
Lower Bounds on Intermediate Results in Bottom-Up Knowledge Compilation

Alexis de Colnet and Stefan Mengel
Univ. Artois, CNRS, Centre de Recherche en Informatique de Lens (CRIL), F-62300 Lens, France

{decolnet, mengel}@cril.fr

Abstract

Bottom-up knowledge compilation is a paradigm for gener-
ating representations of functions by iteratively conjoining
constraints using a so-called apply function. When the in-
put is not efficiently compilable into a language – generally a
class of circuits – because optimal compiled representations
are provably large, the problem is not the compilation algo-
rithm as much as the choice of a language too restrictive for
the input. In contrast, in this paper, we look at CNF formulas
for which very small circuits exists and look at the efficiency
of their bottom-up compilation in one of the most general
languages, namely that of structured decomposable negation
normal forms (str-DNNF). We prove that, while the inputs
have constant size representations as str-DNNF, any bottom-
up compilation in the general setting where conjunction and
structure modification are allowed takes exponential time and
space, since large intermediate results have to be produced.
This unconditionally proves that the inefficiency of bottom-
up compilation resides in the bottom-up paradigm itself.

Introduction
One of the main objectives of knowledge compilation is
transforming, or compiling, knowledge given as a CNF
formula into other representations, generally subclasses of
circuits in decomposable negation normal form (DNNF),
which allow for efficient reasoning (Darwiche 2001). There
are mainly two approaches to this: top-down compilation
roughly consists of remembering the trace of an exhaus-
tive backtracking algorithm exploring the whole solution
space (Huang and Darwiche 2005), while bottom-up com-
pilation iteratively conjoins representations of the clauses
of the input in DNNF. For the latter approach to work, one
needs an efficient so-called apply function which, given two
DNNF and a binary Boolean operation, computes a repre-
sentation of the function we get by applying the operation
on the two DNNF. The only known fragments of DNNF
that have such an efficient apply function for conjunctions
are so-called structured DNNF (str-DNNF) in which intu-
itively the variable occurrences in the DNNF must follow
a common tree structure called a vtree (Pipatsrisawat and
Darwiche 2008). As a consequence, in practice, bottom-
up knowledge compilation targets fragments of str-DNNF

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

such as SDD (Darwiche 2011; Choi and Darwiche 2013) or
OBDD (Bryant 1986; Somenzi 2009).

One inconvenience of bottom-up compilation that top-
down compilation does not have is that it may create in-
termediate results that are far bigger in size than the fi-
nal compiled form of the complete input. This was men-
tioned for OBDD e.g. in (Narodytska and Walsh 2007;
Huang and Darwiche 2004), and proved for specific bottom-
up algorithms compiling unsatisfiable CNF formulas into
OBDD in (Krajı́cek 2008; Tveretina, Sinz, and Zantema
2010; Friedman and Xu 2013). As remarked by these works,
large intermediate results are problematic because they may
lead to failed compilation due to memory outs or very long
runtime even for instances that have small representations.
The same problem occurs also for the state of the art SDD-
compiler of (Choi and Darwiche 2013), as can be verified
experimentally. To mitigate the problem of large intermedi-
ate results, Narodytska and Walsh (2007) introduce heuris-
tics for choosing an order in which to conjoin the clauses
to try to decrease the size of these intermediate OBDD and
show experimentally that these work well when compiling
certain configuration problems bottom-up.

In this paper, we show that having large intermediate re-
sults is unavoidable for certain formulas when compiling
them bottom-up, even when the final compiled form is of
constant size. This is true regardless of the order in which
the clauses are conjoined during compilation. We do this
by formalizing the bottom-up compilation process into str-
DNNF as a deduction process which only uses conjunctive
apply and changing of the vtree, also called restructuring, a
common operation in bottom-up compilation. We then show
that in this framework large intermediate results must occur,
even when compiling unsatisfiable formulas.

Informally stated, our main result is the following.
Theorem 1 (informal). There is a class of CNF formulas
that have constant size str-DNNF representations such that
any bottom-up compilation must produce intermediate str-
DNNF of exponential size.

Note that the result of Theorem 1 is unconditional and
does not depend on any unproven complexity assumptions.
Moreover, since str-DNNF encompass OBDD and SDD, it
is true for bottom-up compilation into these formats.

The formulas that we use to show Theorem 1 are so-
called Tseitin formulas which encode certain systems of

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

5564

equations over {0, 1} whose structure is given by an under-
lying graph. Tseitin formulas have played a major role in
the field of proof complexity, a subfield of theoretical com-
puter science that studies the complexity of refuting unsat-
isfiable formulas in different proof systems which are often
closely linked to practical SAT solvers, see e.g. (Buss and
Nordström 2021). In particular, Tseitin formulas have also
been studied when analyzing refutations by proof systems
based on different forms of branching programs which are
conceptually close to bottom-up compilation, see e.g. (Atse-
rias, Kolaitis, and Vardi 2004; Glinskih and Itsykson 2021;
Itsykson et al. 2020) for a small sample. Concretely, we here
use a recent result from (de Colnet and Mengel 2021) that
shows lower bounds on DNNF representations of satisfiable
Tseitin formulas. Our basic idea is to show that any bottom-
up compilation must essentially construct a DNNF repre-
sentation of certain sub-formulas of the input that by (de
Colnet and Mengel 2021) must be large. In fact, the result
of (de Colnet and Mengel 2021) is parameterized by the so-
called treewidth of the graph underlying the formula, where
treewidth is a well-known graph parameter measuring intu-
itively the treelikeness of a graph. Here, our lower bound is
parameterized in the same way, which requires the use of
some rather heavy machinery from structural graph theory
on the preservation of treewidth under graph partitions.

Preliminaries
A Boolean variable x is a variable taking its value in {0, 1}.
A literal is a variable x or its negation x. An assignment to a
set of variablesX is a mapping fromX to {0, 1}. A Boolean
function f on X is a mapping of the assignments to X to
{0, 1}. The satisfying assignments of f are the assignments
mapped to 1 by f . Two functions on X are equivalent, writ-
ten f ≡ g, when their satisfying assignments are the same.
WhenX is not specified, var (f) denotes the set of variables
of f . Given an assignment a to Y ⊆ X , the function f con-
ditioned on a, written f |a, is the function onX \Y obtained
from f after fixing all variables in Y to their values given
by a. As usual, the symbols ∨ and ∧ denote disjunction and
conjunction, respectively. A clause is a disjunction of liter-
als and a CNF formula (Conjunctive Normal Form) is a con-
junction of clauses. The set of clauses of a CNF formula F
is denoted by clause (F). We say that F ′ is a subformula of
F when clause (F ′) ⊆ clause (F). The formula F ′ is called
a proper subformula when the inclusion is strict.

Structured Decomposable Negation Normal Forms
A Boolean circuit Σ is a directed acyclic computation graph
without parallel edges, whose leaves are labeled by literals
or Boolean constants 0 or 1, and whose internal nodes are
labeled by Boolean operations. The size of Σ, denoted by
|Σ|, is its number of edges. The set of variables whose liter-
als label the leaves under a node s is written var (s). Each
node s computes a Boolean function on var (s) defined in
the obvious inductive way. The function computed by Σ is
defined as that computed by its roots.

A node s with successors s1, . . . , sk is called decompos-
able when var (si) ∩ var (sj) = ∅ holds for all i 6= j. A

Decomposable Negation Normal Form (short DNNF) for a
function f is a Boolean circuit computing f , whose internal
nodes are labeled with ∨ or ∧ and such that all ∧-nodes are
decomposable. The DNNF language is the class of DNNF
circuits. One can modify a DNNF in linear time without al-
tering the function it computes so that every internal node
has fan-in 2. So we assume that all DNNF in this paper have
only internal nodes with fan-in 2.

LetX be a finite set of Boolean variables. A vtree T forX
is a binary tree whose leaves are in bijection with X . For
t ∈ T , we denote by var (t) the set of variables correspond-
ing to the leaves under t. A structured DNNF (str-DNNF)
is a DNNF Σ equipped with a vtree T on its variables and a
mapping λ from the nodes of Σ to that of T such that:
1. for every∧-node swith successors s0 and s1, if λ(s) = t,

then t is an internal node of T and there are tl and tr
rooted under the two children of t such that λ(s0) = tl
and λ(s1) = tr

2. for every ∨-node s with successors s0 and s1, there is
λ(s) = λ(s0) = λ(s1)

3. for every s, var (s) ⊆ var (λ(s)) holds
Σ is said to be structured by T , or to respect the vtree T .
Given any vtree T on variables X , all Boolean functions on
X are computed by some str-DNNF respecting T : just write
the function in DNF (Disjunctive Normal Form) and see that
every term can be turned into a str-DNNF respecting T . We
remark that both SDD and OBDD are restricted forms of
str-DNNF (Darwiche and Marquis 2002; Darwiche 2011).

Enforcing structuredness for DNNF can in theory result in
a size blow up (Pipatsrisawat and Darwiche 2010), but it has
some very useful benefits. On the one hand, in certain frag-
ments it allows for canonicity which is often desirable (Van
den Broeck and Darwiche 2015). On the other hand, struc-
turedness is the only known property that yields efficient al-
gorithms for conjoining DNNF (Pipatsrisawat and Darwiche
2008): there is an algorithm Apply(Σ1,Σ2,∧) that, given
two str-DNNF Σ1 and Σ2 respecting the same vtree, returns
a str-DNNF equivalent to Σ1∧Σ2 with the same vtree as Σ1

and Σ2, and runs in time O(|Σ1| × |Σ2|). So, consider a sit-
uation in which the clauses of a CNF formula are split into
F1 and F2, and assume the str-DNNF Σ1 and Σ2 compute
F1 and F2, respectively, and respect the same vtree. Then
finding a str-DNNF that computes F is feasible in quadratic-
time as it boils down to running Apply(Σ1,Σ2,∧). This is
the key principle behind bottom-up compilation.

Bottom-Up Compilation
Let L be a compilation language like str-DNNF. We formal-
ize a bottom-up compilation of CNF formula F = C1∧· · ·∧
Cm as a sequence of circuits in L, Σ1, . . . ,ΣN , culminating
in ΣN ≡ F and such that, for all i ∈ [N]

• Σi ≡ Cj for some clause Cj in F , j ∈ [m], or
• Σi = Apply(Σj ,Σk,∧) with j, k < i and Σj and Σk

have the same vtree, or
• Σi ≡ Σj with j < i and the vtrees for Σi and Σj differ.

Note that Σi ≡ Σj is not necessarily easily verifiable in our
framework. We say that we have an L(∧, r) compilation of

5565

F , where r indicates that vtree modification (restructuring)
is allowed. We call an L(∧, r) refutation any L(∧, r) compi-
lation of an unsatisfiable formula. In this paper we will focus
on str-DNNF(∧, r) compilations and refutations.

We are interested in the amount of memory used when
compiling CNF formulas bottom-up. To abstract away im-
plementation details, we note that in any case a bottom-up
compiler must keep every Σi in memory at some point1.
Thus, the size of the biggest Σi is a lower bound on the
space needed, and thus also on the time taken, by the com-
pilation. One can then envision a compilation whose final
circuit is way smaller than the biggest intermediate circuit,
i.e., |ΣN | � maxi∈[N] |Σi|. Then, the run of the bottom-up
compiler leading to the sequence appears intuitively waste-
ful. This is most visible when compiling unsatisfiable CNF
formulas: the smallest compiled form is a single node 0, and
since satisfiability testing is tractable in L, we can assume
that ΣN = 0, and yet, its bottom-up compilation may have
large memory cost.

Note that the size of the Σi can differ dramatically de-
pending on the sequence of apply operations, i.e., the or-
der in which the clauses are conjoined. However, we will
see that there are formulas that have constant-size str-DNNF
representation but for which every possible str-DNNF(∧, r)
compilation must produce big intermediate results.

Graphs
We assume that the reader is familiar with basics and no-
tation from graph theory as e.g. found in (Diestel 2012). In
this section, we will remind the reader of some concepts that
will be used in the remainder of this paper.

Graphs in this paper are undirected, do not contain self-
loops, but may have parallel edges. Given a graph G =
(V,E) and a set A ⊆ V , we denote by G − A the graph
we get from G by deleting all vertices in A and all edges
that contain a vertex in A. If A consists of a single node u,
we also write G−u instead of G−{u}. By G[A] we denote
the graph induced by A in G, i.e., the graph G − (V \ A).
Given another set B ⊆ V , we denote by E(A,B) the set of
edges of G that have one endpoint in A and the other in B.

A graph is called connected if there is a path from every
vertex to every other vertex. A connected component is de-
fined as a maximal connected subgraph. A 1-separator of a
connected graphG is defined to be a vertex u such thatG−u
is not connected. A graph is called 2-connected if it is con-
nected, has at least two vertices and contains no 1-separator.

The treewidth tw(G) of a graph G is a well-known graph
parameter with broad applicability in artificial intelligence
that measures roughly how close G is to being a tree. Since
we will not need its technical definition in this paper but
use several results on it as black boxes, we will not for-
mally introduce it here and refer the reader to (Diestel 2012;
Harvey and Wood 2017). We will use the following result
from (Bodlaender and Koster 2006) which we reformulate
to simplify notation.

1Note that the whole sequence Σ1, . . . ,ΣN never has to be kept
in memory entirely since earlier Σi can be deleted from memory
when they are not needed anymore (Buss and Nordström 2021).

Theorem 2. Let G be a graph with a 1-separator u. Then
G− u contains a connected component G′ = (V ′, E′) such
that tw(G) = tw(G[V ′ ∪ {u}]).

Tseitin Formulas
We study Tseitin formulas which are CNF formulas repre-
senting systems of parity constraints structured by a graph
G = (V,E). The graph is equipped with a function c :
V → {0, 1} which assigns charges 0 or 1 to its vertices.
Each edge e of G is associated to a Boolean variable xe.
Given a set E′ ⊆ E, we write XE′ = {xe | e ∈ E′}.
The Tseitin formula encodes the fact that, if we only keep
in G the edges whose variables are given value 1, then all
vertices with charge 1 have an odd degree and all vertices
with charge 0 have an even degree. More formally let E(v)
denote the set of edges of which v is an endpoint and define
the constraint

χv,c :
∑

e∈E(v)

xe = c(v) mod 2

then the Tseitin formula T (G, c) computes
∧
v∈V χv,c. Each

χv,c can be encoded in a CNF formula Fv,c on variables
XE(v) composed of 2|E(v)|−1 = 2deg(v)−1 clauses of size
deg(v). The Tseitin formula overG for the charge function c
is the CNF formula T (G, c) =

∧
v∈V Fv,c. For convenience

we often drop c from the notations writing only T (G), χv ,
or Fv . For v ∈ V let 1v : V → {0, 1} be the function
mapping v to 1 and all other vertices to 0. The complement
parity constraint to χv,c is χv,(c+1v mod 2), which we write
χv,c for convenience.

We use the notation clause (χv,c) to denote the set of
clauses of Fv,c. We extend this notation to Tseitin formu-
las by defining clause (T (G, c)) =

⋃
v∈V clause (χv,c).

Example 1. Let G be the graph
x z

y

where white

vertices have charge 1 and black vertices have charge 0. The
corresponding Tseitin formula is T (G) = (x∨z)∧(x∨z)∧
(x ∨ y) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (y ∨ z).

There is a simple criterion for the satisfiability of Tseitin
formulas.

Lemma 1 (Urquhart 1987). T (G, c) is satisfiable if and only
if
∑
v∈U c(v) = 0 mod 2 holds for all connected compo-

nents G′ = (U,E′) of G.

In this paper we study the space complexity of
str-DNNF(∧, r)-compilation of unsatisfiable Tseitin
formulas whose underlying graph is connected. We pa-
rameterize our bounds by the treewidth of the graph. For
exponential lower bounds to be relevant, we need an input
CNF formula whose length is polynomial in the number
of variables. We achieve this by restricting our study to
graphs of maximum degree bounded by some constant ∆.
This very common restriction leads to an upper bound of
|V | × 2∆−1 on the number of clauses in T (G).

Note that there is always a small str-DNNF for a single
parity constraint.

5566

Lemma 2 (Pipatsrisawat and Darwiche 2010). Let χ be a
parity constraint and let T be a vtree on var (χ). There is a
str-DNNF of sizeO(|var (χ)|) respecting T that computes χ.

However representing a satisfiable Tseitin formula in str-
DNNF, so a system of parity constraints, is expensive.

Theorem 3 (de Colnet and Mengel 2021). The smallest
DNNF representing T (G) satisfiable withG a graph of max-
imum degree ∆ has size at least 2Ω(k)/∆/n with k = tw(G)
and n = |var (T (G))|.

Refuting Tseitin Formulas in Str-DNNF(∧, r)
In this section, we will give the formal version of our main
result Theorem 1 and prove it, building on several lemmas
whose proof we defer to the following sections. We start
with a simple observation that essentially says that, given a
bottom-up compilation of a function f , one can easily infer
a bottom-up compilation of f |a, for any partial assignment
a. This will be useful in several upcoming proofs.

Lemma 3. Let F be a CNF formula and Σ1, . . . ,ΣN be a
str-DNNF(∧, r) compilation of F . Let a be a partial assign-
ment to var (F), then Σ1|a, . . . ,ΣN |a is a str-DNNF(∧, r)
compilation of F |a.

Proof. For every i between 1 and N let Σ′i be Σi|a. str-
DNNF allow linear-time conditioning without size increase
nor vtree modification, so |Σ′i| ≤ |Σi| and Σ′i and Σi share
a common vtree. We have ΣN ≡ F , so Σ′N ≡ F |a follows.
We will prove that, for every i, either Σ′i is the str-DNNF
representation of a clause of F |a, or there are j, k < i such
that Σ′i = Apply(Σ′j ,Σ

′
k,∧) where all three str-DNNF share

a common vtree, or there is j < i such that Σ′i ≡ Σ′j and the
vtree of Σ′i and Σ′j may differ.

Take an arbitrary i between 1 and N . If Σi is the str-
DNNF representation of a clause C ∈ F , that is, Σi ≡
C, then clearly Σ′i = Σi|a ≡ C|a and C|a is indeed a
clause of F |a. Otherwise if Σi is the str-DNNF returned
by Apply(Σj ,Σk,∧), then Σi ≡ Σj ∧ Σk and all three
str-DNNF share a common vtree. Then Σ′i = Σi|a ≡
(Σj ∧ Σk)|a ≡ Σj |a ∧ Σk|a = Σ′j ∧ Σ′k. Since the vtree
is not modified by conditioning we can feed Σ′j and Σ′k to
an Apply to obtain Σ′i = Apply(Σ′j ,Σ

′
k,∧). Finally in the

case where Σi is equivalent to Σj with potentially a vtree
modification, it is clear that Σ′i = Σi|a ≡ Σj |a = Σ′j .

Our main result is the following theorem on the refutation
of unsatisfiable formulas by bottom-up compilation.

Theorem 1. Let G be a class of graphs whose maximum
degree is bounded by a constant. All str-DNNF(∧, r) refuta-
tion of an unsatisfiable T (G) with G ∈ G have size at least
2Ω(k)poly(1/n) with k = tw(G) and n = |var (T (G))|.

We will prove Theorem 1 later in this section after some
discussion and preparations. First, note that there are graphs
of bounded degree with treewidth linear in the number of
vertices, see e.g. (Grohe and Marx 2009). It follows that
there are formulas where the intermediate results have ex-
ponential size.

Corollary 1. There is a family of unsatisfiable CNF formu-
las such that every formula on n variables has O(n) clauses
and all its str-DNNF(∧, r) refutations have an intermediate
result of size 2Ω(n).

Let us compare Corollary 1 with known exponential lower
bounds on the size of intermediate results for similar refu-
tation systems, see for instance (Krajı́cek 2008; Segerlind
2008; Tveretina, Sinz, and Zantema 2010; Friedman and
Xu 2013). First, we are not aware of refutation systems us-
ing str-DNNF circuits that are not OBDD or branching pro-
grams. Since OBDD are generally exponentially bigger than
str-DNNF, our result is stronger in that respect. Moreover,
restructuring is rarely allowed in the OBDD-based proof
system while it is in ours. Most known bounds are stated
for OBDD-based refutations in which the variable order can
be arbitrary but cannot be changed in the refutation. Also
we do not require any specific order in which the clauses are
conjoined, which is a restruction used for some bounds in,
e.g., (Friedman and Xu 2013).

Our results might look somewhat unconvincing since they
only talk about the compilation of unsatisfiable formulas, a
setting in which costly compilation can be substituted by a
usually much less expensive single call of a SAT solver2.
However, equipped with Lemma 3, we can lift them to satis-
fiable formulas that have constant size str-DNNF represen-
tation with a simple trick.
Corollary 2. There are satisfiable CNF formulas that have
constant size str-DNNF representations such that any str-
DNNF(∧, r) compilation must have an intermediate result
of size 2Ω(n) where n is the number of variables in the input.

Proof. Consider a class of unsatisfiable Tseitin formulas
T := {T (G) | G ∈ G} for a class of graphs G of treewidth
linear in the number of vertices and let x be a fresh variable
not used in any of these formulas. For each T (G) let F (G)
be the formula T (G) with the additional literal x added to
all clauses. Clearly, F (G) ≡ x ∨ T (G) ≡ x, so the smallest
str-DNNF representing F (G) has size 1. By Lemma 3, given
a str-DNNF(∧,r) compilation of F (G), we can condition all
intermediate str-DNNF on x = 0 to obtain a str-DNNF(∧,r)
refutation of T (G). Since conditioning does not increase the
size of str-DNNF the corollary follows from Theorem 1.

Note that we could prove a version of Corollary 2 param-
eterized by the so-called primal treewidth of the formulas.
Since we do not want to introduce even more notions, we
abstain from doing so here.

As a first step towards the proof of Theorem 1, let T (G)
be unsatisfiable with G = (V,E) connected. We look at the
very last Apply in the refutation of T (G) in str-DNNF(∧, r):

ΣN = Apply(Σ`,Σr,∧)

where ΣN ≡ 0 and Σ` and Σr are two satisfiable str-DNNF
structured by the same vtree. Roughly put, the proof of The-
orem 1 is as follows:

2In fact, some knowledge compilers, e.g. the top-down knowl-
edge compiler D4 (Lagniez and Marquis 2017), make a call to a
SAT solver before trying to compile the input to avoid wasting time
when compiling unsatisfiable instances.

5567

1. We prove that there is a partition (A,B) of V such that
both G[A] and G[B] have treewidth Ω(tw(G)).

2. For that partition we show how to construct from Σ` and
Σr in polynomial time a str-DNNF Σ∗ computing a sat-
isfiable Tseitin formula T (G[A]) or T (G[B])

3. From Theorem 3 we derive that |Σ∗| = 2Ω(tw(G)) and
use |Σ∗| = O(|Σ`| × |Σr|) to conclude.

For convenience we denote GA := G[A] and GB := G[B].
In the second step, we can not really control which of
T (GA) or T (GB) is satisfiable. But the first step frees us
from worrying about this: since both GA and GB have large
treewidth, Σ∗ have size exponential in the treewidth of G
regardless of whether it represents T (GA) or T (GB).

The following lemmas will be proved in the next sections.

Lemma 4. Let G = (V,E) be a 2-connected graph
with maximum degree ∆. There is a partition (A,B)
of V such that GA is connected, GB is 2-connected, and
min(tw(GA)), tw(GB)) ≥ bαtw(G)

∆2 c where α > 0 is a
fixed universal constant.

Lemma 5. Let T (G, c) be a Tseitin formula with G con-
nected and a partition (A,B) of V such that both GA and
GB are connected. Then for every assignment a to XE(A,B)

there are caA : A→ {0, 1} and caB : B → {0, 1} such that

T (G, c)|a = T (GA, c
a
A) ∧ T (GB , c

a
B).

Moreover, if T (G, c) is unsatisfiable then either T (GA, c
a
A)

or T (GB , c
a
B) is unsatisfiable, but not both. Which of the

two formulas is satisfiable depends on whether the number
of variables that a maps to 1 is odd or even.

Lemma 6. Let Apply(Σ`, Σr, ∧) be the last step of a str-
DNNF(∧,r) refutation of T (G) where G is 2-connected. As-
sume that there is a partition (A,B) of V such that GA is
connected, GB is 2-connected, and both have treewidth at
least 2. Then there is a str-DNNF of size O(|Σ`| × |Σr|)
computing a satisfiable Tseitin formula whose graph is GA
or GB .

Proof of Theorem 1. First, using Lemmas 4 and 6 and The-
orem 3, we prove the result when G is 2-connected. Let ∆
be an upper bound on the maximum degree of all our graphs.
Fix a graph G = (V,E) and consider the partition (A,B) of
V given by Lemma 4. Let k = tw(G) and n = |E(G)|. We
can choose the constant hidden in 2Ω(k) of the statement so
that the theorem becomes trivial whenever bαk/∆2c < 2,
so we assume bαk/∆2c ≥ 2 in the remainder.

The conditions on (A,B) described in Lemma 6 are met
so we obtain a str-DNNF Σ∗ computing a satisfiable Tseitin
formula T (GU) for some U ∈ {A,B} with |Σ∗| ≤ γ ×
|Σ`| × |Σr| for some γ > 0. Now Theorem 3 says that there
is a constant β > 0 such that |Σ∗| ≥ 2βk/∆

3

/n. So we have
min(|Σ`|, |Σr|) ≥ 2βk/2∆3

/(γn). This completes the proof
in the case where G is 2-connected.

Now we show how to go from the general case to the case
where G is 2-connected. Assume G has a 1-separator {u}
and let U1, . . . , Us be the vertex sets of the connected com-
ponents of G after removal of u. We know from Theorem 2

that there is some i ∈ [s] such that tw(G[Ui ∪ {u}]) =
tw(G), say i = 1. Now there is a proper subset E′ ⊂ E(u)
such that removingE′ fromG yields two connected compo-
nents GA and GB , with Ui ∪ {u} ⊆ A. So E′ = E(A,B)
and, by Lemma 5, we can choose an assignment a toE′ such
that T (G)|a = T (GA)∧T (GB) where T (GB) is satisfiable
and T (GA) unsatisfiable.

Let aB be a satisfying assignment of T (GB). Using
Lemma 3 we can condition any str-DNNF(∧,r) refutation of
T (G) on the assignment a ∪ aB to obtain a str-DNNF(∧,r)
refutation of T (GA) without size increase. GA has fewer 1-
separators thanG and tw(GA) = tw(G). We repeat the pro-
cedure until obtaining a str-DNNF(∧,r) refutation of T (G′),
with G′ a subgraph of G that has the same treewidth of G
and has no 1-separator. So G′ is 2-connected, and the refu-
tation of T (G′) obtained is at most as large as that of T (G)
we have started from.

Graph Bi-Partition with Large Treewidth on
Both Sides (Lemma 4)

Lemma 4 is shown with the help of Theorem 4 below com-
bined with Theorem 2. For space reasons we defer the proof
to the full version of the paper. We here discuss some of the
underlying graph theory, in particular the following result.
Theorem 4. There exists a constant 0 < α ≤ 1 such that,
for all graphs G = (V,E) with maximum degree at most
∆, there is a partition (A,B) of V such that tw(G[A]) ≥
bαtw(G)

∆2 c and tw(G[B]) ≥ bαtw(G)
∆2 c.

To illustrate Theorem 4, we look at the particular case of grid
graphs. The n × n grid has treewidth n − 1 and maximum
degree 4. It is straightforward to partition its vertices to ob-
tain an n×bn/2c grid on one side, and an n×dn/2e on the
other. Using this partition for (A,B) we see that G[A] and
G[B] both have an bn/2c × bn/2c induced grid and there-
fore both have treewidth at least bn/2c− 1 ≥ (n− 1)/4. Of
course the constant α in the theorem is way smaller than 4.

The proof of Theorem 4 is technical and is deferred to
the full version due to space constraint, here we just provide
some arguments to justify its veracity. Theorem 4 is an adap-
tation of the following result of Chekuri of Chuzhoy (2013).
Theorem 5. Let h and r be integers and let G = (V,E).
There are positive constants β and c such that, if h3r ≤
β tw(G)

logc(tw(G)) , then there is an efficient algorithm to partition
V into (V1, . . . , Vh), with tw(G[Vi]) ≥ r true for all i ∈ [h].
Theorem 4 is almost a subcase of Theorem 5 with h = 2.
The only problem is that in Theorem 4, r would be roughly
α/∆2 and thus independent of the treewidth, which is not
the case in Theorem 5 because of the divisor logc(tw(G)). A
careful examination of Chekuri and Chuzhoy’s proof shows
that the log-divisor has two reasons: (1) a preprocessing ofG
to decrease its degree and (2) the use of an approximation al-
gorithm to make their partition efficiently computable. Since
we work with graphs of bounded degree and only care about
the existence of a partition and not its computation, we can
adapt the proof for h = 2 and make some other adjustments
to get rid of the logc(tw(G)) to obtain Theorem 4, see the
full version of this paper for details.

5568

Graph Partitions for Tseitin Formulas and
Subformulas (Lemma 5)

In this section we prepare for the proof of Lemma 6 by re-
calling some results on how Tseitin formulas behave when
we disconnect the underlying graph. The variables of a
Tseitin formula T (G, c) uniquely identify the edges of its
underlying graph G. After assigning the variable x corre-
sponding to the edge e := uv in T (G, c) and removing the
negated literals and the satisfied clauses, the new formula
is a Tseitin formula T (G′, c′), but this time for the graph
G′ = (V,E \ {e}). If x is assigned 0, then the new charge
function is the same as the old one, that is, c′ = c. Otherwise
if x is assigned 1, then c′ coincides with c on all vertices ex-
cept u and v, that is, c′ = c+1u+1v mod 2. By induction,
conditioning T (G, c) on a partial assignment of its variables
yields a new Tseitin formula whose underlying graph is G
without the corresponding edges. We focus on variable con-
ditionings that disconnect G.

Proof of Lemma 5. Let G = (V,E). T (G, c)|a be the CNF
obtained by removing from T (G, c) all clauses contain-
ing a literal set to 1 by a, and removing all literals set
to 0 by a from the remaining clauses. T (G, c)|a is ex-
actly T (G′, ca) with G′ = (V,E \ E(A,B)) and ca =
c+

∑
xuv :a(xuv)=1 1u + 1v mod 2.

GA andGB are the only two connected components ofG′
so T (G′, ca) = T (GA, c

a
A) ∧ T (GB , c

a
B) where caA and caB

are the restrictions of ca to A and B respectively.
Now if T (G, c) is unsatisfiable, then so is T (GA, c

a
A) ∧

T (GB , c
a
B). Let SA and SB be the sums of all ca(u) for u

in A and B, respectively. By Lemma 1 we have SA = 1
mod 2 or SB = 1 mod 2. Observe that

∑
u∈V c

a(u) =
SA+SB and that

∑
u∈V c

a(u) =
∑
u∈V c(u) = 1 mod 2.

So either SA = 0 mod 2 or SB = 0 mod 2 holds. Again
by Lemma 1, it follows that either T (GA, c

a
A) or T (GB , c

a
B)

is satisfiable.
All edges whose variables are assigned values by a have

one endpoint inA and the other inB. Let card(a) := |{xuv :
a(xuv) = 1}|. Then looking at the expression of ca we see
that SA =

∑
u∈A c

a(u) = card(a) +
∑
u∈A c(u) and SB =

card(a)+
∑
u∈B c(u). Since the parity of SA and SB decides

the satisfiability of T (GA, c
a
A) and T (GB , c

a
B), and since

SA 6= SB mod 2, we get that the parity of card(a) decides
which Tseitin formula is satisfiable.

str-DNNF in the refutation of T (G, c) represent subfor-
mulas of T (G, c). For F such a subformula, given a partition
(A,B) of V and an assignment a to XE(A,B), the CNF for-
mula F |a is of the form F aA ∧F aB where F aA is a subformula
of T (GA, c

a
A) and F aB is a subformula of T (GB , c

a
B).

Lemma 7. Let Σ be a str-DNNF representing a subformula
F of T (G). Let (A,B) be a partition of V and a be an as-
signment to XE(A,B) such that F |a is satisfiable, then there
are str-DNNF ΣA and ΣB of size at most |Σ| and with the
same vtree as Σ, that represent F aA and F aB respectively.

Proof. This follows from conditioning being feasible with-
out size increase nor vtree modification on str-DNNF (Pipat-
srisawat and Darwiche 2008). Let T be the vtree of Σ. First

we can obtain a str-DNNF Σ′ equivalent to Σ|a ≡ F |a =
F aA∧F aB of size at most |Σ| and that respects T . Since F |a is
satisfiable and since the variables of F aA and F aB are disjoint,
we have an assignment a′ to the variables of F aB that satis-
fies F aB and such that (F |a)|a′ = F aA. So from Σ′ we can
obtain a str-DNNF equivalent to Σ′|a ≡ F aA, of size at most
|Σ′|, and whose vtree is T . The argument works analogously
for F aB .

From Unsatisfiable to Satisfiable Tseitin
Formulas (Lemma 6)

We call a constraint χ incomplete in a CNF formula F
when clause (χ) ∩ clause (F) 6= clause (χ). Clearly a sub-
formula of T (G) has incomplete constraints if and only if
it is a proper subformula of T (G). All str-DNNF in a str-
DNNF(∧,r) compilation of T (G), except the last one, have
incomplete constraints.

The proof of Lemma 6 intuitively works by considering
two cases as follows. In the first case, we assume that one of
Σr and Σ` contains the constraints for B almost completely,
say this is the case for Σ`. We choose an assignment a to
XE(A,B) such that the resulting Tseitin formula T (GB , c

a
B)

is satisfiable. Then we can extract from Σ` a str-DNNF and
conjoin to this str-DNNF the few missing constraints with
increasing is size too much, so that it computes T (GB , c

a
B).

In the second case, several constraints for B are incom-
plete in both Σ` and Σr. In that case, we can choose an
assignment a to XE(A,B) such that the subformulas made
of constraints for A used in the construction of Σr are sat-
isfiable, and the same is true for Σ`. Then we can conjoin
suitably processed versions of Σr and Σ` to get a str-DNNF
representation of T (GA, c

a
A) without increasing the size too

much. More formally, we consider the following two cases:
1. For some Σ ∈ {Σ`,Σr}, at most two constraints for ver-

tices in B are incomplete in Σ.
2. For every Σ ∈ {Σ`,Σr}, at least three constraints for

vertices in B are incomplete in Σ.
Lemma 6 (Case 1). Use the notation of Lemma 6. If for
some Σ ∈ {Σ`,Σr} at most two constraints of T (G) for
vertices of B are incomplete in Σ, then there is a str-DNNF
of sizeO(|Σ|) computing a satisfiable Tseitin formula whose
underlying graph is GB .

Proof. Σ is satisfiable, so there is an assignment a to
XE(A,B) such that Σ|a is satisfiable. Let F be the CNF
whose clauses are used to construct Σ in the refutation. With
Lemma 7 we obtain a str-DNNF ΣB equivalent to F aB and
such that |ΣB | = O(|Σ|). Let B′ be the set of vertices in
B whose constraints are incomplete in Σ. By assumption
|B′| ≤ 2. For all v ∈ B\B′, the constraint of T (GB , c

a
B) for

v is complete in ΣB because the constraint of T (G) for v is
complete in Σ. If B′ = ∅ then all constraints of T (GB , c

a
B)

are complete in ΣB , so ΣB ≡ T (GB , c
a
B) and we are done.

Now assume that B′ contains two vertices: B′ = {v, w}
and let χ′v , χ′w be the constraints of T (GB , c

a
B) for v and w

(for the case of one vertex, just take v = w). All constraints
but χ′v and χ′w are complete in ΣB , so

ΣB ∧ χ′v ∧ χ′w ≡ T (GB , c
a
B)

5569

Let T be the vtree for ΣB . Lemma 2 gives us str-DNNF Dv

and Dw computing χ′v and χ′w respectively, of size O(∆),
and both respecting T . We get a str-DNNF D structured by
T and equivalent to T (GB , c

a
B) of size O(|ΣB | × ∆2) =

O(|Σ|) by conjoining Dv and Dw to ΣB .

Lemma 6 (Case 2). Use the notation of Lemma 6. If for
every Σ ∈ {Σ`,Σr} at least three constraints of T (G) for
vertices of B are incomplete in Σ, then there is a str-DNNF
of size O(|Σ`| × |Σr|) computing a satisfiable Tseitin for-
mula whose underlying graph is GA.

Proof. Let F ` and F r be the CNF formulas whose clauses
were used to construct Σ` and Σr, respectively. Apply(Σ`,
Σr, ∧) is the last apply of the refutation so there must be
F ` ∧ F r = T (G). Our aim is to find an assignment a to
XE(A,B) such that T (GA, c

a
A), Σ`|a, and Σr|a are satisfi-

able. If such an assignment exists, then using Lemma 7 we
could obtain str-DNNF Σ`A and ΣrA that represent (F `)aA and
(F r)aA respectively. Since Σ` and Σr have the same vtree, so
would Σ`A and ΣrA. So we could construct a str-DNNF com-
puting Σ`A ∧ ΣrA ≡ (F `)aA ∧ (F r)aA = T (GA, c

a
A) in time

|Σ`A| × |ΣrA| ≤ |Σ`| × |Σr|, thus finishing the proof.
It remains to find this assignment a. Take Σ ∈ {Σ`,Σr}

and let F ∈ {F `, F r} be the corresponding CNF. By
Lemma 5, if T (GA, c

a
A) is satisfiable then T (GB , c

a
B) is un-

satisfiable. Then we have Σ|a ≡ F aA ∧ F aB where F aA is sat-
isfiable since it is a subformula of T (GA, c

a
A), and we want

F aB to be satisfiable as well. The following claims help us
find a such that F aB is satisfiable. The proofs are deferred to
the full version of the paper. Note that Claim 1 is a folklore
result on Tseitin formulas.

Claim 1. Since GB is a 2-connected graph, the proper sub-
formulas of any Tseitin formula T (GB) are all satisfiable.

Claim 2. Let F be a proper subformula of T (G). Take
Cv ∈ clause (χv) not in F and denote by C ′v its restric-
tion to XE(A,B). If both GA and GB have treewidth at least
2, then for every assignment a to XE(A,B) that falsifies C ′v ,
the constraint χv|a is incomplete in F |a.

If we can find a such that T (GA, c
a
A) is satisfiable and

such that F aB is a proper subformula of T (GB , c
a
B), i.e., not

all constraints of T (GB , c
a
B) are complete in F aB . Then by

the above claims, F aB will be satisfiable. Then Σ|a ≡ F aA ∧
F aB will be satisfiable as well since var (F aA)∩var (F aB) = ∅.
Recall that this must hold for both F = F ` and F = F r.

By assumption there is ur ∈ B whose constraint is in-
complete in Σr and there are u`, v`, w` ∈ B whose con-
straints are incomplete in Σ`. The latter three vertices are
distinct, so at least two of them are different from ur. Sup-
pose, without loss of generality, that ur 6= v` and ur 6= w`.
For convenience, rename u = ur, v = v` and w = w`.

Let Cu be a clause of χu missing from clause (Σr) and
let Cv and Cw be clauses of χv and χw missing from
clause (Σ`). We denote Cu = C ′u ∨ C ′′u where C ′u is the
restriction of Cu to var (XE(A,B)). Note that C ′u may be

empty. Define Cv = C ′v ∨ C ′′v and Cw = C ′w ∨ C ′′w simi-
larly. Let E′(u), E′(v) and E′(w) be the set of edges corre-
sponding to var (C ′u), var (C ′v) and var (C ′w), respectively.
By definition, all three sets are subsets of E(A,B).

Claim 3. We haveE(A,B) 6= E′(u)∪E′(v) orE(A,B) 6=
E′(u) ∪ E′(w).

Proof. If E′(u) = ∅ or E′(v) = ∅ or E′(w) = ∅, then the
claim holds because otherwise E(A,B) would be a subset
or E(u), or a subset of E(v), or a subset of E(w), which is
not possible since G is 2-connected.

Otherwise, if neitherE′(u) norE′(v) norE′(w) is empty,
then the three sets are pairwise disjoint since u, v, w ∈ B.
So ifE(A,B) = E′(u)∪E′(v) were to hold, then we would
haveE(A,B) 6= E′(u)∪E′(w) because otherwiseE′(v) =
E′(w) 6= ∅ would hold, which is impossible.

Suppose, w.l.o.g., that E(A,B) 6= E′(u) ∪ E′(v). Let
a′u and a′v be the assignments to var (C ′u) and var (C ′v) that
falsify C ′u and C ′v , respectively (if C ′u is empty, then so is
a′u). Conditioning T (G) on a′u ∪ a′v gives an unsatisfiable
Tseitin formula on the graph obtained by removing E′(u)∪
E′(v) from G. Call that graph G′. Since G, GA, and GB
are connected, and since E′(u) ∪ E′(v) is a proper subset
of E(A,B), we have that G′ is connected. So by Lemma 5,
we have an assignment a to XE(A,B) that extends a′u ∪ a′v
and such that T (G)|a = T (GA, c

a
A) ∧ T (GB , c

a
B) where

T (GA, c
a
A) is satisfiable and T (GB , c

a
B) is unsatisfiable.

Remember that Cu and Cv are missing from clause (Σr)
and clause (Σ`), respectively, and that C ′u and C ′v are their
restrictions to XE(A,B). By construction, a falsifies C ′u and
C ′v , therefore by Claim 2 the constraint for the vertices u and
v are incomplete in Σr|a and Σ`|a, respectively. It follows,
since u and v belong toB, that (F `)aB and (F r)aB are proper
subformulas of T (GB , c

a
B). Then since GB is 2-connected,

Claim 1 entails that both (F `)aB and (F r)aB are satisfiable,
and therefore Σ`|a and Σr|a are satisfiable.

Conclusion
In the past, experimental works hinted at the inefficiency of
the bottom-up approach for compiling some inputs into spe-
cific languages like OBDD or SDD. In this paper, we pro-
vide theoretical arguments that support the idea that the in-
efficiency of bottom-up compilation resides in the bottom-
up paradigm itself. We propose a framework for compila-
tion that targets the very general language of str-DNNF, puts
no constraint on the order in which clauses are conjoined,
and allows on-the-fly restructuring of the str-DNNF. Despite
these degrees of freedom, we have found a class of CNF for-
mulas that have constant-size str-DNNF representations and
proved that they require exponential time and space to be
compiled with the bottom-up approach.

In the future, it would be interesting to better understand
how the size of intermediate results in bottom-up compila-
tion is impacted by the order in which clauses are conjoined.
For example, can it be shown theoretically when the heuris-
tics from (Narodytska and Walsh 2007) perform well? Can
similar heuristics also be used in the construction of SDD?

5570

Acknowledgments
This work has been partly supported by the PING/ACK
project of the French National Agency for Research (ANR-
18-CE40-0011).

References
Atserias, A.; Kolaitis, P. G.; and Vardi, M. Y. 2004. Con-
straint Propagation as a Proof System. In Wallace, M.,
ed., Principles and Practice of Constraint Programming -
CP 2004, 10th International Conference, CP 2004, Toronto,
Canada, September 27 - October 1, 2004, Proceedings, vol-
ume 3258 of Lecture Notes in Computer Science, 77–91.
Springer.
Bodlaender, H. L.; and Koster, A. M. C. A. 2006. Safe sep-
arators for treewidth. Discret. Math., 306(3): 337–350.
Bryant, R. E. 1986. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Trans. Computers, 35(8):
677–691.
Buss, S.; and Nordström, J. 2021. Proof complexity and
SAT solving. 2nd edition of Handbook of Satisfiability, Draft
version available at https://www. math. ucsd. edu/ sbuss/Re-
searchWeb/ProofComplexitySAT.
Chekuri, C.; and Chuzhoy, J. 2013. Large-treewidth graph
decompositions and applications. In Boneh, D.; Roughgar-
den, T.; and Feigenbaum, J., eds., Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June
1-4, 2013, 291–300. ACM.
Choi, A.; and Darwiche, A. 2013. Dynamic Minimization
of Sentential Decision Diagrams. In desJardins, M.; and
Littman, M. L., eds., Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence, July 14-18,
2013, Bellevue, Washington, USA. AAAI Press.
Darwiche, A. 2001. Decomposable negation normal form.
J. ACM, 48(4): 608–647.
Darwiche, A. 2011. SDD: A New Canonical Representation
of Propositional Knowledge Bases. In Walsh, T., ed., IJCAI
2011, Proceedings of the 22nd International Joint Confer-
ence on Artificial Intelligence, Barcelona, Catalonia, Spain,
July 16-22, 2011, 819–826. IJCAI/AAAI.
Darwiche, A.; and Marquis, P. 2002. A Knowledge Compi-
lation Map. J. Artif. Intell. Res., 17: 229–264.
de Colnet, A.; and Mengel, S. 2021. Characterizing Tseitin-
Formulas with Short Regular Resolution Refutations. In Li,
C.; and Manyà, F., eds., Theory and Applications of Sat-
isfiability Testing - SAT 2021 - 24th International Confer-
ence, Barcelona, Spain, July 5-9, 2021, Proceedings, vol-
ume 12831 of Lecture Notes in Computer Science, 116–133.
Springer.
Diestel, R. 2012. Graph Theory, 4th Edition, volume 173 of
Graduate texts in mathematics. Springer. ISBN 978-3-642-
14278-9.
Friedman, L.; and Xu, Y. 2013. Exponential Lower Bounds
for Refuting Random Formulas Using Ordered Binary De-
cision Diagrams. In Bulatov, A. A.; and Shur, A. M., eds.,
Computer Science - Theory and Applications - 8th Interna-
tional Computer Science Symposium in Russia, CSR 2013,

Ekaterinburg, Russia, June 25-29, 2013. Proceedings, vol-
ume 7913 of Lecture Notes in Computer Science, 127–138.
Springer.
Glinskih, L.; and Itsykson, D. 2021. On Tseitin Formu-
las, Read-Once Branching Programs and Treewidth. Theory
Comput. Syst., 65(3): 613–633.
Grohe, M.; and Marx, D. 2009. On tree width, bramble size,
and expansion. J. Comb. Theory, Ser. B, 99(1): 218–228.
Harvey, D. J.; and Wood, D. R. 2017. Parameters Tied to
Treewidth. J. Graph Theory, 84(4): 364–385.
Huang, J.; and Darwiche, A. 2004. Using DPLL for Effi-
cient OBDD Construction. In SAT 2004 - The Seventh In-
ternational Conference on Theory and Applications of Satis-
fiability Testing, 10-13 May 2004, Vancouver, BC, Canada,
Online Proceedings.
Huang, J.; and Darwiche, A. 2005. DPLL with a Trace:
From SAT to Knowledge Compilation. In Kaelbling, L. P.;
and Saffiotti, A., eds., IJCAI-05, Proceedings of the Nine-
teenth International Joint Conference on Artificial Intelli-
gence, Edinburgh, Scotland, UK, July 30 - August 5, 2005,
156–162. Professional Book Center.
Itsykson, D.; Knop, A.; Romashchenko, A. E.; and Sokolov,
D. 2020. On OBDD-based Algorithms and Proof Systems
that Dynamically Change the order of Variables. J. Symb.
Log., 85(2): 632–670.
Krajı́cek, J. 2008. An exponential lower bound for a con-
straint propagation proof system based on ordered binary
decision diagrams. J. Symb. Log., 73(1): 227–237.
Lagniez, J.; and Marquis, P. 2017. An Improved Decision-
DNNF Compiler. In Sierra, C., ed., Proceedings of the
Twenty-Sixth International Joint Conference on Artificial In-
telligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, 667–673. ijcai.org.
Narodytska, N.; and Walsh, T. 2007. Constraint and Vari-
able Ordering Heuristics for Compiling Configuration Prob-
lems. In Veloso, M. M., ed., IJCAI 2007, Proceedings of
the 20th International Joint Conference on Artificial Intelli-
gence, Hyderabad, India, January 6-12, 2007, 149–154.
Pipatsrisawat, K.; and Darwiche, A. 2008. New Com-
pilation Languages Based on Structured Decomposability.
In Fox, D.; and Gomes, C. P., eds., Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence,
AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, 517–
522. AAAI Press.
Pipatsrisawat, K.; and Darwiche, A. 2010. Top-Down Al-
gorithms for Constructing Structured DNNF: Theoretical
and Practical Implications. In Coelho, H.; Studer, R.; and
Wooldridge, M. J., eds., ECAI 2010 - 19th European Con-
ference on Artificial Intelligence, Lisbon, Portugal, August
16-20, 2010, Proceedings, volume 215 of Frontiers in Arti-
ficial Intelligence and Applications, 3–8. IOS Press.
Segerlind, N. 2008. On the Relative Efficiency of
Resolution-Like Proofs and Ordered Binary Decision Dia-
gram Proofs. In Proceedings of the 23rd Annual IEEE Con-
ference on Computational Complexity, CCC 2008, 23-26
June 2008, College Park, Maryland, USA, 100–111. IEEE
Computer Society.

5571

Somenzi, F. 2009. CUDD: CU decision diagram package-
release 2.4. 0. University of Colorado at Boulder.
Tveretina, O.; Sinz, C.; and Zantema, H. 2010. Ordered Bi-
nary Decision Diagrams, Pigeonhole Formulas and Beyond.
J. Satisf. Boolean Model. Comput., 7(1): 35–58.
Urquhart, A. 1987. Hard examples for resolution. J. ACM,
34(1): 209–219.
Van den Broeck, G.; and Darwiche, A. 2015. On the Role
of Canonicity in Knowledge Compilation. In Bonet, B.;
and Koenig, S., eds., Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-30, 2015,
Austin, Texas, USA, 1641–1648. AAAI Press.

5572

