
Monotone Abstractions in Ontology-Based Data Management

Gianluca Cima1, Marco Console2, Maurizio Lenzerini2, Antonella Poggi2

1CNRS & University of Bordeaux
2Sapienza University of Rome

gianluca.cima@u-bordeaux.fr, {console, lenzerini, poggi}@diag.uniroma1.it

Abstract

In Ontology-Based Data Management (OBDM), an abstrac-
tion of a source query q is a query over the ontology captur-
ing the semantics of q in terms of the concepts and the rela-
tions available in the ontology. Since a perfect characteriza-
tion of a source query may not exist, the notions of best sound
and complete approximations of an abstraction have been in-
troduced and studied in the typical OBDM context, i.e., in
the case where the ontology is expressed in DL-Lite, and
source queries are expressed as unions of conjunctive queries
(UCQs). Interestingly, if we restrict our attention to abstrac-
tions expressed as UCQs, even best approximations of ab-
stractions are not guaranteed to exist. Thus, a natural question
to ask is whether such limitations affect even larger classes of
queries. In this paper, we answer this fundamental question
for an essential class of queries, namely the class of mono-
tone queries. We define a monotone query language based on
disjunctive Datalog enriched with an epistemic operator, and
show that its expressive power suffices for expressing the best
approximations of monotone abstractions of UCQs.

1 Introduction
In Ontology-Based Data Management (OBDM) (Poggi et al.
2008), an ontology, i.e., a formal, logic-based representa-
tion of a domain of interest, is used to provide a high-level
conceptual tool for accessing and managing the data sources
of an information system. Suitable mappings declaratively
specify the relationship between the data at the sources and
the elements in the ontology, and this enables the user to
carry out many relevant tasks on data through the lens of the
ontology (Lenzerini 2018; De Giacomo et al. 2018).

In the last decade, there have been extensive investiga-
tions on the problem of answering queries expressed over
the ontology by means of algorithms that, taking into ac-
count both the ontology and the mapping, produce suitable
queries that extract the correct data from the sources. The
problem is complicated by the need of reasoning about all
components of the system, so as not to miss any answer log-
ically implied by the axioms expressing both the ontology
and the mapping (see the surveys in (Bienvenu 2016; Xiao
et al. 2018; Ortiz 2018)).

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Recent papers (Cima 2017; Lutz, Marti, and Sabellek
2018; Cima, Lenzerini, and Poggi 2019, 2020b; Cima et al.
2021) address a different issue in OBDM: starting from a
query qS expressed over the sources, the goal is to find a
so-called abstraction of qS (Cima 2022), i.e., an ontology-
based characterization of qS expressed in terms of the ontol-
ogy elements, and whose answers coincide with the answer
to the original query, modulo the ontology and the mapping.
We encountered the need of abstraction during a joint project
with a public statistical research institute. The institute’s de-
partments must publish subsets of the data they gather in the
form of semantically described linked open data. To com-
pute the content of the datasets the departments execute suit-
able queries over the data sources mapped to a shared ontol-
ogy. Notably, when the dataset is published, it must be doc-
umented through a SPARQL query expressed in terms of the
ontology. This task is currently done manually. The notion
of abstraction perfectly captures this scenario and provides
the formal tool for automating the process: given the query
over the sources computing the content of the dataset, the
abstraction of such query with respect to the mapping and
the ontology is exactly the SPARQL query to be associated
to the open dataset. Besides the above use case, abstraction
can be the appropriate tool for checking the quality of map-
ping in capturing relevant source queries (Lutz, Marti, and
Sabellek 2018), or deriving ontology-mediated queries from
examples (Ortiz 2019; Cima, Croce, and Lenzerini 2021).

The first investigations on abstraction appear in (Cima
2017; Lutz, Marti, and Sabellek 2018). Both papers point
out that the “perfect” abstraction of a union of conjunctive
queries (UCQ) expressed over the data source not always
exists, and present algorithms for computing such abstrac-
tion in the case where it both exists, and can be expressed
as a UCQ over the ontology. In (Cima 2017; Cima, Lenz-
erini, and Poggi 2019) the notion of (sound and complete)
approximations of the perfect abstraction is introduced, ex-
actly to cope with situations in which perfectness cannot
be achieved. Moreover, both papers make it clear that, for
a given class of queries C, one is probably interested in two
specific forms of approximations, called C-minimally com-
plete and C-maximally sound abstractions. Based on these
notions, (Cima, Lenzerini, and Poggi 2019) presents a thor-
ough analysis of the verification problem (check whether a
given query is a complete or sound abstraction) and the com-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

5556

putation problem of UCQ-minimally complete and UCQ-
maximally sound abstractions of UCQ source queries in
OBDM systems based on DL-Lite. In (Cima, Lenzerini, and
Poggi 2020b) the computation problem is studied in the con-
text of a specific class of non-monotone queries for express-
ing abstractions, and it is shown that this class can provide
abstractions that are better than the one in the UCQ class.

Thus, with the exception of (Cima, Lenzerini, and Poggi
2020b), all the results on abstractions have been obtained
under the assumptions that abstractions are expressed as
UCQs over the ontology, and many of them originate from
the observations that best approximations in the UCQ class
are not guaranteed to exist. Thus, a natural issue to inves-
tigate is whether such limitations affect even larger classes
of queries for expressing abstractions. The main goal of this
paper is to address the following question: do approxima-
tions of perfect abstraction that are best in a fundamental
class of queries, namely the class of monotone queries, al-
ways exist? Obviously, a related goal is to derive algorithms
for computing approximations of abstractions that are best
in the class of monotone queries, if they exist. The class
of monotone queries includes queries expressible in First-
Order Logic (FOL) and is therefore extremely important.

In this paper we answer positively to the above-mentioned
fundamental question. More specifically, we provide the fol-
lowing contributions.
1. We present a general framework for abstraction in

OBDM, based on the definition of queries as functions
from the logical models of OBDM systems to sets of tu-
ples. This is important for the goal of making our investi-
gation, and in particular the notion of monotone queries,
to be independent from any particular syntactic form. The
usual concept of queries whose semantics is based on cer-
tain answers is a special case of our general notion.

2. The framework includes a new monotone query lan-
guage, called Datalog∨K, based on disjunctive Datalog
enriched with inequalities and an epistemic operator.

3. We consider a scenario where the OBDM specification J
is based on DL-LiteRDFS (i.e., the fragment of RDFS ex-
pressible in Description Logic), and present algorithms
that, given a source query qS expressed as UCQ, com-
pute the best (sound or complete) approximations of the
J-abstraction of qS in the class of monotone queries, ex-
pressed in Datalog∨K.

4. The above algorithms provide the proof that, in the con-
sidered scenario, for any UCQ qS , the best (sound or
complete) approximations of the J-abstraction of qS in
the class of monotone queries always exists. As a con-
sequence, if the perfect abstraction exists and is in the
class of monotone queries, then it can be expressed in
Datalog∨K.

The paper is organized as follows. In Section 2 we recall
some preliminary notions. In Section 3 we describe the for-
mal framework for abstraction, including Datalog∨K. Start-
ing from Section 4, we focus on the above-mentioned sce-
nario, and present the algorithms for computing the best
complete (Section 4) and the best sound (Section 5) abstrac-
tions of source UCQs. In Section 6 we discuss perfect mono-

tone abstractions. Finally, Section 7 concludes the paper by
mentioning future works in the context of abstraction.

2 Preliminaries
A relational schema R is a finite set of predicate symbols
(each one with a fixed arity) and an R-database D is a finite
set of facts using predicate symbols in R and constants from
a countable infinite set Const . A query q of arity n over a
schemaR is a function mapping eachR-database to n-tuples
of constants occurring in Const . We denote by qD the set of
tuples obtained by applying q to the R-database D. For two
queries q1 and q2 over a schema S , we write q1 vR q2 if
qD1 ⊆ qD2 for each R-database D.

Let Var be a countable infinite set of symbols, called
variables, disjoint from Const . A relational atom over R is
an expression constituted by a predicate symbol in R ap-
plied to as many arguments (constants or variables) as its
arity. We also consider inequality atoms, where the pred-
icate symbol is inequality (6=). For a set of atoms C, we
let Dom(C) = Var(C) ∪ Const(C), where Var(C) and
Const(C) are the set of all variables and all constants, re-
spectively, occurring in C.

A conjunctive query (CQ) q over a schema R is a query
expressible as {x̄ | ∃ȳ.φ(x̄, ȳ)}, where x̄ is a tuple of vari-
ables, called the distinguished variables of q, ȳ is a tuple of
variables, called the existential variables of q, and φ(x̄, ȳ)
is the body of q, i.e., a finite conjunction of relational atoms
over R containing all the distinguished and existential vari-
ables of q. The arity of q is the arity of x̄. A union of conjunc-
tive queries (UCQ) is a finite union of CQs with same arity,
called its disjuncts. A (U)CQ with inequality ((U)CQ6=) is
simply a (U)CQ allowing inequality atoms in its body.

Let C1 and C2 be two sets of atoms. A homomorphism h
from C1 to C2 (written h : C1 → C2) is a mapping from
Dom(C1) to Dom(C2) such that: (i) h(α) ∈ C2, for each
relational atom α ∈ C1; (ii) h(c) = c, for each constant
c ∈ Const(C1); and (iii) h(x) 6= h(y), for each inequality
atom x 6= y occurring in C1.

Given a signature of unary and binary predicates, a De-
scription Logic (DL) ontology is simply a TBox (set of ax-
ioms) expressed in a specific DL (Baader et al. 2003). We as-
sume a special unary predicate > whose extension in every
interpretation coincides with the entire domain. In the tech-
nical sections, we are interested in ontologies expressed in
DL-LiteRDFS (Cuenca Grau 2004; Rosati 2007; Cima, Lenz-
erini, and Poggi 2020a). Such language corresponds to the
fragment of RDFS (Brickley and Guha 2014) expressible in
DL-Lite. Specifically, a DL-LiteRDFS ontology is a finite set
of assertions of the form B v A or R1 v R2, where B de-
notes a basic concept, i.e., an expression of the form A, ∃P ,
or ∃P−, with A and P denoting an atomic concept and an
atomic role, respectively, and R1 and R2 denote basic roles,
i.e., expressions of the form P , or P−.

An OBDM specification J is a triple 〈O,S,M〉, whereO
is a DL ontology, S is a relational schema, called the source
schema of J , andM is a Global-and-Local-As-View (GLAV)
mapping, i.e., a set of GLAV mapping assertions of the form:

∀x̄.∀ȳ.φ(x̄, ȳ)→ ∃z̄.ψ(x̄, z̄),

5557

where x̄ are called the frontier variables of m, φ(x̄, ȳ),
called the body of m, is a conjunction of relational atoms
over S , and ψ(x̄, z̄), called the head of m, is a conjunction
of relational atoms over O.

An OBDM system is a pair Σ = 〈J,D〉, where J =
〈O,S,M〉 is an OBDM specification, and D is an S-
database. For a mapping M relating a source schema S to
an ontology O and an S-database D, we denote byM(D)
the set of atoms over O obtained by chasing D with respect
toM as described in (Fagin et al. 2005).

The semantics of an OBDM system is given in terms of
interpretations forO following the so-called standard names
assumption (Calvanese et al. 2007a). This means that the do-
main of every interpretation is Const , with every constant in
the signature interpreted as itself. Note that this also implies
the unique name assumption. We say that an interpretation I
for O is a model of an OBDM system Σ = 〈〈O,S,M〉, D〉
if (i) I |= O, and (ii) (D, I) |=M, where (D, I) is the in-
terpretation obtained from I by adding the set of facts corre-
sponding toD. We denote by mod(〈J,D〉) the set of models
of an OBDM system 〈J,D〉, and when mod(〈J,D〉) 6= ∅we
say that D is consistent with J . We next provide an example
of OBDM specification.

Example 1. Let J = 〈O,S,M〉 be an OBDM specifi-
cation such that O = ∅, S = {s1/2, s2/1, s3/1} and
M = {m1,m2,m3,m4}, where:

m1 : ∀x1, x2.s1(x1, x2) → E(x1, x2)
m2 : ∀x.s1(x, x) → SN(x)
m3 : ∀x.s2(x) → ∃z.E(x, z)
m4 : ∀x.s3(x) → E(x, x)

The mapping M of J establishes how predicates in the
schema S relate to the ontology predicates E (which stands
for edge) and SN (which stands for special node). 4

A query q of arity n over the signature of an ontology O
is a function whose domain is the power set of the set of all
the interpretations for the ontology, and whose range is the
power set of the set of all n-tuples of constants in Const . A
query q over J = 〈O,S,M〉 is a query over the signature of
the ontology O that, for every S-database D, associates to
mod(〈J,D〉) a set of tuples of constants. The answers to q
with respect to the OBDM system 〈J,D〉, denoted as qJ,D,
is obtained by applying the function q to the set of models
mod(〈J,D〉). Although our framework is general enough to
accept any kind of function as query, a very common method
for defining qJ,D when q is expressed as a FOL query is by
sanctioning that the function q applied to mod(〈J,D〉) re-
turns the set of certain answers. A certain answer is a tuple
of constants in Dom(J,D, q) that, once assigned to the dis-
tinguished variables of q, satisfies of q in every model in
mod(〈J,D〉). Here, Dom(J,D, q) is the set of all constants
occurring in J , D, and q.

Given a set of constants Λ ⊆ Const , we denote by qJ,D|Λ
the answers to q w.r.t. 〈J,D〉 restricted to the constants of
Λ, i.e., qJ,D|Λ = qJ,D ∩ Λn.

The class of monotone queries is particularly important
in this paper. In the context of an OBDM specification
J = 〈O,S,M〉, a query q over J is monotone if, for every

pairs of S-databases D,D′, mod(〈J,D〉) ⊆ mod(〈J,D′〉)
implies qJ,D

′

Λ(D,D′) ⊆ qJ,DΛ(D,D′), where Λ(D,D′) =

Dom(J,D, q) ∩ Dom(J,D′, q). This captures the usual in-
tuition of monotonicity of queries in logic: when the knowl-
edge possessed by the formal system increases (i.e., the set
of models decreases), the answers to a query increase. Note
that the restriction on the constants occurring in both the ac-
tive domains of D and D′ (other than in J and q) is imposed
for ensuring that the property of monotonicity looks only for
those constants occurring in both databases. We use MJ to
denote the class of all monotone queries in the context of J ,
and when J is understood, we simply use M. Note that, for
each OBDM specification J , MJ includes the whole class
of FOL queries evaluated under the certain answer seman-
tics, that is arguably the most studied class in both the KR
and the DB literature.

For two queries q1 and q2 over J , we write q1 vJ q2 if
qJ,D1 ⊆ qJ,D2 for each S-database D, and write q1 @J q2 if
q1 vJ q2 and qJ,D1 ⊂ qJ,D2 for at least one S-database D.
We say that q1 and q2 are J-equivalent if both q1 vJ q2 and
q2 vJ q1 hold.

3 Framework
In what follows, we implicitly refer to an OBDM specifica-
tion J = 〈O,S,M〉, and when we denote a query by qO
(resp., qS) we mean that the query is a query for J (resp.,
a source query), i.e., is over the signature of the ontology
O (resp., the schema S). We follow (Cima, Lenzerini, and
Poggi 2019) for the basic definitions related to abstraction.

We say that qO is a perfect J-abstraction of qS if qJ,DO =
qDS , for each S-database D consistent with J .

As the condition for an ontology query to be a perfect
abstraction of a source query is a strong one, it might be very
well the case that a perfect abstraction of a source query does
not exist. It is then reasonable to consider weaker notions,
such as sound or complete approximations, of perfectness.

We say that qO is a complete (resp. sound) J-abstraction
of qS if qDS ⊆ qJ,DO (resp. qJ,DO ⊆ qDS), for each S-database
D consistent with J .

Obviously, we might be interested in complete or sound
abstractions that approximate qS at best, at least in the con-
text of a specific class of queries. If LO is a class of queries,
we say that a query qO ∈ LO is an LO-minimally complete
(resp., LO-maximally sound) J-abstraction of qS if qO is a
complete (resp., sound) J-abstraction of qS and there is no
query q′O ∈ LO such that q′O is a complete (resp., sound)
J-abstraction of qS and q′O @J qO (resp., qO @J q′O).

We now introduce a new language, called Datalog∨K, for
expressing queries over OBDM specifications. The language
is based on disjunctive Datalog, and is used in this pa-
per for expressing abstractions. The basic component of a
Datalog∨K query is a rule. Assume two disjoint and count-
ably infinite sets of predicates E and P , called extensional
and intensional, respectively. A Datalog∨K rule has one of
the following forms:
• The typical form of disjunctive Datalog, i.e.,

γ(x̄)→ α1(x̄1) ∨ . . . ∨ αn(x̄n) (1)

5558

where γ(x̄) is a conjunction of relational atoms on the
predicates of P with x̄ as variables, and for i = 1, . . . , n,
αi(x̄i) is a single relational atom whose predicate is in P
such that x̄i ⊆ x̄,
• A new form specified as follows

K(∃z̄.φ(x̄, z̄) ∧ ξ(x̄))→ ψ1(x̄1) ∨ . . . ∨ ψn(x̄n) (2)

where φ(x̄, z̄) is a conjunction of relational atoms on the
predicates of E , ξ(x̄) is a conjunction of inequality atoms
involving only variables from x̄ and for j = 1, . . . , n,
ψj(x̄j) = ∃ȳj .γj(x̄j , ȳj), where γj(x̄j , ȳj) is a conjunc-
tion of relational atoms on P such that x̄j ⊆ x̄.

An n-ary Datalog∨K query qO over an OBDM specifica-
tion J is a finite set of Datalog∨K rules whose extensional
predicates coincide with the alphabet ofO, and whose inten-
sional predicates include a special n-ary predicate Ans. The
semantics of qO is provided relative to an OBDM system.
Given an OBDM system 〈J,D〉, an interpretation for qO is
a pair I = (mod(〈J,D〉), f), where f is a first-order inter-
pretation (with domain Const) for the predicates in P . As
usual, we may also see f as the set of facts {p(c̄) | c̄ ∈ pf}.
We now define when I satisfies a Datalog∨K rule.
• I satisfies a rule of the form (1) if the first-order formula
∀x̄.γ(x̄)→ α1(x̄1) ∨ . . . ∨ αn(x̄n) is true in f ,
• I satisfies a rule of the form (2) if for all tuples c̄ of

constants, the fact that c̄ is a certain answers to the FOL
query ∃z̄.φ(x̄, z̄)∧ ξ(x̄) w.r.t. 〈J,D〉 implies that f satis-
fies the formula ∃ȳj .γj(c̄j , ȳj), for some j = 1, . . . , n.

An interpretation I for qO is called a model of qO
if all the rules of qO are satisfied by I . Finally, we
define the notion of answers to an n-ary Datalog∨K
query qO w.r.t. an OBDM system 〈J,D〉, denoted by
qJ,DO , as follows: {c̄ ∈ Dom(J,D, qO)n | c̄ ∈
Ansf for each model (mod(〈J,D〉), f) of qO}.
Example 2. Consider the OBDM specification J illustrated
in Example 1. The following Datalog∨K query qO over J re-
turns all the pairs (v1, v2) of special nodes that are known
to be distinct and such that there is a path from v1 to v2

passing only for nodes known to be special:

K(E(x1, x2) ∧ SN(x1) ∧ SN(x2)) → T1(x1, x2)
K(SN(x1) ∧ SN(x2) ∧ x1 6= x2) → T2(x1, x2)
T1(x1, y) ∧ T1(y, x2) → T1(x1, x2)
T1(x1, x2) ∧ T2(x1, x2) → Ans(x1, x2) 4

The following proposition shows that Datalog∨K is a
monotone query language.
Proposition 1. Every Datalog∨K query over J is in MJ , for
every OBDM specification J .

The semantics should make it clear that K is the knowl-
edge operator in the S5 epistemic logic: the formula KA
should be read as “A is known (i.e., logically implied) by the
system” (Levesque and Lakemeyer 2001). Therefore, when
accessing the information modeled by 〈J,D〉, a Datalog∨K
query extracts what is known by the system, and this char-
acteristic is crucial for not falling into undecidability result-
ing from using Datalog rules jointly with Description Logics

(see (Levy and Rousset 1998; Calvanese and Rosati 2003)),
as stated in the following proposition.

Proposition 2. Let Σ be an OBDM system. Answering
Datalog∨K queries w.r.t. Σ is decidable if and only if answer-
ing CQs w.r.t. Σ is decidable1.

Although our framework is general enough to consider
any DL for expressing ontologies and any query language
for expressing source queries, in the rest of this paper we
will carry out our investigation in the following setting:
(i) ontologies are expressed in DL-LiteRDFS, and (ii) source
queries are expressed as UCQs.

At this point, one may wonder whether Datalog∨K is the
right language to express monotone abstractions in this set-
ting. While a thorough analysis of the language is outside the
scope of the present paper, the following proposition pro-
vides a positive answer to this question, at least from the
computational point of view.

Proposition 3. In our setting, (i) answering Datalog∨K
queries is in coNP in data complexity, and (ii) there ex-
ists an OBDM specification J and a CQ qS such that, given
an S-database D, answering the M-maximally sound J-
abstraction of qS is coNP-hard in data complexity.

To ease the presentation, from now on we assume that
mappings and source queries do not mention constants.
However, all our results can be straightforwardly adapted to
the case where constants are allowed.

4 Minimally Complete Abstractions
We now prove that M-minimally complete J-abstractions
of UCQs always exist and can be expressed in Datalog∨K.
Actually, a fragment of Datalog∨K suffices for this purpose,
namely the one using only rules of form (2) without disjunc-
tion. We start with some useful subroutines.

Given a CQ qS = {x̄ | ∃ȳ.φ(x̄, ȳ)}, the subroutine
SaturateQ(qS) computes a UCQ6= in the following way:
for each possible unifier µ on the variables in x̄ ∪ ȳ such
that µ(x) ∈ x̄ for each x ∈ x̄, SaturateQ(qS) contains a
query obtained from µ(qS) by adding the inequality atom
t1 6= t2 for each pair of distinct variables t1, t2 occurring
in µ(qS). For a UCQ qS , we denote by SaturateQ(qS) the
UCQ6= obtained by applying SaturateQ(q) to each disjunct
q of qS . We write each CQ6= q generated by SaturateQ(qS)
as q = {x̄ | ∃ȳ.φ(x̄, ȳ)∧ξ(x̄, ȳ)}, where φ(x̄, ȳ) and ξ(x̄, ȳ)
are the conjunctions of the relational atoms over S and of the
inequality atoms, respectively, occurring in the body of q.

Moreover, for an OBDM specification J = 〈O,S,M〉
and a CQ6= q = {x̄ | ∃ȳ.φ(x̄, ȳ)∧ξ(x̄, ȳ)} over S , we denote
by rq the following Datalog∨K rule of form (2):

rq = K(∃z̄.>(x̄) ∧M(q) ∧ ξ(x̄, Ȳ))→ Ans(x̄),

where (i) >(x̄) denotes >(x1) ∧ . . . ∧ >(xn) for x̄ =
(x1, . . . , xn), (ii)M(q) is computed by simply ignoring the
inequality atoms and chasing the set of relational atoms oc-
curring in the body of q; (iii) Ȳ ⊆ ȳ is the subset of the

1With answering we implicitly refer to the associated recogni-
tion problem, i.e., check whether a tuple is in the answer to a query.

5559

existential variables of q occurring in M(q); (iv) z̄ are the
fresh variables introduced when computing M(q); and (v)
ξ(x̄, Ȳ) is the conjunction of the inequality atoms obtained
from ξ(x̄, ȳ) by removing all those atoms of the form y 6= t
and t 6= y in which y is an existential variable occurring
in ȳ but not in Ȳ (i.e., not in M(q)) and t is any other
possible variable. Observe that the epistemic operator is ex-
ploited to bind the existential variables coming from q. This
is achieved by pushing the subset Ȳ of the existential vari-
ables ȳ of q occurring inM(q) inside the K operator.

We are now ready to present the algorithm
M-MinComplete for computing the M-minimally
complete J-abstractions. Given an OBDM specifica-
tion J = 〈O,S,M〉 and a UCQ qS over S such that
SaturateQ(qS) = q1 ∪ . . . ∪ qn, M-MinComplete(J, qS)
outputs the Datalog∨K query qO = {rq1 , . . . , rqn} over J .
Example 3. Consider the OBDM specification J illustrated
in Example 1 and the CQ qS = {(x) | ∃y.s1(x, y)} over
S . One can verify that M-MinComplete(J, qS) returns the
following Datalog∨K query qO over J asking for all those
nodes v such that either v is connected to a node v′ known
to be different from v or v is a special node with a self-loop:

K(E(x, y) ∧ x 6= y) → Ans(x)
K(E(x, x) ∧ SN(x)) → Ans(x)

Note that qO is a better complete approximation than the
query {(x) | ∃y.E(x, y)}, which is the UCQ-minimally
complete J-abstraction of qS (Cima, Lenzerini, and Poggi
2019). 4
Theorem 1. M-MinComplete(J, qS) terminates and re-
turns the unique (up to J-equivalence) M-minimally com-
plete J-abstraction of qS .

Furthermore, we observe that the result of
M-MinComplete(J, qS) is independent from the asser-
tions occurring in the ontology of the OBDM specification
J . Similar results can be obtained for OBDM specifications
based on more expressive Horn DL ontologies.

Before concluding this section, we point out that answer-
ing Datalog∨K queries returned by M-MinComplete(J, qS)
w.r.t. OBDM systems of our setting is FOL-rewritable, as
the following proposition shows.
Proposition 4. Let qO be a Datalog∨K with only rules of
the form K(∃z̄.φ(x̄, z̄) ∧ ξ(x̄))→ Ans(x̄a) over an OBDM
specification J . It is possible to compute a UCQ6= qr over S
such that qJ,DO = qDr , for each S-database D.

5 Maximally Sound Abstractions
We present the algorithm M-MaxSound for the computa-
tion of M-maximally sound J-abstractions of UCQs. The
output of M-MaxSound is a Datalog∨K query, thus proving
that such abstractions always exist and can be expressed in
Datalog∨K. To present our algorithm, we first need to intro-
duce the notion of inverse mappings, which extends the one
introduced in (Duschka and Genesereth 1998) for the prob-
lem of rewriting queries using disjunctive views2.

2We refer to (Cima et al. 2021) for the relation between abstrac-
tion and the problem of rewriting queries using disjunctive views.

To ease the presentation of our techniques, we now in-
troduce a technical tool to encode a DL-LiteRDFS ontology
into a set of GLAV mapping assertions. Given a conjunc-
tion of atoms ψ over a DL-LiteRDFS ontology O, we de-
note by O(ψ) the conjunction of atoms over O obtained
by chasing the atoms in ψ w.r.t. O as described in (Cal-
vanese et al. 2007b). Note that, since O is a DL-LiteRDFS

ontology, O(ψ) is always finite and do not introduce fur-
ther existential variables. Starting from an OBDM speci-
fication J = 〈O,S,M〉, we can generate an equivalent
OBDM specification J ′ = 〈∅,S,M′〉 as follows. For each
mapping assertion m ∈ M of the form ∀x̄.∀ȳ.φ(x̄, ȳ) →
∃z̄.ψ(x̄, z̄), the mapping M′ contains the mapping asser-
tion ∀x̄.∀ȳ.φ(x̄, ȳ) → ∃z̄.O(ψ(x̄, z̄)). From now on, with-
out loss of generality, we assume OBDM specifications
with an empty set of ontological assertions. Furthermore,
in each mapping M relating a source schema S to an on-
tology O, again without loss of generality we assume that
M contains the assertion ∀x1, . . . , xn.s(x1, x2, . . . , xn) →
>(x1)∧>(x2)∧. . .∧>(xn) for each n-ary predicate s ∈ S .

5.1 Inverse Mapping
Our algorithm for the computation of M-maximally sound
abstractions is based on the notion of inverse mappings. In-
tuitively, given a GLAV mappingM, the inverse of m ∈M
is a Datalog∨K rule that characterizes those that may give rise
to an homomorphic image of the head of m when chased
with M. To compute inverse mappings, we will define the
algorithm InvMap. In order to define such algorithm, we
need to introduce several additional notions.

Splitting. Given a set of relational atoms A and a set of
variables U occurring in A, we define the U -graph GUA of A
as follows: (i) each atom α in A is a node of GUA, and (ii)
there is an edge between nodes α1, α2 ∈ A if and only if
there exists a variable z ∈ U such that z occurs in both α1

and α2. The splitting of A around U (written Split(A,U))
is the set of all those C ⊆ A such that the atoms in C form
a connected component of GUA, i.e., C is a maximal subset
of A s.t. there exists a path from α to α′ in GUA, for each
α, α′ ∈ C. Whenever necessary, we will assume that sets in
Split(A,U) are presented as a tuple.

Saturate. Given a GLAV mapping M, the algorithm
SaturateM(M) produces an equivalent set of rules with ex-
plicit inequalities on the frontier variables. Given a GLAV
mapping assertion m = ∀x̄.∀ȳ.φ(x̄, ȳ) → ∃z̄.ψ(x̄, z̄), the
algorithm SaturateM(m) computes a set of rules in the fol-
lowing way: for each possible unifier µ between the vari-
ables in x̄, SaturateM(m) contains a rule obtained from
µ(m) by adding the inequality atom x1 6= x2 in the body of
µ(m), for each pair of distinct variables x1, x2 ∈ µ(x̄). For a
GLAV mappingM, we denote by SaturateM(M) the set of
rules obtained by applying SaturateM(M) to each mapping
assertion m ofM. It is easy to see that (D, I) |=M if and
only if (D, I) |= SaturateM(M). We call each assertion
in SaturateM(M) a saturated GLAV mapping assertion and
SaturateM(M) a saturated GLAV mapping. We write each
rule m ∈ SaturateM(M) as φ(x̄, ȳ) ∧ ξ(x̄) → ∃z̄.ψ(x̄, z̄),
where φ(x̄, ȳ) and ψ(x̄, z̄) are conjunctions of relational

5560

atoms over S and over O, respectively, whereas ξ(x̄) is a
conjunction of inequality atoms. We write r-body(m) for
the set of relational atoms in φ(x̄, ȳ), and, as in GLAV map-
pings, head(m) for the set of relational atoms in ψ(x̄, z̄).

Generators and Supports. Assume a saturated GLAV
mapping M from a source schema S to an ontology O.
Without loss of generality, we assume that mapping asser-
tions in M use distinct variables. Given a set of atoms A
over O, a generator of A w.r.t. M is a pair g = 〈h,m〉,
where h is a homomorphism from A to the head of m and
m ∈ M. A generator g is V -distinguished, for some V ⊆
Var(A), if h(v) is a frontier variable of m, for each v ∈ V ,
and h(u) is not a frontier variable of m, for each u 6∈ V . We
write Gens(A,M, V) for the set of V -distinguished gener-
ators of A w.r.t.M. Intuitively, a generator g = 〈h,m〉 of A
w.r.t.M represents a possible way to obtain a homomorphic
copy B ⊆ M(D) of A by applying m to an S-database D.
If such generator is V -distinguished, then the only constants
occurring in B are images of the variables in V .
Example 4. LetM = {mA,mB ,mC ,mD}, where:

mA : s1(x1, x2) ∧ x1 6= x2 → ∃Z.P1(x1, Z) ∧ P2(Z, x2),

mB : s(x3, x4) ∧ x3 6= x4 → ∃Z′.P1(x3, Z
′) ∧ P2(Z

′, x4),

mC : s3(x5, y1) ∧ s4(y1, y2)→ P1(x5, x5),

mD : s5(x6, x7) ∧ x6 6= x7 → P1(x6, x7) ∧ P2(x7, x6).

For the set of atoms A1 = {P1(x1, Z), P2(Z, x2)}, we
have that Gens(A1,M, {x1, x2}) = {g1, g2} with g1 =
〈h1,mA〉 and g2 = 〈h2,mB〉 where h1 is the identity func-
tion, whereas h2(x1) = x3, h2(x2) = x4, and h2(Z) = Z ′.

For the set of atoms A2 = {P1(x1, Z)}, we have that
Gens(A2,M, {x1, Z}) = {g3, g4} with g3 = 〈h3,mC〉
and g4 = 〈h4,mD〉 where h3(x1) = x5 and h3(Z) = x5,
whereas h4(x1) = x6 and h4(Z) = x7.

For the set of atoms A3 = {P2(Z, x2)}, we have that
Gens(A3,M, {Z, x2}) = {g5} with g5 = 〈h5,mD〉 where
h5(Z) = x7 and h5(x2) = x6. 4

We now extend the notion of generators to the case of
multiple applications of mapping assertions. Given a tuple
of sets of atoms A = 〈A1, . . . , An〉 and a set of variables
V ⊆ Var(A1)∪ . . .∪Var(An), the V -distinguished gener-
ators of A w.r.t.M are all the tuples G = 〈g1, . . . , gn〉 such
that gi ∈ Gens(Ai,M, V), for each i = 1, . . . , n. With a
slight abuse of notation, we use Gens(A,M, V) to denote
the set of all tuples of V -distinguished generators of ele-
ments of A w.r.t.M and we call generator of A every such
tuple. Intuitively, each G ∈ Gens(A,M, V) represents a
possible way to obtain a homomorphic copy of A using a
single assertion ofM for each A ∈ A.
Example 5. Refer to Example 4. For A = 〈A1〉 and A′ =
〈A2, A3〉, we have Gens(A,M, {x1, x2}) = {G1, G2} and
Gens(A′,M, {x1, x2, Z}) = {G3, G4}, resp., where G1 =
〈g1〉, G2 = 〈g2〉, G3 = 〈g3, g5〉, and G4 = 〈g4, g5〉. 4

We now characterize those databases D for whichM(D)
contains an homomorphic copy of A generated using the
the mappings constituting some G ∈ Gens(A,M, V). To
this end, we define a formula σG that we call the sup-
port of G ∈ Gens(A,M, V). Given G = 〈g1, . . . , gn〉 in

Gens(A,M, V) with gi = 〈hi,mi〉 for each i = 1, . . . , n,
let 〈ρ1, . . . , ρn〉 be a tuple of renaming for the variables of
Mwhose images are pairwise disjoint. For i = 1, . . . , n, we
define βi = ρi(r-body(mi)) and σG =

∧
i ρi(r-body(mi)).

Intuitively, each βi represents a set of relational source
atoms that is needed to generate an homomorphic image of
hi(Ai) using mi.
Example 6. Refer to Example 5. We have σG1 = s1(x′1, x

′
2),

σG2 = s(x′3, x
′
4), σG3 = s3(x′5, y

′
1) ∧ s4(y′1, y

′
2) ∧

s5(x′′6 , x
′′
7), and σG4 = s5(x′6, x

′
7) ∧ s5(x′′6 , x

′′
7). 4

In order to connect together the different hi(Ai) to form
an image of A, we need to impose further restrictions on
the variables of σG. These restrictions will take the form
of equalities. Let ηG denote binary relation over Var(σG)
defined as follows: for each i, j = 1, . . . , n, and v ∈ V ,
(ρi(hi(v)), ρj(hj(v))) ∈ ηG. Moreover, given a set x̄ ⊆ V ,
let η[x̄] denote the binary relation over Var(σG) ∪ x̄ de-
fined as follows: for each i = 1, . . . , n, and x ∈ x̄,
(x, ρi(hi(x))) ∈ η[x̄]. We use η[x̄]

G to denote the reflexive
and transitive closure of ηG ∪ η[x̄].

Example 7. Refer to Example 6. We have that η[{x1,x2}]
G1

,

η
[{x1,x2}]
G2

, η
[{x1,x2}]
G3

, and η
[{x1,x2}]
G4

are the reflex-
ive and transitive closure of {(x1, x

′
1), (x2, x

′
2)},

{(x1, x
′
3), (x2, x

′
4)}, {(x′5, x′′7), (x1, x

′
5), (x2, x

′′
6)},

{(x′7, x′′7), (x1, x
′
6), (x2, x

′′
6)}, respectively. 4

As customary, for each equivalence class E of η[x̄]
G , we

select an element s(E) ∈ E as representative; if E con-
tains elements of x̄, we require s(E) ∈ x̄. Moreover, given
v ∈ Var(σG), we use v∼G,x̄ to denote the equivalence class
of η[x̄]

G that contains v. Finally, we define the x̄-support σx̄G
of G as the formula ∃w̄.η[x̄]

G (σG), where η
[x̄]
G (σG) is ob-

tained from σG by replacing each variable v ∈ Var(σG)

with s(v∼G,x̄) and w̄ are the variables of η[x̄]
G (σG) not oc-

curring in x̄.
Example 8. Refer to the previous example. We have that
σ
{x1,x2}
G1

= s1(x1, x2), σ{x1,x2}
G2

= s(x1, x2), σ{x1,x2}
G3

=

∃y′1, y′2.s3(x1, y
′
1)∧s4(y′1, y

′
2)∧s5(x2, x1), and σ{x1,x2}

G4
=

∃x′7.s5(x1, x
′
7) ∧ s5(x2, x

′
7). 4

The InvMap Algorithm. We are now ready to formally
define the InvMap algorithm. In the algorithm, we use
Partitions(z̄), where z̄ is a set of variables, to denote
the set of all 2-tuples of pairwise disjoint sets 〈U, V 〉 such
that U ∪ V = z̄. Intuitively, given an OBDM specifica-
tion J = 〈O,S,M〉, InvMap(J) returns a set of Datalog∨K
rules that represents a sound inverse ofM w.r.t.O, i.e., a set
of formulae that, given an S-database D, characterize those
databases D′ such that mod(J,D) ⊇ mod(J,D′). Equiva-
lently, given an S-database D, InvMap(J) characterizes all
those databases D′ such that M(D′) is an homomorphic
copy ofM(D).

In order to define a sound inverse of M w.r.t. O,
InvMap(J) relies on the notions of supports and genera-
tors. More specifically, for every saturated mapping asser-
tion φ(x̄, ȳ) ∧ ξ(x̄) → ∃z̄.ψ(x̄, z̄), InvMap(J) contains

5561

Algorithm 1: InvMap

Input: OBDM specification 〈∅,S,M〉
Output: SetR of Datalog∨K rules

1: M′ = SaturateM(M)
2: R = ∅
3: for all m : φ(x̄, ȳ) ∧ ξ(x̄)→ ∃z̄.ψ(x̄, z̄) ∈M′ do
4: Γ = ∅
5: for all 〈U, V 〉 ∈ Partitions(z̄) do
6: Let Sψ = Split(ψ,U)
7: for all G ∈ Gens(Sψ,M′, V ∪ x̄) do
8: if (x, x′) 6∈ η[x̄]

G for each x, x′ ∈ x̄ s.t. x 6= x′ then
9: Let σx̄G be the x̄-support of G

10: Γ = Γ ∪ {σx̄G}
11: end if
12: end for
13: end for
14: inv(m) = K(∃z̄.ψ(x̄, z̄) ∧ ξ(x̄))→

∨
γ∈Γ γ

15: R = R∪ {inv(m)}
16: end for
17: returnR

a Datalog∨K rule of the form K(∃z̄.ψ(x̄, z̄) ∧ ξ(x̄)) →∨
γ∈Γ γ, where Γ is the set of all x̄-supports of the generators

of all possible splittings of ψ. Intuitively, the latter guaran-
tees that, if (mod(〈J,D〉), D′) satisfies InvMap(J), for ev-
ery atom α ∈M(D), then there exists an assertion m ∈M
such that h(body(m)) ⊆ D′ and `(α) ∈ h(head(m)),
where h and ` are homomorphisms.

Example 9. Consider the OBDM specification J illustrated
in Example 1. One can verify that InvMap(J) returns the
following setR of Datalog∨K rules:

K(E(x1, x2) ∧ x1 6= x2) → s1(x1, x2)
K(E(x, x)) → s3(x) ∨ s1(x, x)
K(∃z.E(x, z)) → s2(x) ∨ ∃y.s1(x, y) ∨ s3(x)
K(SN(x)) → s1(x, x) 4

In the reminder of this section, we introduce two cru-
cial properties of the InvMap algorithm. Assume an OBDM
specification J and an S-database D. One can show that
(mod(〈J,D〉), D) satisfies InvMap(J).

Lemma 1. For every S-database D, (mod(〈J,D〉), D) |=
InvMap(J).

As it will turn out, Lemma 1 guarantees that our approx-
imation is sound. Moreover, one can show that, whenever
(mod(〈J,D〉), D′) |= InvMap(J), we have thatM(D) can
be homomorphically mapped into M(D′). Informally, this
property guarantees that our approximation is maximal.

Lemma 2. For every pair of S-databases D,D′ such that
(mod(〈J,D〉), D′) |= InvMap(J), there exists a homomor-
phism fromM(D) toM(D′).

5.2 Maximally Sound Abstraction Algorithm
With the InvMap algorithm and its properties at hand, we
are now ready to focus on the problem of computing the
M-maximally sound J-abstractions. First, let us introduce

some additional notations. For an OBDM specification J =
〈O,S,M〉, the standard predicate renaming of J , denoted
by renJ , is the renaming such that renJ(s) = s′, for every
s ∈ S , where s′ is an IDB predicate with ar(s) = ar(s′).
Furthermore, with a slight abuse of notation, given a set of
formulae Ψ over S ∪ O, we write renJ(Ψ) for the set of
formulae obtained from Ψ by replacing each occurrence of
s in Ψ with renJ(s), for each s ∈ S .

We can now present the algorithm M-MaxSound for com-
puting the M-maximally sound J-abstractions. Given an
OBDM specification J = 〈O,S,M〉 and a UCQ qS =
q1
S ∪ . . .∪qnS over S such that qiS = {x̄i | ∃ȳi.φi(x̄i, ȳi)} for

each i = 1, . . . , n, M-MaxSound(J, qS) simply outputs the
Datalog∨K query qO = renJ(Ψ), where Ψ = InvMap(J) ∪
{φ1(x̄1, ȳ1)→ Ans(x̄1)}∪. . .∪{φn(x̄n, ȳn)→ Ans(x̄n)}.

We conclude this section by establishing termination and
correctness of the M-MaxSound algorithm.

Theorem 2. M-MaxSound(J, qS) terminates and returns
the unique (up to J-equivalence) M-maximally sound J-
abstraction of qS .

6 Perfect Abstractions
It follows from Theorem 1 that either the perfect abstraction
of a source UCQ can be expressed in Datalog∨K, or it cannot
be expressed as a monotone query (if it exists at all). We
now present an algorithm that, given an OBDM specification
J and a source UCQ qS , returns the perfect J-abstraction
of qS , if and only if it exists and is in M. To this aim, we
make use of Proposition 4, and refer to the qr defined in that
proposition as the rewriting of qO w.r.t. J .

Our algorithm, that we call M-Perfect, goes as follows.
Given an OBDM specification J = 〈O,S,M〉 and a UCQ
qS over S as input: if qO = M-MinComplete(J, qS) is such
that qr vS qS ; then return qO; otherwise, report “no per-
fect J-abstraction of qS is in M”.

Example 10. In Example 3, M-Perfect(J, qS) returns qO,
which is the perfect J-abstraction of qS . 4

We conclude this section by establishing termination and
correctness of the M-Perfect algorithm.

Theorem 3. M-Perfect(J, qS) terminates and returns the
unique (up to J-equivalence) perfect J-abstraction of qS if
and only if such an abstraction can be expressed in M.

7 Conclusion
We presented a thorough study of monotone abstractions
of UCQs in OBDM systems. We proved that best approx-
imations of such abstractions always exist and introduced a
query language, Datalog∨K, that captures them. Directions
for future work are many. In the context of monotone ab-
stractions, we would like to investigate the case of more ex-
pressive ontology languages, e.g., DL-LiteR, as well as more
expressive source query languages, e.g., unions of conjunc-
tive queries with inequalities and disjunctive Datalog. Fi-
nally, the problem of checking whether given best approx-
imations are expressible in simpler and more user friendly
languages remains open.

5562

Acknowledgements
This work has been partially supported by the ANR AI Chair
INTENDED (ANR-19-CHIA-0014), by MIUR under the
PRIN 2017 project “HOPE” (prot. 2017MMJJRE), and by
the EU under the H2020-EU.2.1.1 project TAILOR, grant
id. 952215.

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. F., eds. 2003. The Description Logic
Handbook: Theory, Implementation and Applications. Cam-
bridge University Press.

Bienvenu, M. 2016. Ontology-Mediated Query Answering:
Harnessing Knowledge to Get More from Data. In Proceed-
ings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence (IJCAI 2016), 4058–4061.

Brickley, D.; and Guha, R. V. 2014. RDF Schema 1.1. W3C
Recommendation, World Wide Web Consortium. Avail-
able at https://www.w3.org/TR/2014/REC-rdf-schema-
20140225/.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini,
M.; and Rosati, R. 2007a. EQL-Lite: Effective First-Order
Query Processing in Description Logics. In Proceedings
of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI 2007), 274–279.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007b. Tractable Reasoning and Efficient
Query Answering in Description Logics: The DL-Lite Fam-
ily. Journal of Automated Reasoning, 39(3): 385–429.

Calvanese, D.; and Rosati, R. 2003. Answering recursive
queries under keys and foreign keys is undecidable. In Pro-
ceedings of the Tenth International Workshop on Knowledge
Representation meets Databases (KRDB 2003), volume 79
of CEUR Electronic Workshop Proceedings.

Cima, G. 2017. Preliminary Results on Ontology-based
Open Data Publishing. In Proceedings of the Thirtieth In-
ternational Workshop on Description Logics (DL 2017), vol-
ume 1879 of CEUR Electronic Workshop Proceedings.

Cima, G. 2022. Abstraction in Ontology-based Data Man-
agement, volume 348 of Frontiers in Artificial Intelligence
and Applications. IOS Press.

Cima, G.; Console, M.; Lenzerini, M.; and Poggi, A. 2021.
Abstraction in Data Integration. In Proceedings of the
Thirty-Sixth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS 2021), 1–11.

Cima, G.; Croce, F.; and Lenzerini, M. 2021. Query De-
finability and Its Approximations in Ontology-based Data
Management. In Proceedings of the Thirtieth International
Conference on Information and Knowledge Management
(CIKM 2021), 271–280.

Cima, G.; Lenzerini, M.; and Poggi, A. 2019. Semantic
Characterization of Data Services through Ontologies. In
Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence (IJCAI 2019), 1647–1653.

Cima, G.; Lenzerini, M.; and Poggi, A. 2020a. Answering
Conjunctive Queries with Inequalities in DL-LiteR. In Pro-
ceedings of the Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI 2020), 2782–2789.
Cima, G.; Lenzerini, M.; and Poggi, A. 2020b. Non-
Monotonic Ontology-based Abstractions of Data Services.
In Proceedings of the Seventeenth International Conference
on Principles of Knowledge Representation and Reasoning
(KR 2020), 243–252.
Cuenca Grau, B. 2004. A possible simplification of the se-
mantic web architecture. In Proceedings of the Thirteenth
International World Wide Web Conference (WWW 2004),
704–713.
De Giacomo, G.; Lembo, D.; Lenzerini, M.; Poggi, A.; and
Rosati, R. 2018. Using Ontologies for Semantic Data In-
tegration. In A Comprehensive Guide Through the Italian
Database Research Over the Last 25 Years, 187–202.
Duschka, O. M.; and Genesereth, M. R. 1998. Query Plan-
ning with Disjunctive Sources. In Proceedings of the AAAI-
98 Workshop on AI and Information Integration.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data Exchange: Semantics and Query Answering. Theoret-
ical Computer Science, 336(1): 89–124.
Lenzerini, M. 2018. Managing Data through the Lens of an
Ontology. AI Magazine, 39(2): 65–74.
Levesque, H. J.; and Lakemeyer, G. 2001. The Logic of
Knowledge Bases. The MIT Press.
Levy, A. Y.; and Rousset, M.-C. 1998. Combining Horn
Rules and Description Logics in CARIN. Artificial Intelli-
gence, 104(1–2): 165–209.
Lutz, C.; Marti, J.; and Sabellek, L. 2018. Query Express-
ibility and Verification in Ontology-based Data Access. In
Proceedings of the Sixteenth International Conference on
the Principles of Knowledge Representation and Reasoning
(KR 2018), 389–398.
Ortiz, M. 2018. Improving Data Management using Do-
main Knowledge. In Proceedings of the Twenty-Seventh In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI 2018), 5709–5713.
Ortiz, M. 2019. Ontology-Mediated Queries from Ex-
amples: a Glimpse at the DL-Lite Case. In Proceedings
of the Fifth Global Conference on Artificial Intelligence
(GCAI 2019), volume 65 of EPiC Series in Computing, 1–
14.
Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.;
Lenzerini, M.; and Rosati, R. 2008. Linking Data to On-
tologies. Journal on Data Semantics, X: 133–173.
Rosati, R. 2007. The Limits of Querying Ontologies. In
Proceedings of the Eleventh International Conference on
Database Theory (ICDT 2007), volume 4353 of Lecture
Notes in Computer Science, 164–178. Springer.
Xiao, G.; Calvanese, D.; Kontchakov, R.; Lembo, D.; Poggi,
A.; Rosati, R.; and Zakharyaschev, M. 2018. Ontology-
Based Data Access: A Survey. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelli-
gence (IJCAI 2018), 5511–5519.

5563

