class cxyésg )
N, T[TV 4;)  if T has edges — 5Ty

where (; = 0[X] if 6[X] € Sk, for some k # j, else £; = L.

Consider the decision graph in Figure 1 and an applicant
who scored < 1450 on the SAT, had a medium GPA and did
not pass their essay or interview. This applicant is rejected
by the classifier and the complete reason for the decision, as
constructed by Proposition 7, is shown in Figure 2.
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Figure 3: A decision tree with continuous variables learned
using weka (left) and its discretization (right).

Proposition 8. Let T be a decision graph and 6 be an in-
stance in class c. The complete reason Yo - A°[T in Equa-
tion 1 is an NNF that is monotone and V-decomposable.

Even though we are working with decision graphs that
include discrete variables and multiple classes, we get com-
plete reasons in the form of monotone NNFs, which are ef-
fectively Boolean NNFs. This will simplify the computation
of necessary and sufficient reasons in later sections, as it al-
lows us to avoid certain complications that can arise when
binarizing discrete variables; see, e.g., (Choi et al. 2020).

Numeric Features

Suppose we have a continuous variable X that is being
tested at node 7" in a decision graph. The test will have
the form X < +¢;, where ¢; is a threshold in (—oo, 00).
Node T will then have two outgoing edges, one is fol-
lowed when X < ¢; (high edge) and the other is fol-
lowed when X > ¢; (low edge); see Figure 3. Suppose
now that t1,...,t, is the set of all thresholds for vari-
able X in the decision graph and assume that these thresh-
olds are in increasing order. We can then treat variable
X as a discrete variable with the following n + 1 states:
(—OO, tl], (tl, tg], ey (tnfl, tn], (tn, OO) If variable X is
being tested first at node 7', we label the high edge of
node T' with states (—oo,t1], (t1,t2], ..., (ti—1,t;] and its
low edge with states (t;, t;1], ..., (tn—1,tn], (tn, 00). Con-
sider Figure 3 (left). Variable “petalwidth” (W) has three
thresholds 0.6, 1.5, 1.7, leading to four discrete states Sy =
(—00,0.6], (0.6,1.5], (1.5,1.7], (1.7, 00). Variable “petal-
length” (L) has one threshold 4.9, leading to two discrete
states Sg, = (—00,4.9], (4.9, 00). Variable W is tested three
times in the decision tree. The first test (W < 0.6) splits
states Sy into S; = (—00, 0.6] for the high edge and S =
(0.6,1.5], (1.5,1.7], (1.7, 00) for the low edge. The second
test (W < 1.7) splits Sy into So; = (0.6,1.5], (1.5, 1.7] for
the high edge and Soo = (1.7, 00) for the low edge. The
third and final test (W < 1.5) splits states So; into (0.6, 1.5]
and (1.5, 1.7]. The resulting decision tree with discrete vari-
ables does not satisfy the test-once property but does satisfy



the weak test-once property as shown in Figure 3(right).

Consider now instance §; : W = 0.8, L. = 5.3 which is
classified as “Iris-virginica” by the decision tree with con-
tinuous variables (77). We can view this instance as the dis-
crete instance d2 : W = (0.6,1.5],L = (4.9,00) since
0.8 € (0.6,1.5] and 5.3 € (4.9, 00). The decision tree with
discrete variables (75) will also classify instance - as “Iris-
virginica.” A continuous instance and its corresponding dis-
crete instance will be classified identically by decision trees
T and T5 because 7 cannot discriminate continuous val-
ues that belong to the same interval. Finally, to generate the
complete reason for instance 41, we compute Vo - A¢[Th]
using Proposition 7 where c is class “Iris-virginica.”

Further Extensions

The closed-form complete reason in Proposition 7 applies
directly to Free Binary Decision Diagrams (FBDDs) (Ger-
gov and Meinel 1994) and Ordered Binary Decision Di-
agrams (OBDDs) (Bryant 1986) as they are special cases
of decision graphs. FBDDs use binary variables and binary
classes (T and ). OBDDs are a subset of FBDDs which
test variables in the same order along any path from the root
to a leaf. We can similarly obtain closed forms for the com-
plete reasons of Sentential Decision Diagrams (SDDs) (Dar-
wiche 2011), which test on formulas (sentences) instead of
variables. This is possible since given an SDD for A we
can obtain an SDD for —A in linear time. An SDD A is
an A-decomposable NNF that represents instances for class
T. The SDD for —A is also an A-decomposable NNF but
represents instances for class L. If we negate A and —A
using deMorgan’s law, we obtain V-decomposable NNFs
for classes L and T, respectively. This allows us to obtain
a closed-form, monotone, V-decomposable complete rea-
son for any instance using universal quantification. (Dar-
wiche and Marquis 2021) showed that an SDD can be uni-
versally quantified in linear time. Earlier, (Darwiche and
Hirth 2020) showed that Decision-DNNFs (Huang and Dar-
wiche 2007) can be universally quantified in linear time
as well.? Decision-DNNFs cannot be negated efficiently so
they do not permit closed-form complete reasons unless we
have Decision-DNNFs for classes T and L. While decision
tree classifiers are normally learned from data, classifiers
such as OBDDs and SDDs are compiled from other classi-
fiers like Bayesian/neural networks and random forests; see,
e.g., (Shih, Choi, and Darwiche 2019; Shi et al. 2020; Choi
et al. 2020). The relative succinctness of these representa-
tions of classifiers has been well studied. FBDDs are a sub-
set of Decision-DNNFs and there is a quasipolynomial sim-
ulation of Decision-DNNFs by equivalent FBDDs (Beame
et al. 2013). SDDs and FBDDs are not comparable (Beame
and Liew 2015; Bollig and Buttkus 2019) so SDDs and
Decision-DNNFs are not comparable either. SDDs are ex-
ponentially more succinct than OBDDs (Bova 2016).

3(Darwiche and Hirth 2020) introduced two linear-time oper-
ations on Decision-DNNFs: consensus and filtering. These opera-
tions implement universal literal quantification as shown in (Dar-
wiche and Marquis 2021). Decision-DNNFs are A-decomposable
NNFs in which disjunctions have the form (z A ) V (Z A ).
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Necessary and Sufficient Reasons

As mentioned earlier, the prime implicants of a complete
reason can be interpreted as sufficient reasons for the deci-
sion. We next show that the prime implicates of a complete
reason can be interpreted as necessary reasons for the de-
cision and correspond to contrastive explanations (Ignatiev
et al. 2020). We first provide further insights into complete
reasons which will help in justifying this interpretation.

Definition 4. Instances 6, and o are ‘congruent’ iff 51 N
d2 | A for some class formula A. We also say in this case
that the decisions on instances 61 and d are congruent.

If instances 01 and Jo are congruent, they must belong to
the same class since 61 = A and 62 = A so they are decided
similarly. Moreover, their common characteristics §; Nds are
sufficient to justify the decision. That is, the decisions on
them are equal and have a common justification.

Proposition 9. Let V6 - A be the complete reason for the
decision on instance 0. Then instance §* is congruent to in-

stance 0 iff 0* = V6 - A.

Hence, the complete reason Vé - A captures all, and only,
instances that are congruent to instance §. The complete rea-
son does not capture all instances that are decided similarly
to J since some of these instances may be decided that way
for a different reason (the decisions are not congruent).

Consider the class formula A = Z1(xo + 41)(71 + 21)
over ternary variables X, Y and Z. The instance § = zoy221
is decided positively by this formula (6 = A) and the com-
plete reason for this decision is Vo, yo, 21 - A = 22(y2+21).
There are four other instances that satisfy this complete rea-
SOoN, ToYs22, T2Y223, T2Y121 and T2Y3z1- All are decided
positively by A and the states each share with instance § jus-
tify the decision. Instance x3ys2; is also decided positively
by A but for a different reason: the states ys2; it shares with
instance d do not justify the decision, y221 = A. Hence, this
instance is not captured by the complete reason for §.

Implicants and Implicates as Reasons

We next review the interpretation of prime implicants as suf-
ficient reasons and discuss the interpretation of prime impli-
cates as necessary reasons for a decision. We will represent
these notions by sets of literals, which are interpreted as con-
junctions for prime implicants (terms) and as disjunctions
for prime implicates (clauses).

Proposition 10. The prime implicants and prime implicates
of a complete reason N6 - A are subsets of instance 9.

A prime implicant o of the complete reason V§ - A
can be viewed as a sufficient reason for the underly-
ing decision as it is a minimal subset of instance § that
is guaranteed to sustain the decision, congruently. If we
change any part of the instance but for o, the decision
will stick and for a common reason since the new and
old instances are congruent. Consider the complete rea-
son in Figure 2 which corresponds to a reject decision on
the instance SAT < 1450, GPA=medium, Essay=fail, In-
terview=fail. There are two prime implicants for this com-
plete reason: {SAT < 1450, GPA=medium, Interview=fail }



and {Essay=fail, Interview=fail}. Each of these prime im-
plicants is a minimal subset of the instance that is sufficient
to trigger the reject decision.

A prime implicate o of the complete reason V4 - A can
be viewed as a necessary reason for the underlying deci-
sion as it is a minimal subset of the instance that is es-
sential for sustaining a congruent decision. If we change
all states in o, the decision on the new instance will be
different or will be made for a different reason since the
new and old instances will not be congruent (we provide a
stronger semantics later). Consider again the complete rea-
son in Figure 2 and the corresponding instance and reject
decision. There are three prime implicates for this com-
plete reason: {Interview=fail}, {SAT < 1450, Essay=fail}
and {GPA=medium, Essay=fail}. Changing Interview to
pass will change the decision. Changing SAT to > 1450 and
Essay to pass will also change the decision. Since GPA is
a ternary variable, there are two ways to change its value.
If we change GPA and Essay to high and pass, respectively,
the decision will change. But if we change these features
to low and pass, respectively, the decision will not change
but the new instance (SAT < 1450, GPA=low, Essay=pass,
Interview=fail) will not be congruent with the original in-
stance (SAT < 1450, GPA=medium, Essay=fail, Inter-
view=fail). That is, the common characteristics of these in-
stances {SAT < 1450, Interview=fail} cannot on their own
justify the reject decision.

For yet another example, consider again class formula
A = Z1(xo + 71)(§1 + 21) over ternary variables X, Y and
Z. The complete reason for positive instance § = xay221
isT' = V§- A = 23(ya + 21). The prime implicants of T
are xoys and xo21, which are the sufficient reasons for the
decision. If we change instance ¢ while keeping one of these
reasons intact, the decision sticks. The prime implicates of
I' are x5 and ys + 21, which are the necessary reasons for
the decision. If we violate one of these reasons, the decision
will be different or made for a different reason. Changing
instance  to xoy; 23 violates the necessary reason yo + 21,
which leads to a negative decision. Changing the instance to
0* = x3y22, violates the necessary reason xo. The decision
remains positive though but for a different reason than why &
is positive. That is, the common characteristics dN6* = yo21
do not justify the decision on these instances, y221 = A.

More on Necessity

We next show that necessary reasons correspond to basic
contrastive explanations as formalized in (Ignatiev et al.
2020) using the following definition (modulo notation).

Definition 5. Let 0 be an instance decided positively by
class formula A. A ‘contrastive explanation’ of this decision
is a minimal subset v of instance 0 such that § \ v = A.

That is, it is possible to change the decision on instance §
by only changing the states in . Moreover, we must change
all states in v for the decision to change.

Proposition 11. Let 6 be an instance decided positively by
class formula AA. Then ~y is a prime implicate of the complete
reason Y6 - A iff v is a contrastive explanation.
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Figure 4: (a) decision tree (b) complete reason for “why
Toy1 1S ¢o” (c) complete reason for “why xsy; is not c3.”

This correspondence is perhaps not too surprising given
the duality between abductive and contrastive explana-
tions (Ignatiev et al. 2020) and the classical duality be-
tween prime implicants and prime implicates. However, it
does provide further insights into contrastive explanations:
changing the states of a contrastive explanation leads to a
non-congruent decision. It also provides further insights on
the necessity of prime implicates: while violating a neces-
sary reason will only lead to an instance that is not congru-
ent (decided differently or for a different reason), there must
exist at least one violation of each necessary reason which
is guaranteed to change the decision. This follows directly
from Definition 5. If the variables of a necessary reason are
all binary, there is only one way to violate the reason (by
negating each variable in the reason). In this case, violating
the necessary reason is guaranteed to change the decision.

For an example, let us revisit the complete reason
in Figure 2 and the corresponding instance and re-
ject decision. This decision has three necessary rea-
sons: {Interview=fail}, {SAT < 1450, Essay=fail} and
{GPA=medium, Essay=fail}. There is only one way to vi-
olate each of the first two reasons, and each violation leads
to reversing the decision as we saw earlier. There are two
ways to violate the third necessary reason. One of these vi-
olations (GPA=high, Essay=pass) reverses the decision but
the other violation (GPA=low, Essay=pass) keeps the reject
decision intact (but for a different reason).

In summary, a necessary reason (contrastive explanation)
identifies a minimal subset of the instance which is guaran-
teed to change the decision if that subset is altered properly.
The minimality condition ensures that we must alter every
variable in a necessary reason to change the decision, but it
does not specify how to alter it (except for binary variables).
We will revisit this distinction when we discuss counterfac-
tual explanations (Audemard, Koriche, and Marquis 2020).

Targeting a Particular Class

Beyond basic contrastive explanations, (Ignatiev et al. 2020)
discussed targeted contrastive explanations which aim to
change the instance class from c to some class c*; see (Lip-
ton 1990; Miller 2019). This notion is particularly relevant
to multi-class classifiers as it reduces to basic contrastive ex-
planations when the classifier has only two classes. Targeted
contrastive explanations can be obtained using the complete
reason for why the instance was classified as not ¢* (that is,



a class other than ¢*). This complete reason can be obtained
using a slight modification of Equation 1 where we modify
the first two conditions as follows:

T if T has class ¢’ # c*
[T = L if T has class ¢* 2)

(TC[T]V £;) if T has edges ———55 T
i J J g J

The prime implicates for this complete reason (i.e., neces-
sary reasons) will then identify minimal subsets of the in-
stance that lead to the targeted class c*, if altered properly.

Consider the decision tree in Figure 4(a) which has two
binary features X and Y and three classes ci,ca, c3. The
instance xoy; is classified as co. The complete reason for this
decision, as computed by Equation 1, is shown in Figure 4(b)
and has two necessary reasons zo and y;. If we violate the
first necessary reason (x2 — x1), the class changes to cp. If
we violate the second necessary reason (y; — =), the class
changes to c3. Suppose now we wish to change the class
co of this instance particularly to c3. The complete reason
for “why not c3,” as computed by Equation 2, is shown in
Figure 4(c) and has only one necessary reason, y;. Violating
this necessary reason is guaranteed to change the class to cs.

(Audemard, Koriche, and Marquis 2020) discussed the
complexity of computing the related notion of counterfac-
tual explanations which are defined as follows. Given an in-
stance ¢ in class ¢, find an instance * in a different class c*
that is as close as possible to instance § with respect to the
hamming distance. In other words, instance 6* must maxi-
mize the number of characteristics it shares with instance 4.
Consider now the characteristics y of instance § that do not
appear in instance §* (y = 0\ 0*). Changing these character-
istics to y* = §*\ ¢ will change the class from ¢ to ¢*. Hence,
characteristics ~y are a length-minimal subset of instance ¢
which, if changed properly, will guarantee a change from
class c to class c*. Every characteristic of v must be changed
to ensure this class change, otherwise * would not be a
counterfactual explanation. Moreover, when the features are
binary, there is only one way to change the characteristics
~ so the class will change from c to ¢*; that is, by flipping
every characteristic in +y to yield v*. In this case, counterfac-
tual explanations are in one-to-one correspondence with the
shortest necessary reasons which we discuss next.

Computing Shortest Explanations

A complete reason may have too many prime implicants and
implicates. We will therefore provide algorithms for com-
puting the shortest implicants and implicates (which must be
prime) for monotone, VV-decomposable NNFs. As discussed
earlier, we can in linear time obtain complete reasons in this
form for decision graphs and SDDs, which include FBDDs,
OBDDs and decision trees as special cases.

Shortest Necessary Reasons. This will be an output
polynomial algorithm that is based on three (conceptual)
passes on the complete reason which we describe next.

Definition 6. The ‘implicate minimum length (IML)’ of a
valid formula is co. For non-valid formulas, it is the mini-
mum length attained by any implicate of the formula.

The first pass computes the implicate minimum length.

Algorithm 1: Shortest Necessary Reasons (SNRs)

Input: monotone and V-decomposable NNF A with no constants
Output: all shortest implicates of NNF A
1: function SNR(A) > CACHE initialized to NIL
2: if CACHE(A) # NIL then return CACHE(A)
3 else if A = z; then snr < {{z;}}
4: elseif A = a1 V...V ay, then
5 snr <= SNR(a1) X ... X SNR(aw)
6.
7
8
9

else A=ai1 A... Nay

SIr <= UIML(ai):IML(A) SNR(v;)
CACHE(A)  snr
return snr

Algorithm 2: Shortest Sufficient Reasons (SSRs)

Input: monotone and V-decomposable NNF A with no constants
Output: all shortest implicants of NNF A
1: function SSR(A) > CACHE initialized to NIL

2: k<« 0

3: repeat

4: ssr = IMP(Ak,{})

5: k< k+1

6: until ssr # {}

7: return ssr

8: function IMP(A, k, o) > computes k-implicants for Ao
9: if CACHE(A, k, o) # NIL then return CACHE(A, k, o)
10: Y+« {}

11: if A = x then

12: if z € o then ¥ « {{}} > Ao valid
13: elseif £ > 1 then X + {{z}}

14: elseif A =a; V...V a, then

15: for ©; < iMP(ay, k,0) do

16: iftY; # {{}} thenX <~ X UX; > as|o not valid
17: else ¥ < {{}}; break > Alo valid
18: else A=a1 A... Nay

19: for o1 € IMP(1,k,0) do
20: for oz € IMP(a2 A ... Aan, k —|o1],0Uor1) do
21: Y + REMOVE_SUBSUMED(X U {o1 U o2})

22: CACHE(Ak,0) + X
23: return

Proposition 12. The IML of a monotone, V-decomposable
NNF is computed as follows: IML(T) = oo, IML(L) = 0,
IML(z;) = 1, IML(aV ) = IML(«) + IML(8) and IML(a A
B) = min(IML(«), IML(3)).

The second pass prunes the NNF using the IML of nodes.

Proposition 13. Let PRUNE(A) be the NNF obtained from
monotone, \-decomposable NNF A by dropping o; from
conjunctions o = a1 A ... A oy, if IML(;) > IML(«).
Then PRUNE(A) is a monotone, \V-decomposable NNF and
its prime implicates are the shortest implicates of A.

The third pass computes the prime implicates of NNF
PRUNE(A) in output polynomial time. Algorithm 1 imple-
ments the second and third passes assuming the first, linear-
time pass has been performed. It represents an implicate by
a set of literals and uses the Cartesian product operation on
sets of implicates: S7 X So = {o1 U0y | 01 € S1,02 € S}
Algorithm 1 applies the second pass implicitly by excluding
conjuncts on Line 7. This is the standard procedure for com-



puting the prime implicates of a monotone NNF, but with no
subsumption checking which is critical for its complexity. In
the standard procedure, one must ensure that the implicates
computed on Lines 5 and 7 are reduced: no implicate o
subsumes another o5 (o1 C 0).* Since NNF PRUNE(A) is
V-decomposable, the disjuncts o, . .., a, on Line 5 do not
share variables. Hence, if every SNR(«;) is reduced, their
Cartesian product is reduced. Moreover, due to pruning in
the second pass, the implicates SNR(c;) computed on Line 7
all have the same length so no subsumption is possible.

Proposition 14. Let A be a monotone, V-decomposable
NNF with M shortest implicates, N nodes and E edges. The
time complexity of SNR(A) in Algorithm I is O(M - E) and
its space complexity is O(M - N).

We obtain a tighter complexity if we apply Algorithm 1
to the closed-form complete reasons of decision trees given
by Proposition 7, due to the following bound on the number
of prime implicates (a superset of shortest implicates).

Proposition 15. For a decision tree, the complete reason for
an instance in class c has < L prime implicates, where L is
the number of leaves in the tree labeled with a class ¢ # c.

The complete reason for a decision tree 7' has O(|T|)
nodes and edges, where |T| is the decision tree size (see
Proposition 7). The time and space complexity of Algo-
rithm 1 is then O(|T'| - L) for decision trees.

(Huang et al. 2021b) showed that the number of con-
trastive explanations is linear in the decision tree size.
Proposition 15 tightens this result by providing a more spe-
cific bound. For a decision 7' with binary variables and bi-
nary classes, (Audemard et al. 2021) showed that the set of
all contrastive explanations can be computed in time poly-
nomial in |T'| + n, where n is the number of variables. Al-
gorithm 1 comes with a tighter complexity for the compu-
tation of shortest contrastive explanations for decision trees
and applies to multi-class decision trees with discrete fea-
tures. Another related complexity result is that counterfac-
tual explanations, as discussed earlier, can be enumerated
with polynomial delay if the classifier satisfies some condi-
tions as stated in (Audemard, Koriche, and Marquis 2020).

We finally observe that if an NNF is monotone and A-
decomposable, then one can develop a dual of Algorithm 1
for computing the shortest prime implicants of the NNF.

Shortest Sufficient Reasons We next present Algo-
rithm 2 for computing the shortest implicants of monotone,
V-decomposable NNFs which is a hard task. For decision
trees, the problem of deciding whether there exists a suffi-
cient reason of length < k is NP-complete (Barcel6 et al.
2020). Since decision trees have closed-form complete rea-
sons that are monotone and V-decomposable, computing the
shortest implicants for this class of NNFs is hard. (Aude-
mard et al. 2021) showed that the number of shortest suffi-
cient reasons for decision trees can be exponential and pro-
vided an incremental algorithm for computing the shortest

*One can compute the prime implicates of a monotone NNF
by simply converting it to a CNF and then removing subsumed
clauses. Similarly, one can compute the prime implicants of a
monotone NNF by converting it to a DNF and removing subsumed
terms. See, e.g., (Crama and Hammer 2011).
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sufficient reasons for decision trees with binary variables
and binary classes, based on a reduction to the PARTIAL
MAXSAT problem. Algorithm 2 has a broader scope, does
not require a reduction and is based on two key techniques.
The first technique is to compute all unsubsumed impli-
cants of length < k, called k-implicants, starting with k£ = 0.
If no implicants are found, £ is incremented and the pro-
cess is repeated. The second technique relates to computing
the k-implicants of a conjunction o A 3. If we have the k-
implicants S for « and the k-implicants R for 5, we can
compute the Cartesian product S x R and keep unsubsumed
implicants of length < k. Algorithm 2 does something more
refined. It first computes the k-implicants .S for a. For each
implicant o € S, it then computes and accumulates the k'-
implicants for 3|c where ¥’ = k — |o|. These techniques
control the number of generated k-implicants at each NNF
node (smaller % leads to fewer k-implicants). Our imple-
mented caching scheme on Lines 9 & 22 exploits the fol-
lowing properties. If the k-implicants for A|o are {{}}, then
these are also its j-implicants for all j. Further, if we cached
the k-implicants for A|o, then we can use them to retrieve its
j-implicants for any j < k by selecting implicants of length
< j. We empirically evaluate Algorithms 1 & 2 next.
Empirical Evaluation. Table 1 depicts an empirical eval-
uation on decision trees learned from OpenML datasets
(Vanschoren et al. 2013) and binary decision graphs com-
piled from Bayesian network classifiers (Shih, Choi, and
Darwiche 2018a, 2019). The decision trees were learned
by WEKA (Frank et al. 2010) using python-weka-wrapper3
available at pypi.org. We used WEKA’s J48 classifier with
default settings, which learns pruned C4.5 decision trees
with numeric and nominal features (Quinlan 1993). Each
dataset was split using WEKA into training (85%) and testing
(15%) data. We aimed for OpenML datasets with more than
100 features since many smaller datasets we tried were very
easy, but we kept a few smaller ones since they are com-
monly reported on (adult, compas, spambase). Some of the
learned decision trees had significantly fewer variables than
the corresponding datasets (e.g., gisette has 5000 features
but the learned decision tree has 111). The decision graphs
we used are the reportedly largest ones compiled by (Shih,
Choi, and Darwiche 2018a, 2019). For each decision tree,
we computed reasons for decisions on 1000 instances sam-
pled from testing data (or all testing data if smaller than
1000). We tried random instances but they were much eas-
ier. For each decision graph, we computed complete reasons
for 1000 random instances (there is no corresponding data).
The total number of instances for the fifteen benchmarks was
13963. We did not report the time for computing a complete
reason as this is a closed form with linear size (Equation 1).
We compared four algorithms: SNR (Algorithm 1), NR
(standard algorithm for computing prime implicates of a
monotone NNF but with no subsumption checking at V-
nodes since the input NNF is V-decomposable),” SSR (Algo-

>More precisely, NR is Algorithm 1 with two exceptions. First,
the NNF is not pruned on Line 7 so the union is over all a;. Sec-
ond, subsumption checking is applied after Line 7 to ensure that all
computed implicates are subset-minimal.



benchmark decision tree/graph properties SR SSR NR SNR

name examples nodes num nom classes card acc count time count time count time count time

adult 48842 726 6 7 2 24 860 2.8 0.0005 1.4 0.0007 5.6 0.0004 2.9 0.0003
compas 5278 55 5 3 2 8 712 1.7 0.0002 1.1 0.0003 2.9 0.0002 1.8 0.0001
fash-mnist 70000 6681 734 0 10 29 80.8 1851.6 3.7925%7 7.5 0.0348% 104.8 0.0123 12.4 0.0008
gisette 7000 231 111 0 2 3 939 32884 6.236148¢ 955 0.0545 31.8 0.0013 7.4 0.0004
isolet 7797 645 201 0 26 7 839 8.9 0.0008 1.5 0.0026 17.7  0.0006 10.1  0.0003
lals.we 3204 457 201 0 6 3 732 461.1 1.822736 7.7 0.0368 42.1 0.0038 19.3  0.0004
mnist-784 70000 4365 477 0 10 18 883 18333 4.6191622 5.5 0.0235'  103.9 0.0099 11.5 0.0008
nomao 34465 932 61 25 2 17 953 1640.8 4.9576'5¢ 24 0.0180 38.6  0.0018 4.3 0.0005
ohscal.wc 11162 1761 582 0 10 6 709 787.1 2.0714?25 862 0.3018%'  59.9 0.0090 23.7  0.0006
spambase 4601 189 37 0 2 8 915 35.8 0.0029 4.6 0.0060 16.9 0.0007 4.1 0.0003
andes — 5454 — 24 2 2 — 78.8 0.1660 2.6 0.0295 58.0 0.0300 4.5 0.0055
emdec6g30 — 4154 — 30 2 2 — 11.6  0.0362 1.8 0.0445 13.6 0.0184 2.9 0.0048
math-skills — 3693629 — 46 2 2 — 9.6 0.28952%6 7.6 0.0261 9.9 0427118 3.4 0.0290
mooring — 14468 — 22 2 2 — 1454 2399114 20.9 3.99517 2163 0.7678! 16.2 0.0189
tccde38 — 22508 — 38 2 2 — 14.4 0.1370 2.6 0.0155 104 0.0632 2.0 0.0103

Table 1: Evaluating Algorithms 1 & 2. Times in secs. First ten entries are decision trees. Last five entries are decision graphs.

rithm 2) and SR (dual of NR). Each instance had a timeout of
60 seconds. In Table 1, nodes, num, nom, classes; card and
acc stand for number of nodes, numeric features, nominal
features, classes; maximum cardinality of variables and ac-
curacy. Count and time are averages over instances that both
SR/SSR (NR/SNR) finished. The bolded exponent of time is
the number of instances that timed out (not reported if zero).
The supplementary material contains further statistics such
as stdev, mean and max. We used a Python implementation
on a dual Intel(R) Xeon E5-2670 CPUs running at 2.60GHz
and 256GB RAM. As revealed by Table 1, SSR is quite ef-
fective. Its average running time is normally in milliseconds,
it timed out on only 37 instances and can be two orders of
magnitude faster than SR which timed out on 2222 instances.
SNR is also much faster than NR but the latter is also very ef-
fective on decision trees (see Proposition 15) but timed out
on 19 decision graph instances. All algorithms are quite ef-
fective on the easier benchmarks.

Conclusion

We studied the computation of complete reasons for multi-
class classifiers with nominal and numeric features. We de-
rived closed forms for the complete reasons of decision trees
and graphs in the form of monotone, VV-decomposable NNFs
and showed how similar forms can be derived for SDDs. We
further established a correspondence between the prime im-
plicates of complete reasons and contrastive explanations.
We then presented an output polynomial algorithm for enu-
merating the shortest implicates (shortest necessary reasons)
for complete reasons in the above form. We also presented
a simple algorithm for enumerating the shortest implicants
(shortest sufficient reasons) which appears to be effective
based on an empirical evaluation over fifteen datasets.

Acknowledgements

This work has been partially supported by NSF grant #ISS-
1910317 and ONR grant #N00014-18-1-2561.

5590

References
Audemard, G.; Bellart, S.; Bounia, L.; Koriche,
F; Lagniez, J.-M.; and Marquis, P. 2021. On
the Explanatory Power of Decision Trees. CoRR,

https://arxiv.org/pdf/2108.05266.pdf.

Audemard, G.; Koriche, F.; and Marquis, P. 2020. On
Tractable XAI Queries based on Compiled Representations.
In KR, 838-849.

Barceld, P.; Monet, M.; Pérez, J.; and Subercaseaux, B.
2020. Model Interpretability through the lens of Compu-
tational Complexity. In NeurIPS.

Beame, P.; Li, J.; Roy, S.; and Suciu, D. 2013. Lower
Bounds for Exact Model Counting and Applications in Prob-
abilistic Databases. In UAI. AUAI Press.

Beame, P.; and Liew, V. 2015. New Limits for Knowledge
Compilation and Applications to Exact Model Counting. In
UAI, 131-140. AUAI Press.

Bollig, B.; and Buttkus, M. 2019. On the Relative Suc-
cinctness of Sentential Decision Diagrams. Theory Comput.
Syst., 63(6): 1250-1277.

Bova, S. 2016. SDDs Are Exponentially More Succinct than
OBDDs. In AAAI 929-935. AAAI Press.

Bryant, R. E. 1986. Graph-Based Algorithms for Boolean
Function Manipulation. [EEE Trans. Computers, 35(8):
677-691.

Chan, H.; and Darwiche, A. 2003. Reasoning about
Bayesian Network Classifiers. In UAI, 107-115. Morgan
Kaufmann.

Choi, A.; Shih, A.; Goyanka, A.; and Darwiche, A. 2020.
On Symbolically Encoding the Behavior of Random Forests.
CoRR, abs/2007.01493.

Choi, A.; Xue, Y.; and Darwiche, A. 2012. Same-decision
probability: A confidence measure for threshold-based deci-
sions. Int. J. Approx. Reason., 53(9): 1415-1428.

Crama, Y.; and Hammer, P. L. 2011. Boolean Functions -
Theory, Algorithms, and Applications, volume 142 of Ency-



clopedia of mathematics and its applications. Cambridge
University Press.

Darwiche, A. 2011. SDD: A New Canonical Representa-
tion of Propositional Knowledge Bases. In IJCAI, 819-826.
IJICAI/AAAL

Darwiche, A.; and Hirth, A. 2020. On the Reasons Behind
Decisions. In ECAI, volume 325 of Frontiers in Artificial
Intelligence and Applications, 712-720. 10S Press.

Darwiche, A.; and Ji, C. 2022. On the Computation
of Necessary and Sufficient Explanations. CoRR, ab-
s/abs/2203.10451.

Darwiche, A.; and Marquis, P. 2021. On Quantifying Liter-
als in Boolean Logic and Its Applications to Explainable Al.
J. Artif. Intell. Res., 72: 285-328.

Frank, E.; Hall, M. A.; Holmes, G.; Kirkby, R.; Pfahringer,
B.; Witten, I. H.; and Trigg, L. 2010. Weka-A Machine
Learning Workbench for Data Mining. In Data Mining and
Knowledge Discovery Handbook, 1269-1277. Springer.

Garfinkel, A. 1982. Forms of Explanation: Rethinking the
Questions in Social Theory. British Journal for the Philoso-
phy of Science, 33(4): 438-441.

Gergov, J.; and Meinel, C. 1994. Efficient Boolean Manip-
ulation With OBDD’s can be Extended to FBDD’s. IEEE
Trans. Computers, 43(10): 1197-12009.

Goyal, Y.; Wu, Z.; Ernst, J.; Batra, D.; Parikh, D.; and Lee,
S. 2019. Counterfactual Visual Explanations. In Chaudhuri,
K.; and Salakhutdinov, R., eds., Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, 2376-2384.
PMLR.

Huang, J.; and Darwiche, A. 2007. The Language of Search.
J. Artif. Intell. Res., 29: 191-219.

Huang, X.; Izza, Y.; Ignatiev, A.; Cooper, M. C.; Asher,
N.; and Marques-Silva, J. 2021a. Efficient Explana-
tions for Knowledge Compilation Languages. CoRR,
abs/2107.01654.

Huang, X.; Izza, Y.; Ignatiev, A.; and Marques-Silva, J.
2021b. On Efficiently Explaining Graph-Based Classifiers.
CoRR, abs/2106.01350.

Ignatiev, A.; Narodytska, N.; Asher, N.; and Marques-Silva,
J. 2020. From Contrastive to Abductive Explanations and
Back Again. In AI*IA, volume 12414 of Lecture Notes in
Computer Science, 335-355. Springer.

Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019a.
Abduction-Based Explanations for Machine Learning Mod-
els. In Proceedings of the Thirty-Third Conference on Arti-
ficial Intelligence (AAAI), 1511-1519.

Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019b.
On Validating, Repairing and Refining Heuristic ML Expla-
nations. CoRR, abs/1907.02509.

Lewis, D. 1986. Causal Explanation. In Lewis, D., ed.,
Philosophical Papers Vol. Ii, 214-240. Oxford University
Press.

Lipton, P. 1990. Contrastive Explanation. Royal Institute of
Philosophy Supplement, 27: 247-266.

5591

Miller, T. 2019. Explanation in artificial intelligence: In-
sights from the social sciences. Artif. Intell., 267: 1-38.

Mittelstadt, B.; Russell, C.; and Wachter, S. 2019. Explain-
ing Explanations in Al. Proceedings of the Conference on
Fairness, Accountability, and Transparency.

Mothilal, R. K.; Sharma, A.; and Tan, C. 2020. Explaining
machine learning classifiers through diverse counterfactual
explanations. Proceedings of the 2020 Conference on Fair-
ness, Accountability, and Transparency.

Narodytska, N.; Kasiviswanathan, S. P.; Ryzhyk, L.; Sagiv,
M.; and Walsh, T. 2018. Verifying Properties of Binarized
Deep Neural Networks. In Proc. of AAAI’18, 6615-6624.

Quinlan, R. 1993. C4.5: Programs for Machine Learning.
San Mateo, CA: Morgan Kaufmann Publishers.

Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ”Why
Should I Trust You?”: Explaining the Predictions of Any
Classifier. In KDD, 1135-1144. ACM.

Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2018. Anchors:
High-Precision Model-Agnostic Explanations. In AAAI,
1527-1535. AAAI Press.

Shi, W.; Shih, A.; Darwiche, A.; and Choi, A. 2020. On
Tractable Representations of Binary Neural Networks. In
KR, 882-892.

Shih, A.; Choi, A.; and Darwiche, A. 2018a. Formal Verifi-
cation of Bayesian Network Classifiers. In PGM, volume 72
of Proceedings of Machine Learning Research, 427-438.
PMLR.

Shih, A.; Choi, A.; and Darwiche, A. 2018b. A Symbolic
Approach to Explaining Bayesian Network Classifiers. In
1JCAI, 5103-5111. ijcai.org.

Shih, A.; Choi, A.; and Darwiche, A. 2019. Compiling
Bayesian Network Classifiers into Decision Graphs. In
AAAI, 7966-7974. AAAI Press.

Temple, D. 1988. The contrast theory of why-questions.
Philosophy of Science, 55(1): 141-151.

van der Waa, J.; Robeer, M.; van Diggelen, J.; Brinkhuis,
M.; and Neerincx, M. 2018. Contrastive explanations with
local foil trees. arXiv preprint arXiv:1806.07470.
Vanschoren, J.; van Rijn, J. N.; Bischl, B.; and Torgo, L.
2013. OpenML: Networked Science in Machine Learning.
SIGKDD Explorations, 15(2): 49-60.

Verma, S.; Dickerson, J.; and Hines, K. 2020. Counterfac-
tual explanations for machine learning: A review. arXiv
preprint arXiv:2010.10596.

Wachter, S.; Mittelstadt, B. D.; and Russell, C. 2017. Coun-
terfactual Explanations without Opening the Black Box: Au-
tomated Decisions and the GDPR. CoRR, abs/1711.00399.
Wang, E.; Khosravi, P.; and den Broeck, G. V. 2021. Prob-
abilistic Sufficient Explanations. In IJCAI 3082-3088. ij-
cai.org.



