
Robust Adversarial Reinforcement Learning with Dissipation Inequation
Constraint

Peng Zhai1,4, Jie Luo1,5, Zhiyan Dong1,2,5*, Lihua Zhang1,3,4*, Shunli Wang1,3, Dingkang Yang1,4

1 Academy for Engineering and Technology, Fudan University
2 Ji Hua Laboratory, Foshan, China

3 Engineering Research Center of AI and Robotics, Ministry of Education, Shanghai 200433, China
4 Jilin Provincial Key Laboratory of Intelligence Science and Engineering, Changchun, China

5 Engineering Research Center of AI and Robotics, Shanghai, China
{pzhai18, 19210860032, dongzhiyan, lihuazhang, slwang19, dkyang20}@fudan.edu.cn

Abstract
Robust adversarial reinforcement learning is an effective
method to train agents to manage uncertain disturbance and
modeling errors in real environments. However, for systems
that are sensitive to disturbances or those that are difficult
to stabilize, it is easier to learn a powerful adversary than
establish a stable control policy. An improper strong adver-
sary can destabilize the system, introduce biases in the sam-
pling process, make the learning process unstable, and even
reduce the robustness of the policy. In this study, we consider
the problem of ensuring system stability during training in
the adversarial reinforcement learning architecture. The dis-
sipative principle of robust H∞ control is extended to the
Markov Decision Process, and robust stability constraints are
obtained based on L2 gain performance in the reinforcement
learning system. Thus, we propose a dissipation-inequation-
constraint-based adversarial reinforcement learning architec-
ture. This architecture ensures the stability of the system dur-
ing training by imposing constraints on the normal and adver-
sarial agents. Theoretically, this architecture can be applied
to a large family of deep reinforcement learning algorithms.
Results of experiments in MuJoCo and GymFc environments
show that our architecture effectively improves the robustness
of the controller against environmental changes and adapts to
more powerful adversaries. Results of the flight experiments
on a real quadcopter indicate that our method can directly
deploy the policy trained in the simulation environment to
the real environment, and our controller outperforms the PID
controller based on hardware-in-the-loop. Both our theoret-
ical and empirical results provide new and critical outlooks
on the adversarial reinforcement learning architecture from a
rigorous robust control perspective.

1 Introduction
Deep reinforcement learning (DRL) has become a popu-
lar method for training continuous controllers. It is widely
used in the fields of robotic control and navigation (Duan
et al. 2016; Lee et al. 2020; Hodge, Hawkins, and Alexan-
der 2021). Although the performance of DRL is better than
that of the traditional methods in simulation, realistic ap-
plication examples are rare (Zhao, Queralta, and Wester-

*Corresponding author
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lund 2020). There are available methods for direct opera-
tion in actual physical tasks to collect data (Haarnoja et al.
2018; Hwangbo et al. 2019), the policy is unstable in the
initial training period, and repeated training may result in
aging and failure of the actuator (Li et al. 2020). Another
cheaper methods are to deploy the policies trained in sim-
ulation directly in the real environment. However, the dif-
ferences (such as modeling error and disturbance) between
the simulation and the real environment reduce the perfor-
mance of the policies (Christiano et al. 2016). To this end,
learning policies that are robust to environmental change,
mismatched configurations, and mismatched control actions
are becoming increasingly more preferable for sim-to-real
tasks (Kamalaruban et al. 2020).

One effective method to learn robustness is domain ran-
domization (Peng et al. 2018; Tobin et al. 2017) whereby
a professionally knowledgeable designer determines the un-
certain model components in the task. Thereafter, a set of
training environments is constructed, and the uncertain com-
ponents are randomly assigned to ensure the average robust-
ness of the agent assigned to the set. Nevertheless, it re-
quires significantly designers’ experience in the test domain
(Vinitsky et al. 2020); the uncertainty in the training envi-
ronment will also lead to the instability of policy learning.
Another method to learn robustness that is easier to automate
is to model environmental differences as adversarial distur-
bances (Ilahi et al. 2020). Through the alternate update of the
normal and adversarial agents, a two-player-zero-sum game
is constructed. This makes the normal agent robust to the
disturbance of the adversary. The method does not require
much knowledge of domain. Nonetheless, it increases the
difficulty of the training domain. This may make the train-
ing unstable, causing the policy to fall into a local subop-
timal solution, or resulting in a non-convergence (Tessler,
Efroni, and Mannor 2019). The instability during training is
because adversarial-policy acquisition is significantly faster
than stable-control-policy acquisition for an underactuated
or unstable system. For example, in an inverted double pen-
dulum system, a disturbance acting on the pendulum arm
can easily make the system unstable (Mackenroth 2008). If
the adversary can always destroy the stability of the system
during learning, it will lead to task failure. In addition, the

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

5431

cost of optimization cannot be appropriately defined, halt-
ing the learning process (Zhang, Hu, and Basar 2020). Such
issues will be aggravated in sample-based learning, because
the stochasticity in the data will bring more instability.

In this study, we consider certain constraints on the nor-
mal and adversarial agents in the adversarial architecture to
ensure the stability of the system during training. First, we
extend the dissipative inequality of the H∞ theory to the re-
inforcement learning(RL) system and derive the robust sta-
bility constraint of RL. Second, we propose a new robust sta-
bility RL architecture, which we call dissipation-inequation-
constraint-based adversarial reinforcement learning (DI-
CARL). Our architecture consists of three modules: a nor-
mal agent, an adversarial agent, and a data-driven Lyapunov
network. The Lyapunov network is used to constrain the ro-
bust stability of the two agents during training. The robust
stability is measured by L2 gain. By introducing constraints
into the objective function of the policies update, the direc-
tion of the adversarial agent’s gradient that reduces the per-
formance of the L2 gain is penalized, and the direction of
the normal agent’s gradient is updated to simultaneously in-
crease the L2 gain and performance metrics (reward func-
tion).

Extensive experiments are conducted in MuJoCo and
GymFc environments. The GymFc environment is an at-
titude flight controller training simulation platform. We
demonstrate the performance of the trained policies both in
simulation and on a real quadrotor. The results on MuJoCo
show that our algorithm is more robust to the changes in the
environmental parameters than that of the baselines. We em-
pirically demonstrate that a stronger adversary will reduce
the performance of the adversarial architecture during train-
ing, and our method effectively alleviates this problem. The
results of the GymFc simulation show that our algorithm
is more robust to an actuator disturbance. Experiments on
a real quadrotor show that our trained neural network con-
troller is better than the hardware-in-the-loop (HIL) based
PID controller, demonstrating the potential of our method in
sim-to-real tasks.

Related Work. The adversarial architecture is originated
from the H∞ control theory, which makes the controller
robust against model uncertainty by introducing adversar-
ial disturbances into the controlled system (Modares, Lewis,
and Sistani 2014; Wu and Luo 2012) or real robot system
(Pinto, Davidson, and Gupta 2017). (Morimoto and Doya
2005) converted the H∞ problem into a differential game
and solved the minimax value function of the normal and
adversary agents to update the policies. It was the first study
wherein the adversarial architecture was introduced into RL
theory. This idea of minimax was then extended in the ro-
bust adversarial reinforcement learning (RARL) architec-
ture (Pinto et al. 2017), with considerable empirical success,
subsequently adopted and improved in (Kamalaruban et al.
2020; Gleave et al. 2019). However, as discussed earlier, the
adversarial architecture sometimes fails to improve the ro-
bustness of the normal agent because a strong adversary af-
fects the stability of the training process (Zhang, Hu, and
Basar 2020). To reduce the influence of the adversary on the

training stability, the main methods include manual adjust-
ment of frequency (Pan et al. 2019) or magnitude (Tessler,
Efroni, and Mannor 2019) of the interaction between the
adversary and the environment or reducing the update fre-
quency of the adversarial policy (Gu, Jia, and Choset 2019).
These methods ensure the stability of training to a certain
extent, but it is difficult to achieve an effective trade-off be-
tween robustness and training stability.

More closely related work from a theoretical perspective
is that of (Han et al. 2019) who introduces and extends the
idea of Lyapunov stability andH∞ control to design policies
with robustness guarantee. This work introduces a Lyapunov
function as a critic to provide the policy gradient, simultane-
ously find the Lyapunov function and policy that can guaran-
tee the robust stability of the closed-loop system. Our work
differs from this work in a number of respects: (1) Their
critic is represented by a Lyapunov function which tends to
bring the system state to a balance point, it is difficult to ap-
ply this method to robot locomotion tasks, or it is necessary
to design a specific reward function. Our method adopts the
auxiliary optimization strategy and retains the reward-driven
mechanism to be applied in more general environments. (2)
The Lagrangian term from (Han et al. 2019) is only used for
the constraints of the normal agent, whereas the Lagrangian
term in our formulation constrains both the normal and the
adversarial agents simultaneously to ensure the stability of
the system during the training process.

2 Preliminaries

2.1 Adversarial Reinforcement Learning

An adversarial environment may be expressed as a two-
player γ discounted zero-sum Markov game (Perolat et al.
2015). The Markov Decision Process (MDP) of this game
can be expressed as a tuple (S,A1, A2, P, r, γ, s0), where
A1 and A2 are the continuous action sets for the normal and
adversarial agents, respectively. Moreover, P : S × A1 ×
A2 × S → R is the transition probability function, and
r : S×A1×A2 → R is the reward signal of the two agents.
If the policy of the normal agent is πµ, and the policy of the
adversarial agent is πω , the reward function can be expressed
as rπµ,πω = Ea,ω[r(s, a, ω)], where s ∈ S, a ∼ πµ (·|s) ∈
A1, ω ∼ πω (·|s) ∈ A2. The two-player zero-sum game can
be considered as an environment, where the goal of the nor-
mal agent is to maximize the return of γ discount (accumu-
lative reward) G = Es0,a,ω[

∑T−1
t=0 γtr(s, a, ω)], where T is

the horizon length of each episode; whereas, that of the ad-
versarial agent is to minimize the return of γ discount. (Per-
olat et al. 2015) demonstrated that for a game with optimal
equilibrium return G∗, minimax and Nash equilibriums are
equivalent,

G∗ = min
πω

max
πµ

G(πµ, πω) = max
πµ

min
πω

G(πµ, πω), (1)

(Pinto et al. 2017) indicated that optimal return might be
approached by directly learning the optimal policy π∗µ, π

∗
ω .

5432

2.2 Characteristics of L2 Gain in a
Reinforcement Learning System

The basic idea of robust H∞ control is to suppress the
maximum gain of the system to impair the influence of
the disturbances signal on the evaluation signal, which de-
scribes the system quality (i.e., the reward signal in RL sys-
tem)(YingMin 2007). The L2 norm is introduced into the
signal space to measure the evaluation signal. The maximum
gain of the system can be expressed as the induced norm of
the operator from the system input signal space (disturbance
space) to the output signal space (reward space). Therefore,
if the maximum gain of the system is designed to be small
enough, the influence of any input disturbance signal in L2

space on the evaluation signal will be suppressed within the
allowable range, which means that the system is Bounded
Input Bounded Output (BIBO) stable. To solve the problem
of achieving the robustness stability of an agent under the
RL system, (Han et al. 2019) extended the L2 gain in ro-
bustness control theory as:

Definition 1. If an RL system is mean square stable (MSS)
when ω = 0, and

∑∞
t=0 E[‖rπ(st)‖]/

∑∞
t=0 E[‖ω(st)‖] ≤ λ2

holds for all ω ∈ L2 = {ω
∣∣∑∞

t=0 ω
2(st) <∞

}
, the sys-

tem is referred to as the MSS with an L2 gain is less than or
equal to λ.

Where ‖·‖is the 2-norm of the signal and ω(st) is the un-
certainty of system, which may contain modeling errors and
external disturbances of the system. λ is a positive constant
and rπ is the reward signal of policy π. Definition 1 guaran-
tees that the influence of uncertainty on reward function is
always bounded.

2.3 Dissipation Inequation in H∞ Controlled
Theory

H∞ control is an important method for solving robust con-
trol problems. It reduces the influence of disturbance on the
reward/quality signals by restraining the H∞ norm of the
system (Hongye 2010; Luo, Wu, and Huang 2014; Modares,
Lewis, and Sistani 2014). Consider the following nonlinear
uncertain systems:{

ṡ = f(s) + g(s)ω,
r = h(s).

(2)

Where sT = [s1, s2, . . . , sn] ∈ M is a state vector, and
the superscript representing each component of the vector is
distinguished from the subscript representing the time step.
In a small abuse of notation, ω is an uncertain disturbance
signal and denote the adversarial action in Section 3, M is
the invariant set of the system (2), r is a reward signal, f(s),
h(s) and g(s) are differentiable functions. Note that because
the control variable can be expressed as a function of the
state variable, we incorporate the control variable into the
functions f(s) and h(s) for clarity. The following theorem
exist (TieLong 1996):

Theorem 1. For a given λ > 0, the sufficient condition
for L2 gain being less than or equal to λ in the nonlinear
uncertain system (2) is that a continuous differentiable Lya-
punov function F (s) ≥ 0 exists, and ∀s ∈ M satisfies the

following dissipation inequation:

∂F

∂s
(s)f(s) +

∂F

∂s
(s)g(s)ω ≤ 1

2
{λ2‖ω‖ − ‖r‖} (3)

Where the left side of the inequation can be viewed as the
total derivative of the Lyapunov function. Therefore, (3) can
be further simplified as:

dF (s)

dt
≤ 1

2
{λ2‖ω‖ − ‖r‖} (4)

Thus, it is clear that there is a close correlation between
the characteristics of the L2 gain and the dissipativeness of
an uncertain system. Please refer to (Willems 1972; Byrness,
Isidori, and Willems 1991) for a specific proof.

3 Methodology
In this section, we introduce the L2 gain constraint into the
RL architecture to ensure the stability of the system during
training and enhance the robustness of normal agent. The
constraint conditions of a robust RL based on dissipative
inequality are presented in Section 3.1. In Section 3.2, we
show the method of introducing this constraint into the ad-
versarial architecture. Finally, in Section 3.3, we introduce
the overall architecture and optimization process of the pro-
posed algorithm.

3.1 Dissipation Inequation-Based Robust
Reinforcement Learning Constraint

In this section, we will extend the relationship between L2

gain and dissipativeness of H∞ control theory (Theorem 1)
to the RL system described in Section 2.1. First, the basic
assumption is presented.

Assumption 1. The limit of k-step transition proba-
bility from state s0 to state s under policy π exists:
lim
k→∞

Pr(s |s0, k, π).

Assumption 2. For any policy π which belongs to pol-
icy space Π, the rewards as received in each step during an
interaction with the environment are always bounded, i.e.,
∀s ∈ {s |rπ(s) <∞} , π ∈ Π.

Assumption 1 is the basic assumption in reinforcement
learning theory. Because real systems are always bounded,
Assumption 2 is easy to satisfy. On this assumption, we pro-
pose sufficient conditions for the MSS of the RL system.

Theorem 2. Given that λ > 0, the sufficient condition for
L2 gain being less than or equal to λ under Definition 1 with
regard to the RL system as defined in Section 2.1 is that there
exist positive constants a, b, and continuous differentiable
Lyapunov function F (s) such that 0 ≤ arπ(s) ≤ F (s) ≤
brπ(s) and satisfies:

Eµ(s)[Eπ[F (s′)]− F (s)] ≤ Eµ(s)
1

2
[λ2‖ω(s)‖ − ‖rπ(s)‖]

(5)
Where s′ is the successor state, and µ(s) is the state dis-

tribution of policy π. Intuitively, the left-hand side of Eq.(5)
can be regarded as the difference of the Lyapunov function,

5433

that is, the concept of derivative in the discrete-time system.
Therefore, the Eq.(5) has the same structure as the dissipa-
tion inequation (4) and is a generalization in the RL discrete-
time systems, and Theorem 2 can be regarded as an alterna-
tive statement of Theorem 1 in the MSS. It should be noted
that Theorem 2 in our paper has a similar structure and as-
sumptions to Theorem 1 of (Han et al. 2019). However, The-
orem 1 of (Han et al. 2019) gives constraints from the per-
spective of Lyapunov stability theory, while Theorem 2 in
our paper is a generalization of the dissipative inequality in
the robust H∞ control theory. The dissipative theory is an
idea of disturbance suppression, which suppresses the influ-
ence of disturbance on the reward of the RL system to the
desired minimum. The complete proof is given in Appendix
A.1. In the next subsection, we will show how to introduce
Theorem 2 into the policies update functions of the adver-
sarial architecture and approximate the Lyapunov function
F (s).

3.2 Policy Updating Functions with Lagrange
Multiplier Method

In our adversarial game, at each moment t, the normal and
adversarial agents observe the state st at the same time and
select actions at ∼ πµ(st) and ωt ∼ πω(st), where πµ and
πω are the policies of the normal and adversarial agents, re-
spectively. The normal agent maximizes the long-term re-
turn whereas the adversarial agent minimizes the long-term
return. The two agents are constrained by inequation (5). Let
θµ and θω denote the parameters of the policies πµ and πω
respectively. The theoretical update will be:

θµk+1 = argmax
θµ

E
s,a∼πθµ

k

[Gµ(s, a, θµk , θ
µ)] ,

θωk+1 = argmax
θω

E
s,ω∼πθω

k

[−Gω(s, ω, θωk , θ
ω)] ,

s.t. Es′∼πθµ
k

[F (s′)]− F (s) ≤ 1

2

[
λ2 ‖ω(s)‖ − ‖rπ(s)‖

]
(6)

Where Gµ(s, a, θµk , θ
µ), Gω(s, ω, θωk , θ

ω) are the “surro-
gate” objectives for updating the policies of the normal and
adversarial agents, respectively. We will let Gµ, Gω denote
above “surrogate” objectives for concise. They represent
different optimization objectives in different RL algorithms
such as the clipped advantage function in the proximal pol-
icy optimization (PPO) algorithm (Schulman et al. 2017).
The Lagrange multiplier method is then used to bring the
constraint term into the update equation as,

θµk+1 = argmax
θµ

E
s,a∼πθµ

k

[Gµ − α∆L(s, a, ω, r, s′)] ,

θωk+1 = argmax
θω

E
s,ω∼πθω

k

[−Gω − α∆L(s, a, ω, r, s′)] ,

(7)
Where α is the Lagrangian multiplier of the correspond-

ing items, ∆L(s, a, ω, r, s′) is the Lagrangian of dissipation
inequation (5) and we will let ∆L denote this for concise,

∆L = F (s′, τθµ(s′))− F (s, a) +
1

2

[
‖r‖ − λ2 ‖ω‖

]
(8)

Where τθµ(s′) is the parameterized policy of the normal
agent. When the adversarial agent is updated, the parame-
terized policy τθω (s) of the adversarial agent is adopted to
substitute ω in (8).

Note that (8) is derived from the right-half shift term of
the constraint inequality in (6). This Lagrangian has differ-
ent meanings in the update equations of the normal and ad-
versarial agents. For the normal agent, the Lagrangian multi-
plier can give the agent an additional gradient with respect to
the stability of the system, whereas for the adversarial agent,
the Lagrangian multiplier restrains the update of the policy
that leads to system instability. We will discuss this mecha-
nism in more detail in Appendix A.2. The Lyapunov func-
tion is calculated using a neural network for fitting through
the data-driven method. The objective function of the Lya-
punov network Fθ is defined as:

JLya(Fθ) = E(s,a)∼Dµ

[
1

2
(Fθ(s, a)− Ftarget(s, a))2

]
(9)

The target function of the Lyapunov function can be de-
fined differently (Mayne et al. 2000). In this study, we use
a generalized advantage function (Schulman et al. 2015):
Ftarget(s, a) = Â(st, at). (Luo, Wu, and Huang 2014)
proved that the approximation of the Lyapunov function ob-
tained from a model-free data-driven calculation would not
influence the performance of the H∞ controlled policies.

3.3 Dissipation Inequation Constraint-Based
Adversarial Reinforcement Learning Method

Our algorithm optimizes both the normal and adversarial
agents using the following alternating procedure. In each
rollout, the trajectories of the normal and adversarial agents
interacting with the environment are collected. Following
that, the advantage function is estimated by the trajectories,
and the normal agent and Lyapunov network are updated.
The Lyapunov network and the trajectories are then used to
update the adversarial agent. This sequence is repeated until
convergence.

Algorithm 1 describes our method in detail, where θF is
the parameter of the Lyapunov network; the subscripts of all
the network parameters represent the iteration step; Niter
is the total number of the rollout; NSample is the length of
each rollout trajectory; Optimizer(·) is a policy optimizer
that can use different algorithms according to different tasks
and ”surrogate” objectives such as PPO, trust region policy
optimization (TRPO), and soft actor-critic (SAC). The Lya-
punov network is only optimized with the normal agent, and
the network parameters are fixed in the optimization process
of the adversary. Furthermore, before update the adversary,
the successor action a′ is resampled using the updated nor-
mal agent network and stored in Dω buffer in order to cal-
culate the first term in Eq. (8).

4 Experiment
In this section, we describe the three sets of experiments per-
formed. The first and second sets of experiments were car-
ried out in MuJoCo. The purpose of the first group of ex-

5434

Algorithm Pendulum Double HalfCheetah Hopper

Vanilla PPO 59.2±0.4 36.3±1.19 66.7±2.24 14.6±0.49
RARL 72.8±0.75 40.6±1.62 82.5±1.96 20.4±0.66
NR-MDP 71.2±0.4 26.9±1.37 46.8±2.18 12.9±1.14
Oracle 78.0±0.2 33.3±1.49 84.3±1.27 22.0±0.45
DICARL(ours) 77.1±0.7 44.1±1.87 87.3±0.9 38.4±1.28

Table 1: Success rates and standard deviations of different algorithms with 100 mass combinations are compared. Where the
Pendulum and Double denote the InvertedPendulum and InvertedDoublePendulum tasks, respectively. The trained policies are
initialized by 7 random seeds, and 700 episodes are tested for each mass group. Significantly better results from a t-test with
p < 1% are highlighted in bold.

Algorithm 1: DICARL (proposed algorithm)
Initialize Environment E , rollout buffer Dµ, Dω , La-
grangian multiplier α Initialize Lyapunov network F (s, a),
constant λ, normal agent policy πµ(a |s), adversar-
ial agent policy πω(ω |s) and corresponding parameters
θF0 , θ

µ
0 , θ

ω
0

1: for k in Niter do
2: θµk ← θµk−1, θ

ω
k ← θωk−1, θ

F
k ← θFk−1

3: for t in NSample do
4: Run policies at ∼ πµ(a |s, θµk), ωt ∼ πω(ω |s, θωk)

in environment E
5: Get successor states st+1, rt, store

(st, at, wt, rt, st+1) in Dµ, Dω

6: end for
7: Compute advantage estimates Â1, . . . , ÂSample and

stored in Dµ, Dω

8: θµk , θ
F
k ← Optimizer(Dµ, θ

µ
k , θ

F
k ,Gµ, JLya(FθF))

9: θωk ← Optimizer(Dω, θ
ω
k ,Gω, JLya(FθF))

10: end for

periments was to verify the robustness of our method with
respect to four baseline algorithms. The purpose of the sec-
ond group of experiments was to prove our assertion (i.e.,
introducing a dissipative inequation into the adversarial ar-
chitecture could stabilize the training). The last set of experi-
ments was carried out in GymFc, an RL environment for de-
veloping attitude flight controllers for the unmanned aerial
vehicle (UAV) (Koch et al. 2019). In this environment, we
compared the robustness of our method and that of the base-
line method under actuator attacks. Finally, we deployed the
trained neural network controller in a real quadrotor attitude
controller to demonstrate the potential of our method in sim-
to-real tasks.

We used the PPO algorithm implemented by openAI base-
lines (Dhariwal et al. 2017) as the policy optimizer for all
the algorithms to fairly compare the baseline algorithms to
ours. Specifically, we compared Vanilla PPO, RARL, Noisy
Action Robust MDP (NR-MDP) (Tessler, Efroni, and Man-
nor 2019), and domain randomization. We called the domain
randomization method the Oracle method because it trained
directly on the test domain. The pseudo codes of each algo-
rithm are shown in Appendix B. All our experiments were
run on a desktop computer equipped with an Intel Core i7-

8700k CPU.

4.1 Robustness Under the Modeling Error
We chose four MuJoCo tasks: InvertedPendulumAdv-
v1, InvertedDoublePendulumAdv-v1, HopperAdv-v1, and
HalfCheetahAdv-v1 from an improved adversarial Gym
(Pinto et al. 2017) to test our algorithm. In each task, the
agent was a robot composed of several joints. Considering
our method and the RARL, the adversary acted on differ-
ent body parts of the robot. For the NR-MDP, the adversary
acted on the actuator of the robot. For the Oracle method, the
environmental variables (body parts of robots with different
masses) in the test domain were initialized randomly before
each rollout. The Vanilla PPO trained directly in the orig-
inal environment without any adversaries. The detailed de-
scription of the environment can be found in Appendix C.1.
In addition, all the shared hyper-parameters were the same,
and we run all algorithms with the same amount of simu-
lation steps. The detailed settings of the hyper-parameter of
each algorithm are reported in Appendix C.2.

The modeling error between the simulation and the real
world can cause controllers to fail, requiring a robust con-
trol policy. In the training domain, the body mass of the
robot remained unchanged. In the test domain, we changed
the masses of the two body parts of the robot. The range
of change in the mass was the original mass multiplied by
[0.1-2.1) with an interval of 0.2, and a total of 100 groups
of different mass combinations. The threshold of time steps
was set for each task. If the time steps of the agent is larger
than the threshold, it will be regarded as a successful task. If
otherwise, it will be a failure. Each mass group was trained
on seven random seeds and is evaluated across 700 episodes
in the training domain.

In safety-critical tasks or real robot tasks, any failure may
be fatal and can cause damage to the robot. Therefore, we
counted the number of combinations with a failure rate of
less than 2% in different mass groups in the test domain as
a measure of the adaptability of the controller. The results
in Table 1 demonstrate that the proposed algorithm outper-
forms all the baselines in most environments. In the Invert-
edPendulum environment, our algorithm also has compet-
itive performance. The heat-maps of accumulative reward
and failure rates can be found in Appendix C.3. The train-
ing curves can be found in Appendix C.4. Moreover, we ob-
served that the Oracle method is the most competitive base-

5435

Figure 1: Success rates and thrice the standard deviations of
DICARL and RARL in different adversary magnitudes are
compared. The trained policies are initialized by 7 random
seeds, and 700 episodes are tested for each mass group.

line on most tasks, since this method is directly trained in the
test domain. Nevertheless, in the InvertedDoublePendulum
environment, the Oracle method performs poorly. This is be-
cause the inverted double pendulum system is more sensitive
to changes in the model’s parameter (Gluck, Eder, and Kugi
2013), and the randomization of the mass of the pendulum
may lead to the appearance of a top-heavy unstable model,
increasing the difficulty of training. This highlights a po-
tential issue with domain randomization. Although training
across a wide variety of dynamic parameters can increase
robustness, naive parameterization may cause the system to
become difficult to stabilize during training and lead to a
vulnerable policy. We also observe that the performance of
the NR-MDP algorithm is poor. The possible reason is that
for multi-joint robots, the disturbance on the actuator may
not be mapped to the mass change of the robot. On the other
hand, when the actuator disturbance is too strong, normal
agents may be prevented from successfully solving tasks in
some environments (Tessler, Efroni, and Mannor 2019). We
put the hyper-parameter setting and performance analysis of
the SAC version of all algorithms in Appendix D.

4.2 Influence of Robustness Constraint on System
Stability

This set of experiments is based on the following intu-
ition: in adversarial training, the stronger the adversary is,
the easier its instability. Therefore, with our method, the
RARL algorithm was used as the baseline for comparison.
We used the same environmental settings and shared hyper-
parameters as in Section 4.1 to train the agents. The dif-
ference was that we set different upper limits of magnitude
forces for the adversary (i.e., the action range of the adver-
sarial agent). The detailed hyper-parameter settings of the
algorithm are shown in Appendix E. We used the same test

domain as mentioned in Section 4.1 to compare the robust-
ness of the two algorithms. The upper limit of the magnitude
of the adversary is set to [1.3− 5.8].

We calculated the adaptability of the two algorithms to
the test domain under training with different magnitudes of
the adversary. The evaluation method is the same as men-
tioned in Section 4.1; the result is shown in Figure 1. In the
environment of InvertedPendulum and InvertedDoublePen-
dulum, it can be seen that in the RARL algorithm, when the
magnitude of the adversary increases to a certain extent, the
performance of the controller degrades rapidly, and a sta-
ble control policy cannot be acquired. This result is con-
sistent with the observation of (Tessler, Efroni, and Man-
nor 2019; Pan et al. 2019; Pinto et al. 2017) because these
two environments are more sensitive to disturbance, and the
powerful adversary in RARL can always prevent the nor-
mal agent from successfully performing tasks. However, DI-
CARL can adapt to a more powerful adversary. This sup-
ports our viewpoint that DICARL can effectively use ad-
versary attacks to improve robustness and maintain environ-
mental stability during training. For the HalfCheetah envi-
ronment, the increase in the magnitude of the adversary has
no significant effect on the normal agent because the half-
cheetah robot has a greater stability margin and is insensi-
tive to disturbances. Moreover, we also observed that the
performance of the two algorithms in the Hopper environ-
ment fluctuated greatly with the change in the magnitude of
the adversary. For a forward hopping robot, the forward dis-
turbance force is more likely to cause task failure than that
of the backward disturbance. This indicates that the increase
in the force of the magnitude does not necessarily obtain
a sufficiently strong adversary, resulting in the difference in
the robustness of the normal agent. In general, our algorithm
has more advantages when used with a powerful adversary
during training and has a controller with optimal adaptabil-
ity to the environment. This provides a potential method for
improving robustness through more complex and diversified
adversarial training in the future.

4.3 Sim-to-Real Task
In the last set of experiments, we used the GymFc to train
the quadrotor angular velocity controller based on a neu-
ral network. We compared the two baselines, including
Vanilla PPO and NR-MDP. We set the same shared hyper-
parameters for the three algorithms. Thereafter, the neural
network controller was used to replace the PID angular ve-
locity controller based on the HIL method and deployed to
the actual quadrotor flight control system. Finally, we tested
our method in a real environment. The environmental setting
and real quadrotor parameters can be found in Appendix F.1
and Appendix F.2 detail the setting for the hyper-parameter
of the algorithm.

Simulation Environment. In the simulation environment,
the signal supplied to the motor is added to 10% random
noise. (Fei et al. 2020) reported that this kind of attack on
the motor signal could cause the aircraft to deviate from
the normal operating point, resulting in serious performance
degradation, requiring a robust control policy. We visually

5436

Figure 2: Step responses and control signals of the three algorithms in the GymFc training environment. OS is short for over-
shoot, whereas blue line represents the actual angular velocity, and dashed black line represents the desired angular velocity.

Figure 3: Trajectories of the quadcopter flying over the rac-
ing gate carrying payloads of different masses. Where the
blue trajectory does not carry a payload, the yellow trajec-
tory carries a payload of 63.3 g, and the red trajectory carries
a payload of 98.68 g.

compare the step responses of PPO, NR-MDP, and DICARL
angular velocity controllers under a disturbance of 10% ran-
dom noise in Figure 2. DICARL has the smallest overshoot
on the pitch and roll axes. Although NR-MDP has a better
performance on the pitch and roll axes than that of the PPO
algorithm, both of them have larger control signals(i.e., u in
Figure 2), which will increase the motor load, reducing the
service life. By contrast, our algorithm ensures lower over-
shoot and control signal, rendering it more suitable for an
actual system. We notice that the three algorithms have large
oscillations on the yaw axis. This may be because of the dis-
turbance acting on the motors, causing each motor to have
a random moment of inertia noise. This increases the diffi-
culty of controlling the yaw axis.

Real Environment. Without further optimization, we
evaluated the policy learned in the simulation on the real
quadrotor. We used a quadcopter assembled with a QAV250
frame and pixhawk 2.4.6 flight controller. Details of the de-

Controller Pitch error Roll error Yaw error

PID 0.3595 0.3168 0.0514
DICARL 0.2206 0.1158 0.0721

Table 2: Normalized average error of pitch, roll, and yaw
axes of DICARL and PID attitude controllers in the real
world. Significantly better results from a t-test with p < 1%
are highlighted in bold.

ployment method can be found in Appendix F.3. To test the
robustness of the DICARL algorithm, we made the quad-
copter perform the task of flying over the racing gates. We
conducted three tests, where the quadcopter carried a differ-
ent mass of payload in each test. For a small UAV, approx-
imately 10-100 mW is required for 1 g additional take-off
weight for hovering (Leutenegger et al. 2016). Even a small
extra load will affect the performance. In this test, we tested
the performance of the quadcopter under three payloads: no-
load, load mass of 63.3 g and 98.68 g. We visualized the
flight trajectories of these three tasks as shown in Figure 3.
It can be seen that the quadcopter can smoothly and quickly
cross the two racing gates under different payloads.

Finally, we compared the angular velocity error of the
DICARL controller and the HIL-based PID controller (Dai
et al. 2019) on the real quadcopter. The normalized mean er-
ror is shown in Table 2. Our method has a smaller tracking
error on the pitch and the roll axes and delivers competitive
performance with the PID controller on the yaw axis. See
Appendix F.4 for the visualized tracking curve. In the actual
test, the expected angular velocity tracked by our method is
most greater than that of the PID controller. This proves that
our controller has a faster response speed; however, to some
extent, it also reduces the performance of the yaw axis.

5 Conclusion
In this study, we show that the effective method for improv-
ing the robustness of the policy and stabilizing the training

5437

is to introduce robust stability constraints in the adversarial
RL architecture. From the perspective of robust control, we
propose a sufficient condition for the RL strategy to satisfy
L2 gain and develop a new robust adversarial reinforcement
learning architecture based on this constraint. Theoretically,
our architecture is suitable for the current mainstream RL
algorithms, such as PPO, TRPO, and SAC. The PPO and
SAC algorithms was used in the policy optimizer to instan-
tiate our architecture and conduct extensive experiments to
validate the effectiveness of our algorithm. The experiment
on a real quadcopter proves the potential of our algorithm in
a sim-to-real task. Both our theoretical and empirical results
provide new and critical outlooks about adversarial RL ar-
chitecture from a rigorous robust control perspective. We do
not believe that our research will cause any social problem
or put anyone at any disadvantage.

Experiments on Hopper show that the use of a single ad-
versary to approximate the solution to a minimax problem
does not consistently lead to improved robustness. Inter-
esting future research directions include increasing the di-
versity of adversaries, such as using multiple adversaries
to train together with a normal agent or attacking different
functional components of the RL process. In this process, the
stability of the system is also important to the performance
of the normal agent. The increase in the number of adver-
saries may further deteriorate the stability of the system. It is
necessary to introduce our method into the aforementioned
multi-agent adversarial architecture.

Acknowledgments
This work was supported in part by Shanghai Municipality
Science and Technology Major Project 2021SHZDZX0103,
in part by Science and Technology Commission of Shang-
hai Municipality, Grant No. 19511132000, in part by Na-
tional Natural Science Foundation of China under Grant No.
82090052, in part by Department of Science and Technology
of Guangdong Province, Grant No. 2019A1515110352 and
in part by Ningbo Science and Technology Bureau, Grant
No. 2020Z073.

References
Byrness, C.; Isidori, A.; and Willems, J. 1991. Passivity,
feedback equivalence and the global stabilization of mini-
mum phase nonlinear systems. IEEE T. Automatic Contr,
36(11): 1228–1240.
Christiano, P.; Shah, Z.; Mordatch, I.; Schneider, J.; Black-
well, T.; Tobin, J.; Abbeel, P.; and Zaremba, W. 2016. Trans-
fer from simulation to real world through learning deep in-
verse dynamics model. arXiv preprint arXiv1610.03518.
Dai, X.; Ke, C.; Quan, Q.; and Cai, K.-Y. 2019. Unified Sim-
ulation and Test Platform for Control Systems of Unmanned
Vehicles. arXiv preprint arXiv1908.02704.
Dhariwal, P.; Hesse, C.; Klimov, O.; Nichol, A.; Plappert,
M.; Radford, A.; Schulman, J.; Sidor, S.; Wu, Y.; and
Zhokhov, P. 2017. OpenAI Baselines.
Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; and
Abbeel, P. 2016. Benchmarking deep reinforcement learn-

ing for continuous control. In International conference on
machine learning, 1329–1338. PMLR.
Fei, F.; Tu, Z.; Xu, D.; and Deng, X. 2020. Learn-to-
Recover Retrofitting UAVs with Reinforcement Learning-
Assisted Flight Control Under Cyber-Physical Attacks. In
2020 IEEE International Conference on Robotics and Au-
tomation (ICRA), 7358–7364. IEEE.
Gleave, A.; Dennis, M.; Wild, C.; Kant, N.; Levine, S.; and
Russell, S. 2019. Adversarial policies Attacking deep rein-
forcement learning. arXiv preprint arXiv1905.10615.
Gluck, T.; Eder, A.; and Kugi, A. 2013. Swing-up control
of a triple pendulum on a cart with experimental validation.
Automatica, 49(3): 801–808.
Gu, Z.; Jia, Z.; and Choset, H. 2019. Adversary
a3c for robust reinforcement learning. arXiv preprint
arXiv1912.00330.
Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.;
Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al.
2018. Soft actor-critic algorithms and applications. arXiv
preprint arXiv1812.05905.
Han, M.; Tian, Y.; Zhang, L.; Wang, J.; and Pan, W. 2019.
H∞ model-free reinforcement learning with robust stability
guarantee. arXiv preprint arXiv1911.02875.
Hodge, V. J.; Hawkins, R.; and Alexander, R. 2021. Deep re-
inforcement learning for drone navigation using sensor data.
Neural Computing and Applications, 33(6): 2015–2033.
Hongye, S. 2010. Basic Theory of Robust Control. Science
Press.
Hwangbo, J.; Lee, J.; Dosovitskiy, A.; Bellicoso, D.; Tsou-
nis, V.; Koltun, V.; and Hutter, M. 2019. Learning agile and
dynamic motor skills for legged robots. Science Robotics,
4(26).
Ilahi, I.; Usama, M.; Qadir, J.; Janjua, M. U.; Al-Fuqaha, A.;
Hoang, D. T.; and Niyato, D. 2020. Challenges and coun-
termeasures for adversarial attacks on deep reinforcement
learning. arXiv preprint arXiv2001.09684.
Kamalaruban, P.; Huang, Y.-T.; Hsieh, Y.-P.; Rolland, P.;
Shi, C.; and Cevher, V. 2020. Robust reinforcement learn-
ing via adversarial training with langevin dynamics. arXiv
preprint arXiv2002.06063.
Koch, W.; Mancuso, R.; West, R.; and Bestavros, A. 2019.
Reinforcement learning for UAV attitude control. ACM
Transactions on Cyber-Physical Systems, 3(2): 1–21.
Lee, J.; Hwangbo, J.; Wellhausen, L.; Koltun, V.; and Hutter,
M. 2020. Learning quadrupedal locomotion over challeng-
ing terrain. Science Robotics, 5(47).
Leutenegger, S.; Hurzeler, C.; Stowers, A. K.; Alexis, K.;
Achtelik, M. W.; Lentink, D.; Oh, P. Y.; and Siegwart, R.
2016. Flying robots. In Springer Handbook of Robotics,
623–670. Springer.
Li, T.; Lambert, N.; Calandra, R.; Meier, F.; and Rai, A.
2020. Learning generalizable locomotion skills with hierar-
chical reinforcement learning. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), 413–419.
IEEE.

5438

Luo, B.; Wu, H.-N.; and Huang, T. 2014. Off-policy rein-
forcement learning for H∞ control design. IEEE transac-
tions on cybernetics, 45(1): 65–76.
Mackenroth, U. 2008. Robust high-performance disturbance
rejection for an uncertain inverted double pendulum. In 2008
American Control Conference, 2377–2383. IEEE.
Mayne, D. Q.; Rawlings, J. B.; Rao, C. V.; and Scokaert,
P. O. 2000. Constrained model predictive control Stability
and optimality. Automatica, 36(6): 789–814.
Modares, H.; Lewis, F. L.; and Sistani, M.-B. N. 2014. On-
line solution of nonquadratic two-player zero-sum games
arising in the H∞ control of constrained input systems. In-
ternational Journal of Adaptive Control and Signal Process-
ing, 28(3-5): 232–254.
Morimoto, J.; and Doya, K. 2005. Robust reinforcement
learning. Neural computation, 17(2): 335–359.
Pan, X.; Seita, D.; Gao, Y.; and Canny, J. 2019. Risk averse
robust adversarial reinforcement learning. In 2019 Inter-
national Conference on Robotics and Automation (ICRA),
8522–8528. IEEE.
Peng, X. B.; Andrychowicz, M.; Zaremba, W.; and Abbeel,
P. 2018. Sim-to-real transfer of robotic control with dynam-
ics randomization. In 2018 IEEE international conference
on robotics and automation (ICRA), 3803–3810. IEEE.
Perolat, J.; Scherrer, B.; Piot, B.; and Pietquin, O. 2015. Ap-
proximate dynamic programming for two-player zero-sum
markov games. In International Conference on Machine
Learning, 1321–1329. PMLR.
Pinto, L.; Davidson, J.; and Gupta, A. 2017. Supervision via
competition: Robot adversaries for learning tasks. In 2017
IEEE International Conference on Robotics and Automation
(ICRA), 1601–1608.
Pinto, L.; Davidson, J.; Sukthankar, R.; and Gupta, A. 2017.
Robust adversarial reinforcement learning. In International
Conference on Machine Learning, 2817–2826. PMLR.
Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; and
Abbeel, P. 2015. High-dimensional continuous control
using generalized advantage estimation. arXiv preprint
arXiv1506.02438.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv1707.06347.
Tessler, C.; Efroni, Y.; and Mannor, S. 2019. Action Ro-
bust Reinforcement Learning and Applications in Contin-
uous Control. In Chaudhuri, K.; and Salakhutdinov, R.,
eds., Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine
Learning Research, 6215–6224. PMLR.
TieLong, S. 1996. H∞ Control theory and application. Ts-
inghua University Press.
Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.;
and Abbeel, P. 2017. Domain randomization for transfer-
ring deep neural networks from simulation to the real world.
In 2017 IEEERSJ international conference on intelligent
robots and systems (IROS), 23–30. IEEE.

Vinitsky, E.; Du, Y.; Parvate, K.; Jang, K.; Abbeel, P.; and
Bayen, A. 2020. Robust Reinforcement Learning using Ad-
versarial Populations. arXiv preprint arXiv2008.01825.
Willems, J. C. 1972. Dissipative dynamical systems part I
General theory. Archive for rational mechanics and analy-
sis, 45(5): 321–351.
Wu, H.-N.; and Luo, B. 2012. Neural Network Based On-
line Simultaneous Policy Update Algorithm for Solving the
HJI Equation in Nonlinear H∞ Control. IEEE Transactions
on Neural Networks and Learning Systems, 23(12): 1884–
1895.
YingMin, J. 2007. Robust H∞ Control. Science Press.
Zhang, K.; Hu, B.; and Basar, T. 2020. On the Stabil-
ity and Convergence of Robust Adversarial Reinforcement
Learning A Case Study on Linear Quadratic Systems. In
Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M. F.; and
Lin, H., eds., Advances in Neural Information Processing
Systems, volume 33, 22056–22068. Curran Associates, Inc.
Zhao, W.; Queralta, J. P.; and Westerlund, T. 2020. Sim-to-
Real Transfer in Deep Reinforcement Learning for Robotics
a Survey. In 2020 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), 737–744.

5439

