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Abstract

We study the design of autonomous agents that are capable of
deceiving outside observers about their intentions while car-
rying out tasks in stochastic, complex environments. By mod-
eling the agent’s behavior as a Markov decision process, we
consider a setting where the agent aims to reach one of mul-
tiple potential goals while deceiving outside observers about
its true goal. We propose a novel approach to model observer
predictions based on the principle of maximum entropy and
to efficiently generate deceptive strategies via linear program-
ming. The proposed approach enables the agent to exhibit
a variety of tunable deceptive behaviors while ensuring the
satisfaction of probabilistic constraints on the behavior. We
evaluate the performance of the proposed approach via com-
parative user studies and present a case study on the streets of
Manhattan, New York, using real travel time distributions.

Introduction
Deception is an important capability that is present in many
human activities, ranging from sports (Jackson and Cañal-
Bruland 2019) to business (Chelliah and Swamy 2018) and
military (Tsu 2016). By making deceptive decisions, e.g.,
by hiding information or conveying false information, teams
win games, companies secretly develop new products, and
troops gain strategic advantage during battles. Although the
outcomes of decisions are typically uncertain, e.g., due to in-
complete knowledge and imperfect predictions, humans are
still able to deceive one another effectively.

In this paper, we develop a novel approach that enables
autonomous systems to make deceptive decisions under un-
certainty. Such a deception capability has the potential to
improve security in adversarial environments, increase suc-
cess rates in competitive settings, and create more engaging
interactions in games. For example, a delivery drone may
protect itself from attacks by deceiving potentially hostile
observers about its destination.

We consider an autonomous agent that carries out a task
in a complex, stochastic environment. We model the agent’s
behavior as a Markov decision process (MDP) and express
its task as reaching one of multiple potential goal states in
the MDP. Being aware of the potential goals, the observer
aims to predict the agent’s true goal from its trajectories.
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The agent aims to follow a deceptive strategy that misleads
the observer about the true goal either by exaggerating its
behavior towards a decoy goal or by creating ambiguity.

The main contribution of this paper is a novel approach
that systematically generates globally optimal deceptive
strategies in stochastic environments by combining the prin-
ciple of maximum entropy with stochastic control. The pro-
posed approach involves a number of parameters that en-
ables the agent to exhibit tunable deceptive behaviors and
allows the integration of probabilistic resource constraints
into the formulation. An overview of the proposed approach
is shown in Fig. 1.

We express the observer’s predictions on the agent’s true
goal by developing a prediction model based on the princi-
ple of maximum entropy (Ziebart et al. 2008; Ziebart, Bag-
nell, and Dey 2010). The model is based on three factors,
namely, the observer’s prior beliefs on the agent’s true goal,
a cost function expressing the agent’s expected goal-directed
behavior, and a constant expressing how much efficiency the
observer expects from the agent.

We synthesize deceptive strategies for the agent by de-
veloping a planning model based on stochastic optimal con-
trol (Puterman 2014). The model takes the observer’s predic-
tions as an input and constructs a constrained optimization
problem that is solved via linear programming. The model
is based on three factors, namely, the agent’s true goal, a
function expressing the type of deception, e.g., exaggeration
or ambiguity, and a discount factor controlling the trade-off
between the trajectory length and deception.

We present three experiments. Firstly, we illustrate the ef-
fects of different parameters in the proposed approach on
the agent’s deceptive behavior. Secondly, we present online
user studies and compare the proposed approach to two re-
cently proposed deception methods (Masters and Sardina
2017; Dragan, Holladay, and Srinivasa 2015) as well as a
baseline. Finally, we present a large-scale case study on the
streets of Manhattan, New York with real travel time distri-
butions and illustrate the use of deception in realistic scenar-
ios under probabilistic constraints on travel time.

Related Work Deception in autonomous systems has
been studied in the literature from different perspectives.
In (Masters and Sardina 2017), the authors generate decep-
tive plans in deterministic environments. For exaggerated
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Figure 1: The overview of the proposed deceptive policy synthesis approach. Given a set G of potential goals, the observer’s
prediction model assigns a probability Pr(G|ζ1:T ) to each potential goal G∈G based on the agent’s partial trajectory ζ1:T .
Utilizing Pr(G|ζ1:T ), the agent synthesizes a deceptive policy via linear programming.

behaviors, their method corresponds to a simple heuristic,
i.e., reaching a decoy goal before reaching the true goal. In
(Dragan, Holladay, and Srinivasa 2015), a robot with deter-
ministic dynamics is considered and deceptive trajectories
are generated using an approach based on functional gradi-
ent descent. The work (Kulkarni, Srivastava, and Kambham-
pati 2019) synthesizes obfuscated plans in deterministic en-
vironments by exploiting observation sequences. These ap-
proaches are different from the one proposed in this paper
as they consider deterministic systems and the synthesized
strategies are based on heuristics or local approaches.

In (Ornik and Topcu 2018), the authors synthesize de-
ceptive strategies by expressing the evolution of observer
predictions as a stochastic transition system over potential
goals, which is constructed using the agent’s relative dis-
tance to potential goals. Unlike (Ornik and Topcu 2018),
we generate observer predictions as probability distributions
over potential goals using the principle of maximum en-
tropy. Nature-inspired deception strategies for social robots
are developed in (Shim and Arkin 2012; Pettinati and Arkin
2019). Although these approaches are effective, their gener-
ality is limited as they lack a mathematical foundation.

Deception has also been studied from the perspective of
game theory. In (Wagner and Arkin 2011) and (Nguyen
et al. 2019), the authors generate deceptive strategies in sin-
gle stage games and finitely repeated games, respectively.
These strategies are different from the ones synthesized in
this work as we focus on stochastic and dynamic settings.
The works (Anwar and Kamhoua 2020; Çeker et al. 2016;
Kulkarni et al. 2020) study deception for cybersecurity using
game-theoretic formulations. The proposed strategies are, in
general, restricted to small-scale problems due to the com-
plexity of computing equilibria in dynamic games.

Deception is also related to the problem of goal recogni-
tion in which an observer aims to infer an agent’s goal based
on its past behavior (Ramı́rez and Geffner 2010; Ramirez
and Geffner 2011; Shvo and McIlraith 2020). We consider
an observer that aims to infer the agent’s goal by using a pre-
diction model based on the principle of maximum entropy.
Utilizing this model, we develop a planning algorithm for
deceiving the observer regarding the agent’s goal.

Background
We model the agent’s behavior in a stochastic environ-
ment as a Markov decision process (MDP). An MDP is a
tuple M=(S, s1,A, P ) where S is a finite set of states,
s1 is a unique initial state, A is a finite set of actions,
and P :S×A×S→[0, 1] is a transition function such that∑

s′∈S P (s, a, s′)=1 for all s∈S and a∈A. In an MDP, the
agent follows a policy to achieve a task. Formally, a policy
π:S×A→[0, 1] is a mapping such that

∑
a∈A π(s, a)=1 for

all s∈S . We denote the set of all possible policies by Π.
We aim to develop an algorithm such that the agent

reaches its goal in an environment while deceiving an out-
side observer about its goal. Hence, we consider a set of po-
tential goals G⊂S in the MDP and denote the agent’s true
goal by G⋆∈G. For simplicity, we assume that all potential
goal states are absorbing, i.e., P (G, a,G)=1 for all G∈G.

A trajectory ζ is a sequence (s1, a1, s2, a2, s3, . . .) of
states and actions that satisfy P (st, at, st+1)>0 for all t∈N.
A partial trajectory ζ1:T of length T∈N is a sequence
(s1, a1, s2, . . . , sT ). Let Tπ denote the set of all admissi-
ble trajectories that are generated under the policy π, and
ζ[t]:=st denote the state visited at the t-th step along ζ. For
a given goal state G∈G and a policy π, we denote by

Prπ(Reach[G]) := Pr{ζ ∈ Tπ : ∃t ∈ N, ζ[t] = G}
the probability with which the agent reaches the goal G un-
der the policy π. Furthermore, we denote by Rmax(G) :=
maxπ∈Π Prπ(Reach[G]) the maximum probability of reach-
ing the goal G under any policy. We note that the value
of Rmax(G) can be efficiently computed via value iteration
(Baier and Katoen 2008).

For an MDP M, let GM=(S, EM) be a directed graph
where S is the set of vertices and EM⊆S×S is the set of
edges such that (s, s′)∈EM if and only if

∑
a∈A Ps,a,s′>0.

For the graph GM, we denote by Tmin(s) the length of the
shortest partial trajectory ζ1:Tmin(s) such that sTmin(s)=s. In-
formally, Tmin(s) indicates the minimum number of steps to
reach the state s from the initial state s1. We use the con-
vention Tmin(s)=∞ if the state s is not reachable from the
initial state. Note that Tmin(s) can be efficiently computed,
e.g., using Dijkstra’s algorithm (Dijkstra et al. 1959).
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Modeling Observer Predictions
To deceive an observer about its true goal, the agent should
know how the observer associates the agent’s partial tra-
jectories with potential goals. In this section, we provide a
prediction model that formally expresses the observer’s in-
ference method using the principle of maximum entropy.
Specifically, we present a prediction model that assigns a
probability Pr(G|ζ1:T ) to each potential goal G∈G for a
given partial trajectory ζ1:T .

An overview of the observer’s prediction model is shown
in Fig. 1. We formally characterize the observer with its
prior beliefs Pr(G) on the agent’s true goal, the cost function
c:S×A→[0,∞) that expresses the agent’s expected goal-
directed behavior from the observer’s perspective, and the
efficiency parameter α∈(0,∞) that expresses the agent’s ex-
pected degree of optimality from the observer’s perspective.

The prior beliefs constitute a probability distribution over
the agent’s potential goals and formalize where the observer
expects the agent to reach when the agent is at the initial
state s1. When the observer interacts with the agent only
once, the prior beliefs are typically represented by a uniform
distribution. In repeated interactions, Bayesian approaches
can be used to construct the prior beliefs from historical data
(Ziebart et al. 2009). Note that, given the prior beliefs, we
can express the observer’s predictions Pr(G|ζ1:T ) as

Pr(G|ζ1:T ) =
Pr(ζ1:T |G)Pr(G)∑

G′∈G Pr(ζ1:T |G′)Pr(G′)
, (1)

where Pr(ζ1:T |G) denotes the probability with which the
agent follows a partial trajectory ζ1:T for reaching the goal
G. In other words, the probability Pr(ζ1:T |G) expresses how
the observer expects the agent to reach a goal. We formally
characterize the probability Pr(ζ1:T |G) using the cost func-
tion c and the efficiency parameter α. Specifically, to reach
a goal G∈G, we assume that the observer expects the agent
to follow a policy πG∈Π that satisfies

πG ∈ argmin
π∈Π

Eπ

[ ∞∑
t=1

γt−1
o

(
c(st, at)− αH(π(st, ·))

)]
s.t. Prπ(Reach[G]) = Rmax(G).

In the above equation, the term H(π(st, ·)) measures the
entropy of the policy π in the state st∈S and is defined
as H(π(st, ·))=−

∑
a∈A π(st, a) log π(st, a). The entropy

term quantifies the randomness in the agent’s policy and en-
ables the observer to reason about suboptimal trajectories.
The parameter γo∈(0, 1) is the observer’s discount factor,
which is introduced only to ensure the finiteness of the solu-
tion and can be chosen arbitrarily close to one.

The cost function c expresses the expected goal-directed
behavior of a rational agent. For example, in motion plan-
ning, the cost function corresponds to the distance between
state pairs as observers typically expect the agent to reach its
goal through the shortest feasible trajectory (Gergely et al.
1995). We make the standard assumption (Dragan, Lee, and
Srinivasa 2013; Sreedharan et al. 2021; Masters and Vered
2021) that the cost function c is known to the agent. In sce-
narios that involve a cooperative observer, the cost function

c can also be learned from demonstrations using existing
learning approaches (Ziebart et al. 2008).

The parameter α∈(0,∞) controls how much efficiency
the observer expects from the agent. For example, as α→0,
the agent is expected to be perfectly efficient and follow only
the trajectories that minimize its total cost. On the other ex-
treme, as α→∞, the agent is expected to have no efficiency
concerns and reach its goal by following random trajecto-
ries. We assume that the parameter α is also known to the
agent. In practice, one can incorporate the parameter α into
the cost function c by defining the costs as c̃(s, a)=c(s, a)/α
and learn the function c̃ from demonstrations.

We can now derive the observer’s prediction model from
the agent’s expected policy πG as follows. It is known
(Haarnoja et al. 2017; Ziebart et al. 2009) that the policy
πG satisfies πG(s, a)=e(QG(s,a)−VG(s))/α where

QG(s, a) = −c(s, a) + γo
∑
s′∈S

P (s, a, s′)VG(s
′)

VG(s) = softmax
a

QG(s, a).

In the above equations, the softmax operator is defined as
softmaxx f(x)=α log

∑
x e

f(x)/α. The values of VG(s) and
QG(s, a) can be iteratively computed via softmax value iter-
ation using the initialization VG(G)=0 and VG(s)=−C for
all s∈S\{G}, where C is an arbitrarily large constant.

It is known (Ziebart et al. 2008) that Pr(ζ1:T |G) satisfies

Pr(ζ1:T |G) ≈ e−
1
α

∑T
t=1 c(st,at)+VG(sT )

eVG(s1)

T∏
t=1

P (st, at, st+1)

when the transition randomness has a limited effect on the
agent’s behavior and the discount factor γo is large enough.
Note that for MDPs with deterministic transitions, the above
expression implies that Pr(ζ|G)∝e−

1
α

∑∞
t=1 c(st,at). Hence,

in the maximum entropy distribution, the probability of a
trajectory exponentially decreases with increasing total cost.
Finally, plugging Pr(ζ1:T |G) into (1) and simplifying terms,
we obtain the observer’s prediction model as

Pr(G|ζ1:T ) ≈
eVG(sT )−VG(s1)Pr(G)∑

G′∈G eVG′ (sT )−VG′ (s1)Pr(G′)
. (2)

Note that the observer’s prediction Pr(G|ζ1:T ) is only a
function of the agent’s initial state s1 and the current state
sT , i.e., Pr(G|ζ1:T )=Pr(G|s1, sT ). Hence, the observer’s
predictions can be computed offline by computing the value
of VG(s) for all G∈G and s∈S . This computation can be
performed by running the softmax value iteration |G| times.

As the efficiency parameter α→∞, for any given partial
trajectory ζ1:T , we have Pr(G|ζ1:T )=Pr(G′|ζ1:T ). This im-
plies that, if the observer expects the agent’s goal-directed
behavior to be inefficient, then the observer predicts all goals
to be equally likely even after the agent’s partial trajectory is
revealed. In such a scenario, it is impossible to mislead the
observer about the true goal. Accordingly, we will see in the
experiments that the agent’s deceptive behavior corresponds
to reaching the true goal via shortest trajectories when the
observer expects the agent to be inefficient.

5334



Synthesizing Deceptive Policies
Being aware of the observer’s prediction model, the agent
aims to synthesize a policy that deceives the observer about
its true goal G⋆. Formally, we propose to synthesize a de-
ceptive policy π⋆∈Π under which the agent maximizes the
deceptiveness of its trajectory while reaching its true goal
with maximum probability, i.e.,

π⋆ ∈ argmin
π∈Π

Eπ

[ ∞∑
t=1

g(st, at)

]
(3a)

s.t. Prπ(Reach[G⋆]) = Rmax(G
⋆). (3b)

In (3a)-(3b), we express the agent’s deception objective
through the generic cost function g:S×A→[0,∞). In par-
ticular, we consider a class of functions of the form

g(s, a) = γTmin(s)
a f(s, a) (4)

where γa∈(0, 1] is a discount factor and f :S×A→[0,∞)
is a mapping that formalizes the type of deception. Recall
that the constant Tmin(s) is the minimum number of steps to
reach the state s from the initial state s1 in the graph GM.
We introduce the term γ

Tmin(s)
a in (4) as a scaling factor to

obtain tunable agent behavior. As we will see in the exper-
iments, as γa decreases, the cost for states that are further
away from the initial state becomes smaller, which encour-
ages the agent to follow longer trajectories for deception.

Mathematical Representation of Deception
We design the mapping f to achieve two common types of
deception, namely, exaggeration and ambiguity.

Exaggeration: One of the most common strategies to de-
ceive an observer about the true goal is exaggeration (Dra-
gan, Holladay, and Srinivasa 2015). In this strategy, the
agent exhibits an exaggerated behavior by pretending to
reach a decoy goal, i.e., a goal that is not the true goal. We
express the exaggeration behavior by defining f as

f(s, a) = 1 + Pr(G⋆|s1, s)− max
G∈G\{G⋆}

Pr(G|s1, s) (5)

if s∈S\G, and f(s, a)=0 otherwise.
In (5), the value of f(s, a) linearly increases with the

difference Pr(G⋆|s1, s)−maxG∈G\{G⋆} Pr(G|s1, s), i.e., the
relative likelihood of the true goal with respect to a de-
coy goal. Hence, the smaller the value of f(s, a), the more
likely it is for the agent to reach a decoy goal. Additionally,
we have f(s, a)=0 if Pr(G⋆|s1, s)=0 and Pr(G|s1, s)=1 for
some G∈G\{G⋆}. That is, the agent incurs no cost in a state
if the observer almost surely expects the agent to reach a
decoy goal from that state.

Ambiguity: Another possible strategy to deceive an ob-
server about the true goal is to behave ambiguously. In this
strategy, the agent exhibits an ambiguous behavior by keep-
ing the likelihood of all potential goals similar along its tra-
jectory. Similar to exaggeration, we express ambiguity by
defining the mapping f as

f(s, a) =
∑
G∈G

∑
G′∈G

∣∣∣Pr(G|s1, s)− Pr(G′|s1, s)
∣∣∣ (6)

if s∈S\G, and f(s, a)=0 otherwise.
In (6), the value of f(s, a) at a state s increases as the

relative likelihood of a goal with respect to any other one
increases. Hence, the smaller the value of f(s, a), the less
likely it is for the agent to try and reach a specific goal. Addi-
tionally, we have f(s, a)=0 if Pr(G|s1, s)=Pr(G′|s1, s) for
all G,G′∈G, i.e., the agent incurs no cost in a state if the
observer expects the agent to reach all goals equally likely.

Synthesis via Linear Programming
We now synthesize deceptive policies by solving a series of
linear programs (LPs). For a given MDP M, let S0⊆S be
a set of states from which there is no trajectory reaching a
potential goal G∈G. The set S0 can be efficiently computed
through standard graph search algorithms (Baier and Katoen
2008). Moreover, let Sr=S\(G ∪ S0).

To obtain the deceptive policy π⋆, we first solve the fol-
lowing LP:

minimize
x(s,a)≥0

∑
s∈Sr

∑
a∈A

g(s, a)x(s, a) (7a)

subject to:∑
a∈A

x(s, a)−
∑
s′∈S

∑
a∈A

P (s′, a, s)x(s′, a) = βs, ∀s ∈ Sr

(7b)∑
s∈Sr

∑
a∈A

x(s, a)r(s, a) = Rmax(G
⋆). (7c)

In the above LP, x(s, a) is a decision variable that corre-
sponds to the agent’s expected number of visits to the state-
action pair (s, a) (Puterman 2014). The function βs indicates
the initial state distribution, i.e., βs=1 if s=s1, and βs=0
otherwise. Finally, the function r:S×A→[0,∞) is the tran-
sition probability to the true goal from a given state, i.e.,
r(s, a)=P (s, a,G⋆) for s∈Sr, and r(s, a)=0 otherwise.

The objective function in (7a) corresponds to the agent’s
expected total cost given in (3a). The constraint in (7b) rep-
resents the balance equation (Altman 1999), i.e., the ex-
pected number of times the agent enters a state is equal to
the expected number of times the agent leaves that state. Fi-
nally, the constraint in (7c) ensures that the agent reaches its
true goal G⋆ with maximum probability Rmax(G

⋆).
It is possible to extract the deceptive policy π⋆ from the

optimal solution of the LP in (7a)-(7c). However, under the
extracted policy, the agent may visit the states with zero cost
too many times before reaching its true goal since such states
do not affect the objective function. Let v⋆ be the optimal
value of the LP in (7a)-(7c). To ensure that that the agent
reaches its true goal as quickly as possible while achieving
its deception objective, we solve the following second LP:

minimize
x(s,a)≥0

∑
s∈S

∑
a∈A

x(s, a) (8a)

subject to:
∑
s∈Sr

∑
a∈A

g(s, a)x(s, a) = v⋆ (8b)

(7b) − (7c). (8c)
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Let {x⋆(s, a)≥0:s∈S, a∈A} be the set of optimal variables
for the LP in (8a)-(8c). It follows from (Altman 1999) that
the deceptive policy π⋆ satisfying the condition in (3a)-(3b)
can be synthesized by choosing

π⋆(s, a) =

{
x⋆(s,a)∑

a′∈A x⋆(s,a′) if
∑

a′∈A x⋆(s, a′) > 0,

1/|A| otherwise.

Experiments
We now demonstrate the performance of the proposed ap-
proach through numerical simulations and user studies. We
run all computations on a 3.2 GHz desktop with 8 GB RAM
and employ the Gurobi solver (Gurobi Optimization 2021)
for optimization. Approvals for user studies are obtained
from the University of Texas at Austin IRB (Study #1368).

Generating Tunable Agent Behavior
We first illustrate how to generate a range of deceptive be-
haviors by tuning α and γa. We consider the environment
shown in Fig. 2. The initial state is labeled with S and the two
potential goals are labeled with G1 and G2, with G1 being
the true goal. Black regions indicate the obstacles. The agent
has four actions {right, left, up, down}. Under a given ac-
tion, the agent transitions to the state in the corresponding
direction with probability one.

The agent’s expected goal-directed behavior is to follow
shortest trajectories to the goal, which we express by setting
c(s, a)=10 for all s∈S and a∈A and γo=0.95. Note that any
positive cost expresses the same goal-directed behavior; the
value of 10 is chosen to obtain distinct behaviors for a wide
range of α values. Recall that, as α gets smaller, the observer
expects the agent to be more efficient and follow shorter tra-
jectories to reach its goal. In Fig. 2 (left), the shaded region
indicates all the states that a perfectly efficient agent, α=0,
can potentially visit along its trajectory to the goal G1.

In Fig. 2 (left), we generate 5 trajectories to represent the
agent’s exaggeration behavior for various α and γa combina-
tions. As can be seen from the figure, for α≤1 and γa=1, the
agent’s exaggerated trajectory reaches the true goal while
avoiding the shaded region. This trajectory is deceptive be-
cause the observer expects the agent to be highly efficient
and visit only the states in the shaded region while reaching
the goal G1. As α increases, the observer expects the agent
to be less efficient. In that case, to deceive the observer, the
agent starts exaggerating its behavior by getting closer to the
decoy goal G2. As we keep increasing the α value, the ob-
server expects the agent’s behavior to be less goal-directed
and more random. In that case, it becomes impossible to de-
ceive the observer since any random behavior is expected.
Accordingly, for α≥20, the agent does not try to deceive the
observer and follows a shortest trajectory to its goal.

A simple heuristic to achieve exaggeration-type deceptive
behavior is to first reach the decoy goal and then the true
goal (Masters and Sardina 2017). In the environment shown
in Fig. 2 (left), the states that are further away from the ini-
tial state have high costs g(s, a) when the discount factor is
γa=1. Therefore, the agent has no incentive to follow longer
trajectories and pretend to reach the decoy goal. However,

S

G1

G2

α≤1

α=5

α=6α=6
γa=0.8

α≥20 S

G1

G2

α≤1
α=8

α=8,
γa=0.8

α=8,
γa=0.7

α≥20

Figure 2: An illustration of deceptive trajectories generated
by the proposed approach under various efficiency param-
eters (α) and discount factors (γa). The agent starts from
the state S. The true goal and decoy goal are G1 and G2,
respectively. γa=1 if it is not written explicitly. (Left) Exag-
geration behavior. (Right) Ambiguity behavior.

when γa=0.8 and α=6, the agent’s exaggeration behavior
starts exploiting those states as well and replicates the tra-
jectory generated by the aforementioned heuristic approach.

We also generate 5 ambiguous trajectories, shown in Fig.
2 (right). In this environment, ambiguity corresponds to be-
ing at the same horizontal distance to both potential goals.
Accordingly, to achieve ambiguity for α≤1, the agent stays
at the same horizontal distance to both potential goals for as
long as possible while ensuring to visit only the states in the
shaded region along its trajectory. As α increases, e.g., α=8,
the agent is expected to be less efficient, which enables the
agent to generate ambiguity for longer. As we keep increas-
ing the value of α, the observer expects the agent to behave
randomly. In that case, deception becomes impossible, and
the agent reaches its goal by following a shortest trajectory.

The effect of the discount factor γa on ambiguity is also
illustrated in Fig. 2 (right). As we decrease the value of γa,
the cost g(s, a) of the states that are further away from the
initial state decreases. Consequently, the agent starts exploit-
ing those states to achieve better ambiguity by staying at the
same horizontal distance to the potential goals for longer.

User Studies
We conduct two user studies to evaluate the performance of
the proposed approach and compare the deceptiveness of the
exaggerated trajectories with a baseline and two other algo-
rithms. We consider only exaggerated trajectories since such
trajectories are known to be more deceptive than ambiguous
trajectories (Dragan, Holladay, and Srinivasa 2015).

We consider the shortest trajectory to the true goal as the
baseline (base) algorithm, which we generate by choosing
c(s, a)=1, γo=γa=0.95, and α=20 in a given environment.
For comparison, we generate deceptive trajectories using
the algorithms proposed in (Dragan, Holladay, and Srinivasa
2015) and (Masters and Sardina 2017). We note that, unlike
the algorithm proposed in this paper, these algorithms are
proposed for deterministic systems and environments.

In (Dragan, Holladay, and Srinivasa 2015), the authors
generate exaggerated (continuous) trajectories for robots.
They utilize a functional gradient descent-based (GD) algo-
rithm which locally maximizes the cumulative goal proba-
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Figure 3: Environments and trajectories in the user studies.
Crosses indicate the points up to which a trajectory is shown
to the users. In study 2, the baseline is the same with DPP.
(Left) User study 1. (Right) User study 2.

bilities for a decoy goal. By following (Dragan, Holladay,
and Srinivasa 2015), we initialize the GD algorithm with the
baseline trajectory. In (Masters and Sardina 2017), the au-
thors present a deceptive path planning (DPP) algorithm to
generate exaggerated trajectories by first reaching a decoy
goal. In the case of multiple potential decoys, they choose
the decoy goal using a heuristic which corresponds to visit-
ing the decoy goal that is in closest distance to the true goal.

Study 1: the importance of global optimality In the first
study, we consider the 9×9 grid world shown in Fig. 3
(left). The agent starts from the state labeled with S and
has two potential goals G1 and G2, with G1 being the true
goal. Black regions indicate the obstacles. Under each action
a∈{right, left, up, down}, the agent transitions to the state
in the corresponding direction with probability one.

Recall that the algorithm proposed in this paper, i.e., de-
ceptive decision-making (DDM), generates globally opti-
mal deceptive trajectories via linear programming. In com-
plex environments involving obstacles, as the one consid-
ered here, we expect the DDM to be more deceptive than lo-
cal approaches, e.g., GD. Additionally, since the decoy goal
is far away from the true goal, we also expect the “first reach
a decoy goal” heuristic (as in DPP) to perform well in this
environment. Hence, we hypothesize the following.

H1: DDM and DPP generate significantly more deceptive
trajectories than GD and baseline.

We manipulated two independent factors: the algorithm
(with 4 levels: DDM, DPP, GD, and baseline) and the seg-
ment at which the trajectory is evaluated (with 4 levels:
25%, 50%, 75%, and 90% of the total length, shown in
Fig. 3 (left)), leading to a total of 16 conditions. We used
two dependent variables to measure deceptiveness: (i) goal
prediction incorrectness and (ii) incorrect prediction confi-
dence. We used a between-subjects design and recruited 320
users (20 per condition) on Amazon’s Mechanical Turk. For
each condition, we showed users the corresponding trajec-
tory segment and asked them (i) to predict the agent’s goal
and (ii) to state their confidence on a 5-point Likert scale.

A factorial ANOVA on goal prediction incorrect-
ness (considered to be robust to dichotomous data
(D’Agostino 1971)) revealed significant main effects for
both algorithm (F (2, 228)=27.344, p<0.001) and segment
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Figure 4: Statistics of the user responses in study 1. (Top)
The algorithm factor. (Bottom) The segment factor.

(F (3, 228)=59.817, p<0.001) as well as significant in-
teraction effects (F (6, 228)=4.949, p<0.001). A factorial
ANOVA on incorrect prediction confidence revealed similar
significant main and interaction effects.

In line with H1, a post-hoc analysis with Tukey HSD that
marginalizes over segments showed that DDM and DPP are
significantly more deceptive than GD and baseline (p<0.001
for all pairwise comparisons). Fig. 4 echoes these findings,
where we plot the means and the standard errors of the de-
pendent variables. Note that DDM induces wrong goal pre-
dictions 10 times more often than the baseline and 2 times
more often than GD. Moreover, both DDM and DPP induce
wrong predictions up to 50% segment of the trajectories,
whereas GD reveals the true goal with high confidence af-
ter 25% segment of the trajectory.

Study 2: the importance of prediction-awareness Next,
we consider the environment shown in Fig. 3 (right) which
includes 4 potential goals G1,. . . ,G4. The true goal is G1.

Recall that the DDM algorithm systematically generates
exaggerated trajectories using prediction probabilities. In
complex environments with multiple decoy goals and ob-
stacles, we expect DDM to be more deceptive than heuristic
approaches, e.g., DPP. We also expect the GD algorithm’s
local optimality to limit its deceptiveness in this complex
environment. The trajectory generated by the DPP algorithm
first pretends to reach the decoy goal G3, which is the clos-
est decoy to the true goal. Hence, DDM coincides with the
baseline. In this study, we hypothesize the following.

H2: DDM generates significantly more deceptive trajec-
tories than DPP and GD.

We manipulated two independent factors: the algorithm
(with 3 levels: DDM, DPP, and GD) and the segment at
which the trajectory is evaluated (with 4 levels shown in
Fig. 3 (right)), leading to a total of 12 conditions. We used
a between-subjects design and recruited 240 users (20 per
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Figure 5: Statistics of the user responses in study 2. (Top)
The algorithm factor. (Bottom) The segment factor.

condition) on Amazon’s Mechanical Turk. To measure de-
ceptiveness, we used the two dependent variables from the
previous study and two-goal prediction incorrectness. For
each condition, we asked users (i) to predict the agent’s goal,
(ii) to state their confidence on a 5-point Likert scale, and
(iii) to predict the agent’s second most likely goal. A two-
goal prediction is incorrect if the goal prediction and the
second most likely goal prediction are different than the true
goal. Note that we asked the users second most likely goal
to understand the effect of the decoy goal G3 on predictions.

A factorial ANOVA analysis yielded significant main and
interaction effects for all dependent variables. In line with
H2, a post-hoc analysis with Tukey HSD that marginalizes
over segments revealed that DDM is significantly more de-
ceptive than DPP with respect to all three dependent vari-
ables (p<0.001 for all comparisons). There is no significant
difference between the DDM and GD with respect to goal
prediction incorrectness and incorrect prediction confidence
variables. However, the comparison with respect to two-goal
prediction incorrectness variable revealed that DDM is sig-
nificantly more deceptive than GD (p<0.001). The statistics
depicted in Fig. 5 also reflect these findings. Note that the
deceptiveness of the DDM only slightly changes when the
second most likely goal prediction is included in the analy-
sis unlike the deceptiveness of GD and DPP.

Deception Under Probabilistic Constraints
We now consider a large-scale example and demonstrate
how the proposed algorithm can generate deceptive trajecto-
ries while respecting probabilistic constraints on travel time.

We consider the graph given in Fig. 6, which represents
the road network in Manhattan, New York. We utilize the
real-world speed data provided in the open source database
(Uber Technologies 2021) to express realistic travel times.
We generate a continuous travel time distribution on each
edge by assuming that the speed follows a lognormal dis-
tribution, which is a common assumption in transportation

initial state

true
goal

decoy
goal

reach the true goal in 40 minutes
with at least 0.8 probability

reach the true goal in 30 minutes
with at least 0.8 probability

Figure 6: An illustration of deceptive trajectories in Manhat-
tan case study. The agent exaggerates its behavior by mov-
ing towards the decoy goal only when the probabilistic con-
straint on arrival time allows such a behavior.

networks (Rakha, El-Shawarby, and Arafeh 2010). To con-
struct the MDP model expressing stochastic travel times,
we take the Cartesian product of the graph with the set
{0.5, 1, . . . , Tmax} of states, where Tmax is the maximum
travel time in minutes. In this MDP, the agent’s transition
from (s, t) to (s′, t′) with probability p expresses that the
travel from s to s′ takes t′−t minutes with probability p.

We consider two potential goals shown in Fig. 6 and syn-
thesize two exaggerated trajectories ensuring that the agent
reaches its true goal in Tmax∈{30, 40} minutes with 0.8
probability. One can encode this constraint in the proposed
framework by defining (3b) as Pr(Reach[(G⋆, Tmax)])≥0.8
on the constructed MDP. We choose the value 0.8 to clearly
illustrate the effect of probabilistic time constraints on the
deceptive behavior. Finally, we use the parameters c(s, a)=5
for all s∈S and a∈A, γo=0.95, α=1, and γa=1.

The two trajectories shown in Fig. 6 demonstrates that the
proposed algorithm enables the agent to adjust its exaggera-
tion behavior with respect to the desired travel time. As can
be seen from the figure, when the agent is required to arrive
its goal in 30 minutes with at least 0.8 probability, it simply
follows a shortest trajectory to the goal. This is because the
agent’s stochastic travel time constraint prevents it from ex-
aggerating its behavior. Indeed, when the agent is required
to arrive its goal in 40 minutes instead of 30, it pretends to
reach the decoy goal before reaching the true goal.

Conclusions
We consider an autonomous agent that aims to reach one
of multiple potential goals in a stochastic environment and
propose a novel approach to generate globally optimal de-
ceptive strategies via linear programming. We evaluate the
performance of the proposed approach via user studies and
present a case study in Manhattan illustrating the use of de-
ception under probabilistic constraints. Future work will fo-
cus on characterizing the sensitivity of the deceptive strate-
gies to the knowledge of the observer’s prediction model.
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Ethics Statement
Although deceptive capabilities can provide benefits both
to autonomous systems and the society, their deployment
without proper regulations and public education may yield
undesirable outcomes. For example, (Arkin 2018) argues,
through an ethical discussion, that deceptive behaviors can
hinder the public trust towards robots. The author in (Dana-
her 2020) presents a categorization to systematically discuss
deception ethics, and in (Sætra 2021), the author stresses
the need for regulation and ethical conduct by producers
to avoid the degradation of public trust towards intelligent
systems. We believe that theoretical studies, such as this
work, are an important first step for understanding the po-
tential drawbacks of deceptive capabilities in autonomy and
developing counter-measures against systems with such ca-
pabilities. We hope that these studies will also help inform
decision-makers and lead to the development of necessary
regulatory actions.
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