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Abstract

In the last few years the field of logic-based knowledge repre-
sentation took a lot of inspiration from database theory. A vital
example is that the finite model semantics in description logics
(DLs) is reconsidered as a desirable alternative to the classical
one and that query entailment has replaced knowledge-base
satisfiability (KBSat) checking as the key inference problem.
However, despite the considerable effort, the overall picture
concerning finite query answering in DLs is still incomplete.
In this work we study the complexity of finite entailment of
local queries (conjunctive queries and positive boolean com-
binations thereof) in the Z family of DLs, one of the most
powerful KR formalisms, lying on the verge of decidability.
Our main result is that the DLs ZOQ and ZOI are finitely
controllable, i.e. that their finite and unrestricted entailment
problems for local queries coincide. This allows us to reuse
recently established upper bounds on querying these logics
under the classical semantics. While we will not solve finite
query entailment for the third main logic in the Z family,
ZIQ, we provide a generic reduction from the finite entail-
ment problem to the finite KBSat problem, working for ZIQ
and some of its sublogics. Our proofs unify and solidify previ-
ously established results on finite satisfiability and finite query
entailment for many known DLs.

1 Introduction
In the last few years the field of logic-based knowledge rep-
resentation took a lot of inspiration from database theory. In
particular, finite model semantics in description logics (DLs)
is reconsidered as a desirable alternative to classical one and
query entailment has replaced knowledge base satisfiability
checking as the key inference problem (Gogacz et al. 2020).
Under classical semantics, that is when arbitrary models are
admitted, the conjunctive query (CQ) entailment problem for
DLs is already quite well understood (Glimm et al. 2008).
The situation is different if we admit only finite models. For
finite query entailment of local queries (CQs and their posi-
tive boolean combinations, known as PEQs), despite the con-
siderable effort, the overall picture is still incomplete.

The main goal of this paper is to contribute to clarifying
this picture by considering the Z (a.k.a. ALCHbSelfreg ) family
of DLs (Calvanese, Eiter, and Ortiz 2009), one of the most
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powerful KR formalisms, lying on the verge of decidabil-
ity (Rudolph 2016). The logics from the Z family incorpo-
rate many different features, the most important of which is
the ability to write regular expressions as building blocks
for complex roles. The most expressive member of the Z
family is ZOIQ, offering nominals (O), inverse roles (I)
and number restrictions (Q). One of the motivations behind
ZOIQ was that another expressive DL SROIQ (Horrocks,
Kutz, and Sattler 2006) can be reduced to ZOIQ (with an
exponential blow-up). SROIQ is of practical interest, as it
serves as a base for OWL 2 the W3C Web Ontology Lan-
guage (Grau et al. 2008). Querying with regular query lan-
guages in undecidable for ZOIQ and the decidability of its
knowledge base (KB) satisfiability problem (KBSat) is still
open (Rudolph 2016). By removing one of the constructors
I ,Q,O, we get, resp., the logics ZOQ,ZOI,ZIQ known
to have better model-theoretic properties and EXPT IME
(resp. 2EXPT IME) KBSat (resp. PEQ entailment) prob-
lems, see: (Calvanese, Eiter, and Ortiz 2009; Bednarczyk and
Rudolph 2019). The proofs of these facts rely on the quasi-
forest model property, which admits automata-theoretic ap-
proach (a reduction to the so-called fully enriched automata).

Not much is known about finite model reasoning in the Z
family. The only result we are aware of is that ZOI has the
finite model property (Calvanese, Ortiz, and Simkus 2016),
i.e. that every satisfiable KB also has a finite model, and thus
the unrestricted and finite satisfiability coincide. It is also
easy to show that this property fails for ZIQ (and even for
ALCIF ). Regarding finite query entailment, to the best of
our knowledge, nothing is known even about Z .

Our Contribution. Our most important result is showing
that ZOQ and ZOI are finitely controllable, i.e. for any
ZOQ or ZOI KB K and any PEQ q it holds that K entails
q over all models iff K entails q over all finite models. This
allows one to reuse the existing algorithms for unrestricted
model semantics (Calvanese, Eiter, and Ortiz 2009; Bednar-
czyk and Rudolph 2019) to infer that finite entailment of
local queries is 2EXPT IME-complete. Note that our results
cover all DLs between ALC and ALCHbOSelf

reg (I/Q) in a
uniform way.

The proof is based on a finite model construction which
starts from an (infinite) quasi-forest model, distinguishes in
this model some finite pattern fragments, and carefully forms
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a new finite model out of some finite number of copies of
those fragments. An important tool used in this process are
automaton roles, a concept applied earlier in the context of
PDL and modal logics, see (Nguyen 2020, Sec. 2.2).

We do not solve the challenging problem of finite PEQ
entailment forZIQ here. However, we demonstrate that this
problem can be effectively reduced to finite KBSat for ZIQ,
making the finite KBSat the main problem to study. We apply
our methods to derive new results for extensions ofALC with
transitive closure of roles (Jung, Lutz, and Zeume 2020) and
to lift some known results about finite CQ entailment for
various DLs to the setting of local queries.

Related Work. As we already mentioned, the topic of fi-
nite CQ over DL ontologies has started receiving more at-
tention only recently. On the positive side, the decidability
of finite CQ entailment in Horn DLs was shown in (Ibáñez-
Garcı́a, Lutz, and Schneider 2014). Another positive example
is the series of papers on CQ entailment for the S family of
logics (Gogacz, Ibáñez-Garcı́a, and Murlak 2018; Gogacz
et al. 2019; Danielski and Kieronski 2019). On the negative
side (Rudolph 2016) proves undecidability of finite querying
in SHOIQ. Worth mentioning are also some related works
going beyond DLs, in particular admitting relations of arity
greater than 2: the guarded fragment, which captures DLs
up to ALCIHbSelf , was shown to be finitely controllable
in (Bárány, Gottlob, and Otto 2014), finite model reasoning
over existential rules is studied in (Gogacz and Marcinkowski
2017; Gottlob, Manna, and Pieris 2018; Amendola, Leone,
and Manna 2017), and finite satisfiability of the unary nega-
tion fragment (in which one can directly express CQs) with
transitive relations in (Danielski and Kieronski 2019).

2 Preliminaries
In this section we provide basic definitions concerning the Z
(a.k.a. ALCHbSelfreg ) family of DLs and the query entailment.

2.1 The Z Family of Description Logics
First we briefly describe the syntax and semantics of the
very expressive DL ZOIQ and its relevant sublogics (Cal-
vanese, Eiter, and Ortiz 2009). For brevity and due to the
space limit we present ZOIQ-KBs in the simple normal
forms, involving in particular automaton roles instead of reg-
ular expressions used originally. They are polynomially com-
putable from original ZOIQ-KBs (cf. e.g. (Jung, Lutz, and
Zeume 2019, p.14)).

Fix infinite and mutually-disjoint sets NI, NC, NR, of in-
dividual names, concept names, and role names. The follow-
ing grammar defines atomic concepts B, concepts C, atomic
roles r , simple roles s , with o ∈ NI, A ∈ NC, p ∈ NR

and a nondeterministic automata (NFA) A over the alphabet
Σ = {p, p− | p ∈ NR} ∪ {id(B) | B ∈ NC}:

B ::= A | > | ⊥ | {o}
C ::= B | ¬C | C u C | C t C | ∀s.C | ∃s.C |

>ns .C | 6ns .C | ∃s.Self | ∃pA.C | ∀pA.C
r ::= p | p−
s ::= r | s ∩ s | s ∪ s | s \ s

The pA in the above grammar are automaton roles. Given an
automaton A and its state s we denote by As the automaton

obtained from A by changing its initial state to s. An asser-
tion is of the form C(o), r(o1, o2), ¬r(o1, o2) for C ∈ NC

and o, o1, o2 ∈ NI. A general concept inclusion (GCI) has
the form C1 v C2. We use C1 ≡ C2 in place of two GCIs
C1 v C2 and C2 v C1. A ZOIQ knowledge base (KB)
K = (A, T ) consists of a finite set A (called ABox) of asser-
tions and a finite set T (called TBox) of GCIs of the form:

A ≡ {o}, A ≡ ¬B, A ≡ B t B′,

A ≡ >ns .B, A ≡ ∃pA.B, A ≡ ∃s.Self
where A,B,B′ are concept names, s is a simple role, pA is
an automaton role, and for every definition A ≡ ∃pA.B in
T and for every state s of A we have that T contains also
As ≡ ∃pAs

.B for some fresh concept name As.
The semantics of ZOIQ is defined via interpretations

I = (∆I , ·I) composed of a non-empty set ∆I called the
domain of I and a function ·I mapping individual names
to elements of ∆I (we call oI for any o ∈ NI nominal
elements), concept names to subsets of ∆I , and role names
to subsets of ∆I ×∆I . A structure is an interpretation with
a partial assignment of names. This mapping is extended to
concepts, and to simple and automaton roles (we omit the
cases for concept intersection, universal restriction, 6n s.C,
and role union/difference).

Name Syntax Semantics
top/bottom >/⊥ ∆I/∅
nominal {o} {oI}
negation ¬C ∆I \ CI

concept union C1 t C2 CI1 ∪ CI2
existential restr. ∃t .C {d | ∃e.(d, e) ∈ tI ∧ e ∈ CI}
number restr. >n s.C {d | #{y ∈ CI | (d, e)∈sI} ≥ n}
Self concept ∃s.Self {d | (d, d) ∈ sI}
inverse role r− {(d, e) | (e, d) ∈ rI}
role intersection s1 ∩ s2 sI1 ∩ sI2
automaton A-role pA {(d, e) | ∃path d e matching A}

.

To define the semantics of automaton roles we first intro-
duce a handy notion of paths matching an automaton. We
say that a path d = d1, d2, . . . , dk = e between d and e in
an interpretation I matches an automaton A if there exist
σ1, σ2, . . . , σk−1 ∈ Σ satisfying, for all indices 1 ≤ i < k,
either (i) σi = r for some (possibly inverted) role r and
(di, di+1) ∈ σIi or (ii) σi = id(B) for some concept name B,
di = di+1, and di ∈ BI , such that the word σ1σ2 . . . σk−1

is accepted by A. Now, with such an A we naturally asso-
ciate the role pA interpreted as the set of all pairs of domain
elements (d, e) with a path from d to e matching A.

Next, we define satisfaction of assertions and GCIs.

Axiom α I |= α, if
C v D CI ⊆ DI TBox T
C(o) oI ∈ CI ABox A
r(o1, o2) (oI1 , o

I
2 ) ∈ rI

¬r(o1, o2) (oI1 , o
I
2 ) 6∈ rI

We say that an interpretation I satisfies a KB K = (A, T )
(or I is a model of K, written: I |= K) if it satisfies all asser-
tions in A and all axioms of T . A KB K is called (finitely)
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satisfiable if it has a (finite) model and (finitely) unsatisfiable
otherwise. From ZOIQ, we obtain ZIQ by disallowing
nominal concepts {o}, ZOQ, by disallowing role inverses
(·)− (also in the alphabet of automaton roles) and ZOI by
disallowing numb. restrictions (>ns .C), (6ns .C) for n6=1.
Finally, ind(K) is the set of all individual names from K.

Given I and ∆0 ⊆ ∆I we denote by I�∆0 the restric-
tion of I to ∆0, that is the structure with the domain ∆0,
mapping each concept name A to ∆0 ∩AI , each role name
p to pI ∩ ∆0 × ∆0, and mapping each individual name
o to oI if oI ∈ ∆0, leaving oI undefined otherwise. For
d ∈ ∆I we define its atomic type as the isomorphism type1

of I�({d} ∪ NomI), where NomI = {oI : o ∈ NI}.
The (finite) KB satisfiability problem (short: (finite) KBSat)
for a DL L is the problem of deciding if a given L-KB is
(finitely) satisfiable. If every satisfiable L-KB has a finite
model then we say that L has the finite model property (short:
fmp). For L with fmp, the KBSat and finite KBSat coincide.

2.2 Queries
Local queries (known as PEQs) are boolean queries gener-
ated with the grammar q , q ′ ::= r(x , y) | A(z ) | q ∨ q ′ |
q ∧ q ′, where r ∈ NR, A ∈ NC and x , y , z are variables
from some countably infinite set NV. PEQs without disjunc-
tion are called conjunctive queries (CQs) and the disjunctions
of CQs are called UCQs. Note that every PEQ can be con-
verted into an equivalent UCQ (of possibly exponential size).
We use |q | to denote the number of atoms in q , and Var(q)
to denote the set of its variables. We define entailment of
PEQs in the usual way (Ortiz and Simkus 2012), i.e. I |= q
if there is a variable assignment η : Var(q)→ ∆I such that
q evaluates to true under η.

We say that a PEQ q is (finitely) entailed by a KB K, writ-
ten: K|=(fin)q , if every (finite) model of K satisfies q . When
I |= K but I 6|= q , we call I a countermodel for K and q ; if
such I is finite, we call it a finite countermodel. The (finite)
query entailment problem for a logic L is defined as follows:
given L KB K and a PEQ q verify if K (finitely) entails q .
A DL L is finitely controllable (short: fc), if for every K and
every PEQ q if there is a countermodel forK and q then there
is also a finite one. For L with fc, the PEQ entailment and
the finite PEQ entailment coincide. Fc implies fmp but not
vice versa. Cf. (Gutiérrez-Basulto, Ibáñez-Garcı́a, and Jung
2017).

Conjunctive queries themselves may be seen as structures:
for a query q we define the structure Iq = (Var(q), ·Iq ) satis-
fying (x , y) ∈ rIq iff r(x , y) ∈ q and x ∈ AIq iff A(x ) ∈ q .
CQ is tree-shaped if its query structure is a tree. A homomor-
phism from I to J is a function that maps every element
of ∆I to some element from ∆J and it preserves concept
and role names. Since CQs can be seen as structures, their
matches can be seen as homomorphisms.

2.3 Quasi-Forest Models
In the analysis of satisfiability and the query entailment prob-
lem for sublogics of ZOIQ a crucial role is played by the
following model-theoretic notion of a quasi-forest model.

1Structures have equal isomorphism type iff are isomorphic.

Definition 2.1 ((Calvanese, Eiter, and Ortiz 2009)). Let K
be a KB. A model I of K is a quasi-forest model if:
• its domain ∆I is a forest, i.e. a non-empty prefix-closed

subset of nodes from (N+)+ (where N+ denotes the set
of positive integers and the superscript + indicates that
we consider sequences of positive length),

• the set of roots of I, denoted with RootsI = ∆I ∩ N+ is
finite and equal to {oI | o ∈ NI} = {oI | o ∈ ind(K)},

• and for every d, e ∈ ∆I with (d, e) ∈ pI , for some
atomic role p, either (i) {d, e}∩RootsI 6= ∅, or (ii) d = e,
or (iii) d is a child of e, i.e. it satisfies d = e · n for some
n ∈ N+, or (iv) e is a child of d.

We always assume that if d·n belongs to ∆I for some n ∈ N+

then for all positive integers n′ < nwe have d·n′ ∈ ∆I . This
is w.l.o.g., as we always can simply rename elements. Thus,
we call d · n the n-th child of d. We refer to the number of
children of d as its degree. Moreover, w.l.o.g. if a role/concept
name is not present in K, then I interprets it as ∅.

A descendant of d ∈ ∆I is any node of the form dw ∈ ∆I

for w ∈ (N+)+. By SubtreeI(d) we denote the set consist-
ing of d and its descendants. Its induced substructure is the
subtree of d. Sometimes we also look at descendants at a cer-
tain distance from d. Hence, we denote with Subtree≤nI (d)
the subset of ∆I consisting of d and all of its descendants of
the form dw for some w ∈ (N+)+ of length at most n.

A KB K has the quasi-forest model property (short: qfmp)
if K is either unsatisfiable or it has a quasi-forest model. A
DL L has the qfmp if every L-KB K has the qfmp. Similarly,
we say that a KB K has quasi-forest controllability (with
respect to PEQs; short: qfc), if for every PEQ q , if there is
a countermodel for K and q then there is also a quasi-forest
countermodel. A DL L has qfc if every L-KB K has the qfc.
Obviously, qfc implies qfmp but not vice-versa.

The following fact about the model-theoretic properties of
the Z family of DLs is well-known:
Theorem 2.2 (Proposition 3.3 from (Calvanese, Eiter, and
Ortiz 2009)). The logics ZOQ,ZOI and ZIQ have qfc.

There are some additional properties that hold for quasi-
forest (counter)models forZOI/ZOQ/ZIQ-KBs. First, we
can assume that degree of each node in I is finite (cf. (Cal-
vanese, Eiter, and Ortiz 2009, p. 719)). Second, in the case
of ZOQ we assume that there are no backward edges in I,
except, possibly, some edges leading to the roots (in particu-
lar, for all d · n, d ∈ ∆I non-nominal, there is no p ∈ NR

s.t. (d · n, d) ∈ pI). This cannot be assumed in ZOI. In-
stead, in ZOI we assume that whenever d needs a witness
path for some concept ∃pA it has a downward witness path,
i.e. a path in which for any two consecutive nodes d, e we
have that either e is a root of I, e is a child of d or d = e,
cf., e.g. (Oritz 2010).

Regarding the complexity of the standard reasoning prob-
lems for the Z family of DLs, the current state of the art
is as follows (Thm. 3.11 (Calvanese, Eiter, and Ortiz 2009),
Thm. 8 (Bednarczyk and Rudolph 2019)):
Theorem 2.3. The KBSat problem and the CQ/UCQ/PEQ
entailment problem for ZOI,ZOQ and ZIQ are, respec-
tively, EXPT IME-complete and 2EXPT IME-complete.
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3 Finite Controllability of ZOQ and ZOI
This section is devoted to proving our main result, namely:

Theorem 3.1. ZOQ and ZOI are finitely controllable.

As an immediate corollary, due to Theorem 2.3, we have:

Corollary 3.2. The finite KB satisfiability problems for
ZOQ and ZOI are EXPT IME-complete, while their finite
PEQ entailment problems are 2EXPT IME-complete (both
even under binary encodings in number restrictions).

In DB theory, one of the most prominent reasoning problems
is query containment, which received also some attention
from the DL community (Calvanese, Ortiz, and Simkus 2011;
Bienvenu, Lutz, and Wolter 2012). Arguing along the lines
of (Calvanese, Eiter, and Ortiz 2009) we can lift our findings
to finite query containment problem. Missing definitions are
in (Calvanese, Eiter, and Ortiz 2009). Up to our knowledge
it is the first result on finite containment of regular queries in
the local ones, in the DL setting.

Corollary 3.3. For a given positive conjunctive regular path
query q , a PEQ q ′ and a ZOQ / ZOI KB K, it is decidable
in 2EXPT IME if K |= q ⊆ q ′ over all finite interpretations.

We proceed with the proof of Thm. 3.1. Until the end we
fix a satisfiable ZOQ/ZOI KB K=(A, T ), a PEQ q and an
interpretation I being a countermodel for K and q . W.l.o.g.
we assume that q is UCQ q =

∨
i qi and we let K be the

maximal number of variables across the qi. We assume that
I is a quasi-forest model of K, possessing all the properties
mentioned in Section 2.3. Moreover, we also assume that K
has the empty ABox (i.e. that its ABox is internalised in its
TBox T with nominals) and that all concept/role names from
q appear also in T (they can be inserted to T in some dummy
way, if necessary). We will find a finite countermodel J for
K and q by distinguishing certain substructures of I and
carefully linking together some number of their copies. The
construction and its correctness proof will be nearly the same
for ZOQ and ZOI; we will pinpoint the minor differences.

Recall that the atomic type of d ∈ ∆I , denoted atpI(d) is
the isomorphism type of I�({d} ∪ NomI). For quasi-forest
models we also want to know how the structure consisting of
the elements being at mostK steps below d looks (recall that
K is the maximal number of variables in the qi). Formally,
the downward type of d, written: dtpI(d), is the isomorphism
type of I�(Subtree≤KI (d) ∪ NomI). We will call the down-
ward types of the nominal elements the nominal (downward)
types. We denote the sets of downward and nominal types
appearing in I with DTPI and, resp., NTPI . The said sets
are finite due to finite branching of I and the fact that the
interpretation of roles/concept names outside T is empty.

3.1 Preparing Building Blocks
Our next step is to define substructures of I called compo-
nents whose copies will serve as basic building blocks in the
construction of J .

For each downward type π ∈ DTPI we fix a domain el-
ement dπ ∈ ∆I having this downward type. We are going
to select a finite subset ∆π of SubtreeI(dπ), which will be-
come the domain of component Cπ. ∆π will be sibling- and

parent-closed (up to dπ), i.e. for each element from such a
subset all of its siblings belong to it, and if an element d is
not equal dπ then its parent belongs to the subset. We cre-
ate them as follows. First, we require that Subtree≤KI (dπ) is
contained in ∆π. Second, for every GCI A ≡ ∃pA.B from
K with A ∈ NC, whenever dπ ∈ AI holds we choose a
downward witness path ρ = d1(= dπ), d2, . . . , dk for dπ
and ∃pA.B, with the minimal possible number of nominal
elements on it. We consider two cases:
• If ρ is nominal-free, make dk a member of ∆π .
• Otherwise, take the smallest j such that dj is a nominal

element and make dj−1 a member of ∆π .
Finally, extend all the ∆π in a minimal way to make them
sibling- and parent-closed. The component for the downward
type π is the interpretation Cπ := I�∆π. Components are
finite trees and hence we speak about their leaves. However,
dπ will be called the origin of Cπ , rather than its root, to avoid
confusion with the roots of I.

3.2 Assembling a Finite Model J
The interpretation J will be composed of a finite number of
copies of the components Cπ , carefully connected to preserve
satisfaction of K and non-satisfaction of q . We will use sub-
and super-scripts to distinguish such copies. As expected, a
unique copy of Cπ for every nominal type π from NTPI will
be used—this guarantees the uniqueness of nominals. We
remark that the scheme of joining components is somehow
similar to the one used recently in (Danielski and Kieron-
ski 2019) to build small finite models for finitely-satisfiable
formulae in the extension of the UNFO with transitivity.

Let L be the maximal number of leaves across all the com-
ponents and let M be the maximal number of children of a
node in I (note that L and M are finite). The domain of J is

∆J :=
⋃

π∈NTPI

∆π ∪
⋃

∆π′,b
π,`,m,

where the second union ranges over π ∈ DTPI \ NTPI ,
π′ ∈ DTPI , 1≤`≤L, 1≤m≤M and b ∈ {0, 1}. The pres-
ence of various indices may look cryptic but it will be clari-
fied soon, when describing the “linking process”. The above
sums are disjoint and the elements of the decorated ∆∗,∗π,∗,∗
are just disjoint copies of the corresponding ∆π. For ev-
ery π, π′, `,m, b as above, we make Dπ

′,b
π,`,m := J �∆π′,b

π,`,m

isomorphic to Cπ; similarly for every π ∈ NTPI we make
Dπ := J �∆π isomorphic to Cπ .

We naturally define the pattern function f : ∆J → ∆I

that maps an element from ∆J to the element in ∆I which
it is a copy of. Note that f(oJ ) = oI for all o ∈ NI.

What remains to be done is to define the roles between the
elements from different components of J .
• Connections involving nominal elements: Roles between

d ∈ ∆J and oJ ∈ NomJ are defined according to f. For
all atomic roles r we put (d, oJ ) ∈ rJ iff (f(d), f(oJ )) ∈
rI . This way f preserves atomic types.

• Linking different components: For every component, its
leaves will be connected to the origins of other com-
ponents, in order to provide leaves with their local wit-
nesses. Our strategy is as follows. For every type π ∈
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DTPI \NTPI the origin ofDπ
′,1−b
π,`,m will serve as them-th

“child” of the `-th leaf of any of the components D∗,bπ′,∗,∗,
or, in the case of b = 1 and π′ ∈ NTPI , of the component
Dπ′ .2 This explains our naming scheme.

. . .m

l

1 2

π′

πm Dπ
′,1−b
πm,`,m

D∗,bπ′,∗,∗ or Dπ′

Formally, let d′ be the `-th leaf of some component
D∗,bπ′,∗,∗ orDπ′ (in the latter case set b := 1), let d1, . . . , dk
be the naturally ordered list of the children of f(d′) in
I. Let π1, . . . , πk be their downward types. For all m =

1, . . . , k we join d′ with the origin ofDπ
′,1−b
πm,`,m

in the same
way (i.e. by the same atomic roles) as f(d′) is joined with
dm in I . Repeat this step for all leaves in all components.

• For any pair of elements which we haven’t explicitly con-
nected in the above steps, we leave it unconnected (we do
not join them by any atomic role).

This finishes the definition of J . We prove correctness next.

3.3 Preservation of Knowledge Base Satisfiability
We show J |= K. K is in normal form with empty ABox,
thus we consider the GCIs:

1. A ≡ {o}, A ≡ ¬B, A ≡ B t B′, and A ≡ ∃s.Self. All of
them are preserved in J since atomic types of any d ∈ ∆J

and f(d) in I coincide.

2. A ≡ >n s.B. Here we consider the case of ZOQ, where
we only count the “forward successors” of a given element.
Take d ∈ ∆J . If d is not a leaf of its component, then it
“sends forward edges” only to its children and, possibly, to
nominal elements. J restricted to these elements is isomor-
phic to I restricted to f(d), its children and the nominal ele-
ments of I. If d is a leaf then in our construction (1st item
of the linking process) we link d with nominals in exactly
the same way as f(d) is linked to them in I . Moreover if f(d)
has ` children e1, . . . e` in I then d is connected to exactly `
other domain elements (origins) d1, d2, . . . , d` in a way that
(d, di) are in exactly the same atomic (and thus also simple)
roles in J as (f(d), ei) are in I — see the 2nd point of the
construction. Due to the space limit the case of ZOI is left
for the reader; recall that in this case we have n = 1.

3. J |= A v ∃pA.B. As a first step, we show by induction on
k that for any origin e in J and any GCI C v ∃pA′ .D such
that e ∈ CJ : if d = f(e) has a downward witness path for
∃pA′ .D with at most k occurrences of nominal elements on
it (not counting the first occurrence of e, in case e is nominal)
then e ∈ (∃pA′ .D)J . Having the above proved, we take any
e in J such that e ∈ AJ and show that e ∈ (∃pA.B)J . If e is
an origin then this follows from the above property. If not, let

2The index b is not crucial here, but using it allows us to avoid
e.g. the need to link leaves of a component with its origin.

D be the component e belongs to, d = f(e), and C the compo-
nent d belongs to. Note that C and D are isomorphic. Since f
retains atomic types we infer d ∈ AJ . Take any downward
witness path ρ for d and ∃pA.B. If ρ is fully contained in C
then its isomorphic copy, starting from e is contained in D
and then e ∈ (∃pA.B)J . Otherwise, ρ = ρ′d′ρ′′, where d′

is the first element not belonging to C (note that d′ may be
a nominal). Then an isomorphic copy ζ ′ of ρ′, starting at e,
belongs to D. Assume that A, when accepting ρ and reading
(first time) the role-letter leading to d′ enters a state s. In
K we have a GCI As ≡ ∃pAs

.B. Clearly d′ ∈ (∃pAs
.B)I

and thus d′ ∈ AIs . By our scheme of joining the compo-
nents the last element of ζ ′ is joined to some origin e′ in J
isomorphically to how the last element of ρ′ is joined to d′

in I. Moreover the downward types of d′ and f(e′) are the
same. This means that the atomic types of d′, e′ are equal,
so e′ ∈ AJs . Recalling that e′ is an origin we have already
proved that e′ ∈ (∃pAs

.B)J . Let ζ ′′ be a witness path for
e′ and ∃pAs

.B. It is readily verified that the path ζ ′ζ ′′ is a
witness path for e′ and ∃pA.B, so e ∈ (∃pA.B)J .

4. J |= ∃pA.B v A. The proof goes by induction on k where
the inductive assumption states: for any C,D, ∃pA′ such that
T contains C ≡ ∃pA′ .D and any d ∈ (∃pA′ .D)J for which
there is a witness path ζ for ∃pA′ .D on which the number of
component changes is ≤ k it holds that d ∈ CJ .

3.4 Preservation of Query (Non)entailment
Towards contradiction, assume J |= q . Thus, there is a CQ
qi such that J |= qi and let η be a match witnessing it. Let
∆qj be the image of η. We will define a homomorphism from
J �∆qj to I, which will provide us with a match of qj in I,
contradicting our initial assumption that I 6|= q.

For convenience we treat separately the connections
among non-nominal elements of ∆qj and connections involv-
ing at least one nominal element. Let us denote with ∆∗qj the
set ∆qj \NomJ and letG∗qj be the Gaifman graph of J �∆∗qj
(i.e. the graph, whose nodes are the domain elements, and an
undirected edge between a pair of nodes is present if the
nodes are connected by some atomic role). Note that the
edges of G∗qj correspond to parent-child connections inside
components of J or connections between leaves of compo-
nents and (non-nominal) origins of some other components.
Let G1, . . . , Gm be the connected components of G∗qj . We
next construct a homomorphism hk from J �Gk into ∆I , for
k = 1, . . . ,m. Setting additionally h0 : NomJ ∩ ∆qj →
NomI in the natural way: h0(oJ ) := oI , we will get the
desired homomorphism h =

⋃m
k=0 hk from ∆qj into ∆I .

Consider a single Gk. Call the components of J contain-
ing nodes of Gk active (for Gk). If there is only one active
component then as hk we take the restriction of f to Gk. Oth-
erwise call an active component upper (resp. lower) if at least
one of its leaves (resp. its origin) belongs toGk. Observe that
for an active component it cannot be the case that both its ori-
gin and a leaf belong to Gk (since the path leading from the
origin to a leaf has at least K+1 nodes and Gk is connected
and has at most K nodes), and that each active component
is either upper or lower (since different components may be
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Figure 1: Constructing the homomorphism hk. For the upper components hk coincides with f , for the lower ones it coincides
with g · f, for the appropriate g.

joined only by edges between leaves and origins). The ori-
gins of the lower components are not nominal elements. By
our strategy of joining the components it must be the case that
either all the upper components are of the form D∗,bπ,∗,∗ for
some fixed π ∈ DTPI \ NTPI and b ∈ {0, 1}, meaning that
they are all isomorphic to Cπ or there is only one upper com-
ponent Dπ for some π ∈ NTPI , which is then isomorphic
to Cπ. For every d′ of Gk belonging to an upper component
we set hk(d′) = f(d′). Note that the images of all such d′

are members of the single component Cπ in I. It remains to
define hk for the elements of the lower components.

Consider any lower componentDπ,bπ′,i,j and its origin e′ (of
type π′). Let d′ be the i-th leaf of an upper component. In
our process d′ has been connected to e′ and this connection
is isomorphic to the connection between the i-th leaf of Cπ
and its j-th child e in I . Denoting e∗ the origin of Cπ′ , by the
definition of downward types we have that I�Subtree≤KI (e)

is isomorphic to the upper part Subtree≤KI (e∗) of Cπ′ . Let
g : Subtree≤KI (e∗) → Subtree≤KI (e) be the appropriate iso-
morphism. For all d from Dπ,bπ′,i,j we set hk(d) := g(f(d)).
Let h :=

⋃m
k=0 hk.

We explain that h is indeed a homomorphism. Concept
preservation follows from the fact that f and the gs used
in the definition of the hk preserve atomic types and that
the nominal elements of J have the same atomic types as
the corresponding nominal elements of I. Assume now that
(d′, e′) ∈ rJ for some d′, e′ ∈ ∆qj and we will show
(h(d′), h(e′)) ∈ rI . We consider the following three cases:

1. d′, e′ ∈ ∆∗qj and they belong to the same component.
Then (h(d′), h(e′)) ∈ rI holds, since f acts as a partial
isomorphism when restricted to a single component and
g is a partial isomorphism in I.

2. d′, e′ ∈ ∆∗qj and they belong to different components.
Then d′ is a leaf of a component and e′ is an origin of
another component, or vice versa; (w.l.o.g. we focus on
former case). Looking at Fig. 1 we can see that h(e′)(=
f(g(e′)) for the appropriate g) is a child of h(d′)(= f(d′)).
By the construction of J the connection between d′ and
e′ in J is isomorphic to the connection between h(d′)
and h(e′) in I (from which the claim follows).

3. At least one of d′, e′ ∈ ∆qj \∆∗qj (⊆ NomJ ).
Follows from the fact that when defining J we always
join every element d′ with the nominal elements in J in
the same way as f(d′) is joined with the corresponding
nominals in I , and that f(d′) and g(f(d′)) are joined with
nominals in I in the same way (equal downward types!).

4 Querying ZIQ and its Sublogics
The third of the main members of the Z family, ZIQ, does
not have fmp. Recall that its (general) KBSat and query en-
tailment are decidable and EXPT IME-, resp., 2EXPT IME-
complete, but the decidability of the corresponding finite
problems is open. Here we provide a reduction from its finite
PEQ entailment problem to doubly exponentially many in-
stances of its finite KBSat problem. This would be sufficient
to give the optimal 2EXPT IME-upper bound on PEQ entail-
ment for ZIQ, provided that its finite KBSat is not harder
than general KBSat. In fact, the reduction will work not only
for ZIQ but also for some of its sublogics, which will lead
to some new complexity results. We now describe two steps:

1. A uniform reduction from finite PEQ entailment to finite
KBSat for any L that is locally of treewidth-one (ltw1).

2. An appropriate model transformation3 that transforms any
finite countermodel for a ZIQ-KB and a PEQ q into
one that is ltw1. This generalises the existing methods
presented in (Baader, Bednarczyk, and Rudolph 2019)
and (Ibáñez-Garcı́a, Lutz, and Schneider 2014).

4.1 From Finite PEQ Entailment to Finite KBSat
For k ≥ 0 we define the k-neighbourhood of d in I, de-
noted NbdkI(d), as the restriction of I to elements reach-
able from d in I by an undirected path of length ≤ k. An
N-rooted tw1-forest I is a quasi-forest with partial assign-
ment of individual names that satisfies: (i) {oI | o ∈ N}
are the roots of I, and (ii) if (d, e) ∈ rI and one of d, e is
a root of I, then the other element is either its child or is
also a root of I. A single-root tw1-forest is a tw1-tree. For
n ∈ N and N ⊆ NI, we say that I is (n,N)-ltw1 if, for

3We thank Ian Pratt-Hartmann for discussions.
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any d ∈ ∆I , NbdnI(d) is either a tw1-tree or an N′-rooted
tw1-forest, where N′ = {o ∈ N | oNbdnI(d) is defined}.4

Definition 4.1 (coverable/locally-treewidth-one DL). Let L
be a DL and letK be anL-KB. We say thatK is (finitely) ltw1-
coverable iff for any (finite) model I |= K and every n ∈ N
there is a (finite) (n, ind(K))-lwt1 model J |= K that covers
I, i.e. any n-neighbourhood of J can be homomorphically-
mapped to I. L is (finitely) ltw1 iff ALCI∩Self ⊆ L and all
(finitely) satisfiable L-KBs are (finitely) ltw1-coverable.
Let L be finitely ltw1. Fix an L-KB K and a PEQ q . We
outline how to decide K |=fin q using KBSat as a subroutine.
Our approach is a modification of techniques of (Glimm et al.
2008), adjusted to work for finite (rather than unrestricted)
entailment and for PEQs (rather than just CQs).
1. Using the known rolling-up technique we show that for

any tw1-tree-shaped CQ q̂ there is an ALCI∩Self -concept
Matchq̂ such that d ∈ (Matchq̂)I iff there exists a ho-
momorphism from the query structure Iq̂ to I mapping d
to the root of q̂ . This is why we need that ALCI∩Self ⊆ L.

2. When a CQ q̂ with |q̂ |≤|q | matches a (|q |, ind(K))-ltw1
I, then the match induces a CQ q̂ ′ (obtained by identi-
fying some of the variables from q̂) and a splitting Π of
the variables of q̂ ′ that is compatible with I. A splitting
Π is a tuple composed of sets of variables that partition
Var(q̂ ′) into trees T, subtrees Si and roots R, the name
assignment ind(K)→ R, and a root assignment mapping
each Si to some variable from R. The query q̂ restricted
to any of the Si or to T forms a tw1-tree. Compatibility
ensures that Π actually induces a match in I, which is
achieved by means of the Match concepts and by spec-
ifying concepts/role connections between the named in-
dividuals from ind(K). We prove that I |= q̂ iff such q̂ ′

and a splitting Π compatible with I exists.
3. A spoiler for q̂ ′ and Π is an ALCI∩Self -KB containing an

axiom preventing Π from being compatible with any I . A
super-spoiler is an ALCI∩Self -KB preventing matches for
all the possible q̂ ′ and splittings Π, that may arise for q̂.
We show that there is a countermodel for K and q̂ iff for
some super-spoiler Ks∗q̂ a finite model for Ks∗q̂ ∪K exists.

4. We convert the input PEQ q into a disjunction of exponen-
tially many CQs of polynomial size (both bounds in terms
of |q |). We consider all possible tuples of super-spoilers
(one per each disjunct q̂). For each such tuple we test fi-
nite KBSat for its union withK. We answer thatK |=fin q
iff all these tests are negative.

As super-spoilers are of at most exponential size, the above
procedure requires at most doubly exponentially many KB-
Sat calls, with exponentially bounded inputs (in |q |). This
yields the following (the lower bound is from (Lutz 2007)).
Theorem 4.2. For any finitely ltw1 L, L-KB K and PEQ q ,
we can decide K |=fin q by doubly-exponentially many (in
|K|+|q |) checks of finite KBSat of L-KBs of size exponential
(in |K|+|q |). If L has EXPT IME-complete finite KBSat, then
its finite PEQ entailment is 2EXPT IME-complete.

4Trees in tw1-forests have bidirectional edges and possibly self-
loops. Ltw1-forests are finite approximants of tw1-forests: they are
not necessarily tw1-forests but they locally look like them.

4.2 ZIQ is Finitely LTW1
Let K be a ZIQ-KB with a finite model I. For n ≥ 2,
a cycle of length n+1 in I is a sequence of distinct ele-
ments d0, d1, . . . , dn such that (assuming dn+1 = d0) for
all 0 ≤ i ≤ n there is a simple role ri s.t. (di, di+1) ∈ rIi .
An element d is named if d = oI for some o ∈ ind(K). Oth-
erwise d is anonymous. A cycle d0, d1, . . . , dn is anonymous
if d1, . . . , dn−1 are anonymous and if dn is named then so
is d0. The anonymous girth of I, denoted agirth(I), is the
length of its smallest anonymous cycle (∞ if there is no such
cycles). We will show that for any G > 0 there is a finite
J |= K with agirth(J ) ≥ G that covers I . This implies that
J is (G, ind(K))-ltw1 and proves that K is finitely ltw1.

We will construct finite interpretations J0,J1, . . . with
origin homomorphism orig :

⋃
i ∆Ji → ∆I satisfying:

• For any d ∈ ∆Ji , we have d ∈ CJ iff orig(d) ∈ CI for
all C appearing in K, and orig maps isomorphically the
1-neighbourhood of d to the 1-neighbourhood of orig(d).

• If agirth(Ji)=g≥G we stop. Otherwise agirth(Ji+1) ≥
g and Ji+1 contains less anonymous cycles of length g
than Ji, and no anonymous cycles of length < g.

Let M = |∆I | · (1 + |∆I | + . . . + |∆I |G+1) + 1. The
domain of J0 is composed of M copies of I. Roles and
concepts in J0 are interpreted in each copy as in I, and the
individual names are assigned to the first copy. The origin
function orig simply sends an element d′ ∈ ∆J to its pattern
in ∆I . Note that our requirements are satisfied by J0.

Suppose Ji−1 is defined and agirth(Ji−1) = g <
G. We initially put Ji := Ji−1, take its shortest anony-
mous cycle d0, d1, . . . , dn and select two consecutive ele-
ments c, d (w.l.o.g. d is anonymous) on this cycle. By the
choice of M , there are c′, d′ satisfying orig(c)=orig(c′) and
orig(d)=orig(d′) that are not reachable from c, d nor any
named elements in ≤ G steps, and for any simple role s
we have (c, d) ∈ sJi−1 iff (c′, d′) ∈ sJi−1 . Hence, we can
twist the roles between the elements, e.g. rJi = (rJi−1 \
{(c, d), (c′, d′)})∪{(c, d′), (c′, d)} for rJi containing (c, d)
(and similarly for roles containing (d, c)). The other roles
remain as in Ji−1. We can show, that Ji indeed satisfies the
required conditions and no new cycle of length ≤ g is added.
This finishes the construction of Ji.

As J we take the last interpretation in the sequence.
Theorem 4.3. Any ALCI∩Self ⊆ L ⊆ ZIQ is finitely ltw1.

We give two applications of Theorem 4.2 and Theo-
rem 4.3. It was recently shown (Jung, Lutz, and Zeume 2020)
that the finite KBSat of certain fragments of ZIQ, called
ALCHIF1/2

reg , is decidable in (1/2)NEXPT IME. The algo-
rithm is automata-based and hence allows us to accommo-
date conjunctions of roles and self-loops easily.

Corollary 4.4. Finite PEQ-entailment over ALCHIF1/2
reg -

KBs is decidable in (2/3)NEXPT IME.
The second application is lifting the existing results on CQ
entailment to the setting of UCQs and PEQs (the lower bound
for PEQs holds already for ALC (Ortiz and Simkus 2014)).
Corollary 4.5. Any L satisfying ALC⊆L⊆ALCIHbSelfQ
has 2EXPT IME-complete finite PEQ entailment problem.
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