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Abstract

Expert decision makers are starting to rely on data-driven
automated agents to assist them with various tasks. For this
collaboration to perform properly, the human decision maker
must have a mental model of when and when not to rely on
the agent. In this work, we aim to ensure that human decision
makers learn a valid mental model of the agent’s strengths
and weaknesses. To accomplish this goal, we propose an
exemplar-based teaching strategy where humans solve a set
of selected examples and with our help generalize from them
to the domain. We present a novel parameterization of the
human’s mental model of the AI that applies a nearest neigh-
bor rule in local regions surrounding the teaching examples.
Using this model, we derive a near-optimal strategy for se-
lecting a representative teaching set.We validate the benefits
of our teaching strategy on a multi-hop question answering
task with an interpretable AI model using crowd workers. We
find that when workers draw the right lessons from the teach-
ing stage, their task performance improves. We furthermore
validate our method on a set of synthetic experiments.

Introduction
Automated agents powered by machine learning are aug-
menting the capabilities of human decision makers in set-
tings such as healthcare (Gaube et al. 2021), content mod-
eration (Link, Hellingrath, and Ling 2016) and more rou-
tine decisions such as asking AI-enabled virtual assistants
for recommendations (Shaikh and Cruz 2019). This mode
of interaction whereby the automated agent serves only to
provide a recommendation to the human decision maker, a
setting typically named AI assisted decision making, is the
focus of our study here. A key question is how does the hu-
man expert know when to rely on the AI for advice. In this
work, we make the case for the need to initially onboard the
human decision maker on when and when not to rely on the
automated agent. This allows the human to have an accurate
mental model of the AI agent, and this mental model helps
in setting expectations about the performance of the AI on
different examples.

Our onboarding phase consists of letting the human pre-
dict on a series of specially selected teaching examples while
providing feedback and enabling lesson retention through
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letting the human write down rules indicating what they
learned from each example. Our approach is inspired by re-
search in the education literature that highlight the impor-
tance of feedback and lesson retention for learning (Atkin-
son et al. 2000; Hattie and Timperley 2007). To select the
teaching examples, we need to have a mathematical frame-
work of how the human mental model evolves after we give
them feedback. We model the human thought process as first
deciding whether to rely on the AI’s prediction or not using
an internal rejector. This rejector is what we refer to as the
human’s mental model of the AI. We propose to model the
human’s rejector as consisting of a prior rejector and a near-
est neighbor rule that only applies in local regions surround-
ing each teaching example. This novel parameterization is
inspired by work in cognitive science that suggests that hu-
mans make decisions by weighing similar past experiences
(Bornstein et al. 2017). Assuming this rejector model, we
give a near-optimal greedy strategy for selecting a set of rep-
resentative teaching examples that allows us to control the
examples and the region surrounding them.

We first evaluate the efficacy of our algorithmic approach
on a set of synthetic experiments and its robustness to the
misspecification of the human’s model. For our main evalu-
ation, we conduct experiments on Amazon Mechanical Turk
on the task of passage-based question answering from Hot-
potQA (Yang et al. 2018). Crowdworkers first performed a
teaching phase and were then tested on a randomly chosen
subset of examples. Our results demonstrate the importance
of teaching: around half of the participants who undertook
the teaching phase were able to correctly determine the AI’s
region of error and had a resulting improved performance.
The full version of this paper is available on arxiv (Mozan-
nar, Satyanarayan, and Sontag 2021).

Related Work
One of the goals of explainable machine learning is to en-
able humans to better evaluate the correctness of the AI’s
prediction by providing supporting evidence (Lai and Tan
2019; Suresh et al. 2021; Wortman Vaughan and Wallach
2021). However, these explanations do not inform the deci-
sion maker how to weigh their own predictions against those
of the AI or how to combine the AI’s evidence to make their
final decision (Kaur et al. 2020). The AI explanations cannot
factor in the effect of the human’s side information, and thus
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the human has to learn what their side information reveals
about the performance of the AI or themselves. Moreover,
if the AI’s explanations are unfaithful or become so due to a
distribution shift in the data (DeVries and Taylor 2018), then
the human may then over-weigh the AI’s abilities. Another
direct approach for teaching is presenting the human with a
set of guidelines of when to rely on the AI (Amershi et al.
2019). However, these guidelines need to be developed by
a set of domain experts and no standard approach currently
exists for creating such guidelines. As a byproduct of our
teaching approach, each human writes a set of unorganized
rules that can then be more easily turned into such guide-
lines.

The reverse setting, of teaching a classifier when to defer
to a human, is dubbed as learning to defer (LTD) (Madras,
Pitassi, and Zemel 2018; Raghu et al. 2019; Mozannar and
Sontag 2020; Wilder, Horvitz, and Kamar 2020). The main
goal of LTD is to learn a rejector that determines which of
the AI and the human should predict on each example. How-
ever, there are numerous legal and accountability constraints
that may prohibit a machine from making final decisions in
high stakes scenarios. Additionally, the actual test-time set-
ting may differ from that which was used during training, but
since in our setting the human makes the final decision, this
allows them to adapt their decision making and detect any
unexpected model errors. As an example in a clinical use
case, factors such as times of substantially increased patient
load may affect the human expert’s accuracy. The human
may also occasionally have side-information that was un-
available to the AI that could improve their decision making.
Compared to LTD, deployment may be simplified because
the same AI is used for all experts; as new experts arrive,
our onboarding phase trains them to use the AI according
to their unique abilities. Our teaching setting and LTD also
use very different techniques. Although the objective that
we present in Equation (2) is closely related to the objec-
tive used by Mozannar and Sontag (2020), the main task in
our setting is that of teaching the human when to defer. This
requires us to develop a formalization of the human mental
model and algorithms for selecting a subset of examples that
enables accurate learning.

Related work has explored how to best onboard a human
to trust or replicate a model’s prediction. LIME, a black-
box feature importance method, was used to select examples
so that crowdworkers could evaluate which of two models
would perform better (Ribeiro, Singh, and Guestrin 2016;
Lai, Liu, and Tan 2020). Their selection strategy does not
take into account the human predictor, nor does their ap-
proach do more than display the examples which is what we
contribute. On a task of visual question answering, Chan-
drasekaran et al. (2018) handpicked 7 examples to teach
crowdworkers about the AI abilities and found that teach-
ing improved the ability to detect the AI’s failure. Feng and
Boyd-Graber (2019) on a Quizbowl question answering task
highlight the importance of modeling the skill level of the
human expert when designing the explanations. Through a
study of 21 pathologists, Cai et al. (2019) gathered a set of
guidelines of what clinicians wanted to know about an AI
prior to interacting with it. Bansal et al. (2019) investigate

the role of the human’s mental model of the AI on task accu-
racy, however, the mental model is formed through test time
interaction rather than through an onboarding stage. Bansal
et al. (2021) propose a theoretical model for AI-assisted de-
cision making, assuming that the human has a perfect men-
tal model of the AI and that the human has uniform error.
Finally, our work was inspired by the literature on machine
teaching (Singla et al. 2014; Hunziker et al. 2018) and cur-
riculum learning (Graves et al. 2017).

Problem Setup
Our formalization is based on the interaction between two
agents, the AI, an automated agent, and a human expert who
both collaborate to predict a target Y ∈ Y based on a given
input context. The AI consists of a predictor πY : X → Y
that can solve the task on its own and a policy π : X → A
which serves to communicate with the human and sends
them a message A. The message space A may consist for
example of the AI’s prediction πY (X) alongside an expla-
nation or a confidence score for their decision. The human
expert then integrates the AI messageA and their view of the
inputZ ∈ Z to make a final decisionM(Z,A) which can ei-
ther be to predict on their own or allow the AI to predict. The
input space of the human and AIX and Z could be different
since the human may have side information that the AI can’t
observe. The human consists of a predictor h : Z×A → Y
parameterized by θh and the human decides to allow the AI
to predict or not according to a rejector r : Z×A → {0, 1}
parameterized by θr, where if r(Z,A; θr) = 1 the human
uses the AI’s answer for its final prediction. This implies
that the final human decision M is as follows:

M(Z,A) =

{
πY (x) , if r(Z,A; θr) = 1

h(Z,A; θh) , otherwise
(1)

System objective. Given the above ingredients and a per-
formance measure on the label space l(y, ŷ) : Y ×Y → R+

(e.g. 0-1 loss), the loss that we incur is the following:

L(π, πY , h, r) =Ex,z,y[l(πY (x), y)Ir(x,π(x))=1+

l(h(z, π(x)), y)Ir(x,π(x))=0] (2)

The central Human-AI interaction problem. Given a
fixed AI policy, and human parameters (θh, θr), the manner
in which the human expert integrates the AI’s message de-
pends only on the expert context Z and the message itself
A. It is more realistic to assume that the expert has a mental
model of the policy π that they have arrived at from either a
description of the policy or from previously interacting with
it; the rejector here formalizes the mental model. This in-
sight forces us to now consider the parameters (θh, θr) as
variables that are learned by the human as a function of the
underlying AI policy π. This makes the optimization of the
loss now much more challenging as whenever the policy π
changes, the human’s mental model, (θh, θr), needs to up-
date. Therefore, we need to first understand how the human’s
mental model evolves and how we can influence it.

Teaching Humans about the AI. In this work, we focus
on exemplar based strategies to allow the human to update
their mental models of the AI. The question is then how do
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we select a minimal set of examples that teaches the human
an accurate mental model of the AI. To make progress, we
need to first understand the form of the human’s rejector and
how it evolves, which we elaborate on in the following sec-
tion. Crucially, we will keep the AI in this work as a fixed
policy and not look to optimize for it. Once we understand
this first step, future work can then look to close the loop.

Human Mental Model
We now introduce our model of the human’s rejector and the
elements of the teaching setup. The tasks we are interested
in are where humans are domain experts, meaning that their
knowledge about the task and their predictive performance
are fixed. We further extend this to how they may incorporate
the AI message in their prediction, but crucially not how they
decide when to use the AI. This assumption translates in our
formulation as follows.
Assumption 1 The human predictor does not vary as they
interact with the AI, i.e. we assume θh to be fixed.
We now move our attention to the human’s rejector, which
represents their mental model of the AI, and learned after
observing a series of labeled examples. Research on human
learning from the cognitive science literature has postulated
that for complex tasks humans make decisions by sampling
similar experiences from memory (Bornstein et al. 2017;
Giguère and Love 2013; Richler and Palmeri 2014). More-
over, (Bornstein et al. 2017) makes the explicit comparison
with nearest neighbor models found in machine learning.
However, standard nearest neighbor models don’t allow for
prior knowledge to be incorporated. For this reason, we pos-
tulate a nearest neighbor model for the human rejector that
starts with a prior and updates in local regions of each shown
example in the following assumption.
Assumption 2 (Form of Human’s rejector) The human’s
rejector consists of a prior rejector rule and a nearest neigh-
bor rule learned after observing teaching examples DT =
{zi, ai, ri}mi=1.

Formally, let g0(Z,A) : Z ×A → {0, 1} be the human’s
prior rejector. Figure 1 illustrates the scenario: the prior is
the region at the boundary of the human predictor h. Let
K(., .) : Z × Z → R+ be the similarity measure that the
human employs to measure the degree of similarity between
two instances. The human’s rejector uses a learned rule if
they had observed an example similar with respect toK(., .)
during teaching, otherwise falling back on their prior:

r(Z,A; θr) =

{
vote(B(Z)) , if B(Z) 6= ∅
g0(Z,A) , otherwise

(3)

where B(Z) is the set of all points in DT that they ob-
served in training sufficiently similar to Z: B(Z) = {i ∈
[m] | K(Z, zi) > γi}. The degree of similarity is measured
by a scalar γi that the human sets for each teaching exam-
ple, in figure 1 all the points in the shaded ball haveB(Z) =
{z1}. The rule vote(B(Z)) defines the label for all points
similar to Z based on a weighted decision: vote(B(Z)) =

argmaxk∈{0,1}

∑
i∈B(Z) I{ri=k}K(Z,zi)∑

i∈B(Z)K(Z,zi)
Where ri is the de-

ferral rule that the human has learned on example zi.
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Figure 1: The task is classification with labels {o,+}, the
human prediction h is the blue line and the prior g0 is the
shaded orange region surrounding the boundary. Points in
red is where the human is incorrect, in blue correct and in
black point deferred to the AI. The AI is assumed to be cor-
rect on examples far from the human boundary. The human
receives a teaching example z1 (in green) with radius γ1.
Also shown are the two contrasting examples zj1 and zjk
(in pink) that define the region.

Discussion on the Assumptions. In our assumptions
above, we assumed knowledge of the following parame-
ters: the human predictor h(Z,A), the prior human rejec-
tor g0(Z,A) and the human similarity measure K(, , .). In
fact, as we will see, we only need to know the expert er-
ror distribution E[l(h(Z,A), Y )|Z,A] rather than the full
expert predictor; it may be reasonable to estimate the ex-
pert’s error distribution from previously collected data. The
prior rejector g0 can also be learned by testing the human
prior as evidenced by prior work on capturing human priors
(Kim et al. 2019; Bourgin et al. 2019), otherwise, a reason-
able guess is the human deferring by just thresholding their
own error rate. Finally to teach the human, we need a proxy
for the similarity measure K(., .). This can be obtained in
many ways: one can learn this metric with separate interac-
tions with the human, see (Ilvento 2019; Qi et al. 2009), or
rely on an AI based similarity measure e.g. from neural net-
work embeddings (Reimers and Gurevych 2019). This last
proxy is readily available and in the framework of our study,
we believe it is reasonable to use. An important part of the
rejector is the associated radius γi with each teaching exam-
ple i, the radius allows the human to generalize from each
teaching example to the entire domain. The human learning
process leaves the setting of γi completely up to the human
and is not observed. However, we hope to directly influence
the value of γi that the human sets during teaching.

Teaching a Student Learner
Formulation. The previous section introduced the model
of the human learner, in this section we will set out our
approach to select the teaching examples for the onboard-
ing stage. We assume access to a labeled dataset S =
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{xi, zi, yi}ni=1 that is independent from the training data
of the AI model. For each point we can assign a defer-
ral decision ri that the human should undertake that mini-
mizes the system loss. Explicitly, the optimal deferral deci-
sion ri is defined to select who between the human and AI
has lower loss on example i: ri = I{E[l(h(zi, ai), yi)] ≥
E[l(πY (xi), yi]]}. Note that to derive ri we only need to
know the loss of the human on the teaching set and not their
predictions. Define then S∗ = {xi, zi, ri}ni=1 as a set of
examples alongside deferral decisions. As mentioned pre-
viously, the human is also learning a radius γi with each
example. The radius γi should be set large enough to en-
able generalization to the domain, but small enough for the
region to be coherent so that the human can interpret why
should they follow the optimal deferral decision.

Let Dz ⊂ S∗ and let Dγ be the set of radiuses associated
with each point in Dz and define D = (Dz, Dγ). Define the
loss of the human learnerM(., .;D) now only parameterized
by the teaching set D as follows:

L(D) =
∑
i∈S

l (M(zi, ai;D), yi) (4)

Greedy Selection. Note that since the radiuses set by the
human are learned only after observing the example, we try
to jointly optimize for the teaching point and the radius to
teach. To optimize for D, consider the following greedy al-
gorithm (GREEDY-SELECT) which starts with an empty set
D0 , and then repeats the following step for t = 1, · · · ,m
to select the example z and radius γ that leads to the biggest
reduction of loss if added to the teaching set:

z, γ =arg min
zi∈S\Dt,γ

L(Dt ∪ {zi, γ}), (5)

s.t. ∃k ∈ [n] s.t. γ = K(zi, zk), (6)

and

∑
j∈[n],K(zi,zj)>γ

Irj=ri
|{j ∈ [n],K(zi, zj) > γ}|

≥ α (7)

Constraint (6) restricts γ to be the similarity between z and
another data point and constraint (7) ensures that α% of
all points inside the ball centered at z share the same de-
ferral decision as z. The scalar α is a hyperparameter that
controls the consistency of the local region: when α = 1,
the region is perfectly consistent and we call this setting
CONSISTENT-RADIUS, and when α = 0 the constraint is
void and we dub the algorithm as DOUBLE-GREEDY. Note
that the radius γ is actually defined by two points: the point
zk in equation (6) that defines the boundary and an interior
point zj that is the least similar point to z with similarity at
least γ; these two points are illustrated in Figure 1 with the
color pink. These two points must actually share opposing
deferral actions with rk 6= rj and thus are contrasting points
later used as a way to describe the local region.

Theoretical Guarantees. LetDt be the solution found by
the greedy algorithm and D∗ the optimal solution. We now
try to see how we can compare Dt to D∗. We restrict our
attention to the case of α = 1; when α < 1 the guarantees
may not hold. We can derive a guarantee on the gap of per-
formance of our algorithm versus the optimal teaching set as
the next theorem demonstrates.

Theorem 1 Let F (X) = L(∅) − L(X), when α = 1,
F (.) is submodular, monotone and positive. Moreover, the
GREEDY-SELECT algorithm described above achieves the
following performance compared to the optimal set D∗:

L(Dm)︸ ︷︷ ︸
loss of chosen set

≤ (1− 1

e
) L(D∗)︸ ︷︷ ︸

loss of optimal set

+
1

e
L(∅)︸︷︷︸

loss of prior rejector

The proof can be found in the appendix. Theorem 1 gives
a guarantee on the subset chosen by the greedy algorithm
with an 1 − 1

e approximation factor, one can ask if we can
do better. We prove that a generalization of our problem is
in fact NP-hard in the appendix.

Human Teaching Approach. After running our greedy
algorithm, we obtain a teaching set D that we now need
to teach to the human. We rely on a four stage approach
for teaching on each example so that they are able to learn
and generalize to the neighborhood around it. The human
first predicts on the example z, then they receive feedback
on their prediction and the AI’s prediction. We then show
them a description of the region around the example that
helps them learn the radius. Specifically, we show them the
two contrasting examples zj and zk defined by γi and high
level features about the neighborhood. Finally, we ask them
to formalize in writing a rule describing the region and the
action to take inside that region. This rule that they write per
example helps the human in creating a set of guidelines to
remember for when to rely on the AI and ensures that they
reflect on the teaching material.

Experimental User Study
Experimental Task and Dataset. Our focus will be on
passage-based question answering tasks. These are akin to
numerous real world applications such as customer service,
virtual assistants and information retrieval. It is of interest
as relying on an AI can reduce the time one needs to answer
questions by not reading the entire passage and as an exper-
imental setup it allows a greater range in the type of sub-
expertise we can allow for compared to experimental tasks
in the literature. We rely on the HotpotQA dataset (Yang
et al. 2018) collected by crowdsourcing based on Wikipedia
articles. We slightly modify the HotpotQA examples for our
experiment by removing at random a supporting sentence
from the two paragraphs. The supporting sentence removed
does not contain the answer, so that each question always
has an answer in the passage, however, it may not always be
possible to arrive at that answer. This was done to make the
task harder and create incentives for expert humans to use
the AI. We further remove yes/no questions from the dataset
and only consider hard multi hop questions from the train
set of 14631 examples and the dev set of 6947 examples.

Simulated AI. One of the top performing models on
HotpotQA is SAE-large: a graph neural network on top of
RoBERTa embeddings (Tu et al. 2020). We performed a de-
tailed error analysis in the appendix of the SAE-large model
predictions on the dev set. However, our analysis uncovered
only few and small regions of model error. For our experi-
mental study, we want to evaluate the effect of teaching in
two ways: 1) through systematically checking the validity
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Figure 2: Teaching set size versus the negative difference
between the human’s learner test accuracy under the differ-
ent methods compared to ORACLE. We plot for setting B
where (αai = 1, βai = 1), (αh = 2, βh = 1) and ε = 0.9
with CONSISTENT-RADIUS; the error bars denote stan-
dard deviation across 10 trials.

of the user lessons and 2) through objective task metrics.
The SAE model makes it harder for us to do both especially
with a limited number of responses from crowdworkers. For
this reason, we decided to create a simulated AI whose error
regions are more interpretable. We first cluster the dataset
using K-means with kp clusters based on only the para-
graph embeddings obtained from a pre-trained Sentence-
BERT model (Reimers and Gurevych 2019). The simulated
AI model is parameterized by a vector errp ∈ [0, 1]kp where
the probability of error of the AI on cluster i by errp[i].

Metrics. Our aim will be to measure objective task perfor-
mance and effort through the proxy of time spent on average
per example. Our task performance metric is the F1 score
on the token level (Rajpurkar et al. 2016); we will measure
this when considering the final predictions (Overall F1), on
only when the human defers (Defer F1) and when the hu-
man does not defer (Non-Defer F1). We will also measure
AI-reliance: this is calculated as how often they rely on the
”Let AI answer for you” button in Figure 3a.

Simulated Users
Before we experiment with real human users, we evaluate
the teaching complexity, i.e. the relation between teaching
set size and human accuracy, of our teaching algorithm on
simulated human learners that follow our assumptions. We
further evaluate the robustness of our approach when we do
not have full knowledge of the human parameters.

AI and Human model. We use the simulated AI model
with kp = 15 and a vector of errors errp where for each i,
errp[i] is drawn i.i.d. from Beta(αai, βai). The human pre-
dictor is analogous to the AI model with a different vector
of probabilities err′p sampled from Beta(αh, βh). The hu-
man prior thresholds the probability error of the human to a
constant ε. Finally, the human similarity measure is the RBF
kernel on the passage embeddings i.e. K(x, x′) = e−|x−x|

2

.
In this setup both the human and AI contexts are identical
and the AI does not send any messages to the human.

Baselines. We implement a domain cover subset selec-

Condition Oracle Gap @n=30

Full Information 6.38 ± 1.56
Missing g0 6.90 ± 1.80
Noisy Radius 9.74 ± 3.0
Missing h 13.47 ± 5.07
No Information+Noise 15.12 ± 4.00

Prior only 16.72 ± 1.22
Human Alone 19.8 ± 2.80

Table 1: Test Accuracy gap between DOUBLE-GREEDY and
ORACLE at teaching set of size 30 under various conditions.
This is performed under setting B.

tion baseline in K-Medoids, the LIME selection strategy by
(Ribeiro, Singh, and Guestrin 2016) with 10 features per ex-
ample following (Lai, Liu, and Tan 2020) (LIME), random
selection baseline (RANDOM) and a baseline that greedily
selects the point that helps a 1-NN learner best predict the AI
errors (AI-BEHAVIOR). Finally, we also compare to the op-
timal rejection rule computed with knowledge of the human
and AI error rates by picking the lower one (ORACLE).

Experimental setup. We will compare to the baselines
as we vary the size of the teaching set DT . To illustrate the
effectiveness of the teaching methods, we focus on two set-
tings: A) the Human is less accurate than the AI but their
prior rejector rarely defers where we set the following and B)
the Human is more accurate than the AI but their prior rejec-
tor over defers to the AI. These two settings is where teach-
ing is most beneficial as the prior is erroneous. We evaluate
for each setting 10 different random settings of the human
and AI error probability vectors and average the results.

Results. Figure 2 shows the gap between Oracle and hu-
man accuracy on the dev set compared to the size of the
teaching set for each of the methods. We can see that our
approach is able to outperform the baselines under setting
B with CONSISTENT-RADIUS. We observe a wide gap
between our method and the baselines, this is because the
teaching examples here must focus on only a select num-
ber of the clusters and cover them sufficiently. In the ap-
pendix we show similar results for setting A and B with the
DOUBLE-GREEDY strategy. With the greedy radius selec-
tion, we require fewer examples to reach high accuracy and
the gap between our method and the baselines narrows.

Robustness to Misspecification of Human model. We
evaluate accuracy when the human is not learning the cor-
rect radius; this simulates noise in the learning process. The
radius γi that the human learns is a noisy version of γ̂i where
we add a uniformly distributed noise to it. We then evaluate
when we have no knowledge of the prior rejector g0 or/and
no knowledge of the human predictor h. In our algorithm,
we only need the predictions of g0 and h on the teaching set,
when we don’t know either of these parameters, we replace
them by a random binary vector Bernoulli(1/2)n. Results
are shown in Table 1. We can see that even if we don’t have
knowledge about the prior, accuracy is not impacted. How-
ever, if we don’t have knowledge about the predictor h, then
performance drops significantly. To evaluate how much in-
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formation about h we need to teach the human, we learn a
teaching set assuming the human’s error probability has ad-
ditive uniform noise: on setting B with DOUBLE-GREEDY,
we can tolerate up to 0.25 error in knowledge about clus-
ter error probability with no noticeable drop in performance.
Note that when we don’t have any knowledge about the hu-
man and the learning process is noisy, teaching is impacted.

Crowdsourced Experiments Details
Testing user interface. Our user interface during testing is
shown in Figure 3a which shows a paragraph and its asso-
ciated question. The human can either submit their own an-
swer or let the AI answer for them using a special button.
However, the interface does not display the AI’s answer or
any explanation, which forces the user to rely solely on their
mental model and the teaching examples to make a predic-
tion. This was done so that we can control for the effect of
teaching solely, as showing the AI prediction at test time
leaks information about the AI beyond what was shown in
the teaching set. Moreover, not showing the AI prediction
forces the human to explicitly think about the AI perfor-
mance. The right panel next to the passage shows the lessons
that the user wrote down during teaching.

Teaching user interface. Following our teaching algo-
rithm, during teaching, the worker is first faced with the
same user interface as in test time. The difference is that
after they answer, they receive feedback on the correctness
of their answer and can see the AI’s answer. We then show
the human the two constrasting examples with LIME word
highlights. As a high level description of the local region, we
show the top 10 most weighted words obtained by LIME in
the ball surrounding the original teaching example (Ribeiro,
Singh, and Guestrin 2016) (see Figure 3b). After they ob-
serve the two supporting examples, they are asked to write
a sentence that describes the lesson of the example. These
sentences are available during test-time for the workers to
review as help for answering new questions.

Experimental Design and Baselines. The experimen-
tal teaching setup proceeds in three stages. The first stage
(Stage 0) is a tutorial that introduces the task with two exam-
ples. Stage 1 is the teaching stage where the worker solves 9
teaching examples and stage 2 is the testing phase where the
worker solves 15 questions with no feedback.We randomly
assign each participant to one of three conditions. In the first
condition the participants go through the entire pipeline de-
scribed above (Ours Teaching). The second is condi-
tion is called (LIME-Teaching) where LIME is first used
to obtain 18 examples. During teaching, users are asked to
solve the first 9 questions and are then shown: LIME high-
lights of the example, performance feedback and asked to
write a lesson of what they learned. Then users view the
9 remaining examples with LIME highlights without need-
ing to solve them or write lessons. The difference with our
method is that workers don’t see the supporting examples
or the word level description of the regions. The third is
a baseline condition (No-teaching+AI-prediction)
that makes the following modifications to the experimental
design: the participants skip the teaching stage (Stage 1) and
immediately proceed to the testing phase (Stage 2). How-

ever, during the testing phase, the participants can see the AI
prediction before they press the use AI button which gives
them an edge compared to the teaching condition. We re-
cruited 50 US based participants from Amazon Mechanical
Turk per each condition (150 total). Participants in the non-
teaching baseline were paid $3 for 10 minutes of work and
those in the teaching condition received $6 for 20 minutes
of work. The simulated AI had kp = 11 and was randomly
chosen to have probability of error 0 or 1 on each cluster. To
obtain the 9 teaching examples we run GREEDY-SELECT
with the consistent radius strategy with no knowldge of g0
or h. The examples in the testing phase was obtained first
by filtering the data using K-medoids with K = 200 as a
way to get diverse questions. Then each participant received
7 random questions from the filtered set on which the AI was
correct and 8 on which the AI is incorrect. This study was
approved by the IRB.

Observations. Teaching enables participants to better
know when not to defer, but not when to defer. The first three
columns of Table 2 display the metrics measured across both
conditions on all participants. We can first note that partici-
pants with teaching are able to predict overall just as well
as participants in the baseline no-teaching condition who
have additional information about the AI prediction at test
time. Moreover, participants who received teaching can bet-
ter recognize when they are able to predict better than the
AI. There is a difference significant at p-value 0.05 (t = 2.9,
from a two sample t-test) of the F1 score when the human
doesn’t defer between our method and the no-teaching base-
line and significant at p-value 0.001 (t = 3.2) compared to
LIME. However, the participants in the teaching condition
deferred to the AI when it was incorrect more often than
those in the no-teaching baseline condition. A positive dif-
ference significant at p-value 0.05 (t = −2.0) in F1 when
the humans defers for No-teaching+AI-prediction
workers. An explanations for this is that the participants
might press the use AI button on examples where their own
prediction agrees with that of the AI instead of manually se-
lecting the answer which takes more effort.

Accurate teaching lessons might predict improved task
performance and our method teaches more participants than
LIME. Given our knowledge about the clusters and the AI,
the correct form of the teaching lesson of each example is
”AI is good/bad at TOPIC” where TOPIC designates the
theme of each cluster amongst a set of 11 topics. Manually
inspecting the lessons of the 50 participants without seeing
their test performance, we found that 25 out of 50 partici-
pants in our teaching condition were able to properly extract
the right lesson from each teaching example. The remaining
25 participants were split into two camps: those who gave
explanations on question/answer type or too broad or narrow
of explanations e.g. ”AI is good at people” rather than a spe-
cific subgroup of musicians for example (14 out of 50), and
those who gave non-comprehensible explanations (11 out of
50, this group performed non trivially and so could not be
disqualified). Results for participants who had accurate vs
not accurate lessons are shown in the last four columns of
Table 2. The participants who had accurate lessons had a
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Passage:

Nothoscordum is a genus of New World plants in 
the onion tribe within the Amaryllis family. It is 
probably paraphyletic. [...] .
Callirhoe is a genus of flowering plants in the 
mallow family, Malvaceae. Its nine species are 
commonly known as poppy mallows and all are 
native to the prairies and grasslands of North 
America. Of the nine, some are annuals while 
others are perennial plants.

Question:

Which genus is native to more continents, 
Nothoscordum or Callirhoe?

Select your own answer or use the AI’s answer: 

Press to manually highlight answer

Let AI answer for you

AI lessons when 
correct:
Good at soccer but 
not other sports

AI lessons when 
incorrect:
bad at chemistry and 
flowers, but not on 
geology or geography.

(a) Testing interface

Passage:

Citric acid is a weak organic tricarboxylic acid 
having the chemical formula CHo. In biochemistry, 
it is an intermediate in the citric acid cycle, which 
occurs in the metabolism of all aerobic organisms. 
A clementine ("citrus × clementina") is a hybrid 
between a mandarin orange and a sweet orange, so 
named in 1902. The exterior is a deep orange 
colour with a smooth, glossy 
appearance. clementines can be separated into 7 to 
14 segments. [...]

Question:

What is the formula of the organic material that 
clementines have less of than oranges?

Passage:

The ogallala aquifer is a shallow water 
table aquifer surrounded by sand, silt, clay and 
gravel located beneath the great plains in the 
united states. one of the world's largest aquifers. It 
was named in 1898 by geologist N. H. Darton from 
its type locality near the town
of ogallala, Nebraska.
[...] . The population was 4,737 at the 2010 

census. It is the county seat of keith county.

Question:

What shallow water table aquifer is located near 
the county seat of Keith County, Nebraska?

AI is incorrect
For all examples as similar as this.

AI is correct
For examples not as similar.

The following words are most representative of this example and its surrounding:
subspecies, fabaceae, genus of, shrubs, plant, plants, species, flowering, genus

Write a sentence to describe the theme of the example you solved, be 
inspired by the words above and the two supporting examples.

AI is bad at chemistry and flowers, but not on 
geology or geography.

(b) Teaching interface

Figure 3: On the left in subfigure (a) is the testing interface shown for an example. This is the same interface that is also shown
at the beginning of each teaching example. After the human predicts and we are in the teaching phase, we show them the correct
answer and transition to the interface in subfigure (b) that shows the two supporting examples for the example in (a), the top
weighted words in the region and asks the user to write down their rule for the example.

Metric Ours-Teaching (all) No-Teaching LIME (all) Ours (acc) Ours (inacc) LIME (acc) LIME (inacc)

Overall F1 58.2 ± 3.4 57.6 ± 3.4 52.9 ± 3.4 62.8 ± 4.7 53.5 ± 4.9 56.5 ± 6.4 52.0 ± 4.2
Defer F1 50.7 ± 4.7 57.8 ± 4.9 48.1 ± 5.3 53.4 ± 6.7 50.0 ± 6.8 44.6 ± 9.0 49.9 ± 6.5
Non-Defer F1 67.6 ± 4.7 57.6 ± 4.7 56.9 ± 4.6 73.92± 6.2 60.6 ± 7.1 70.0 ± 8.6 53.7 ± 5.4
Time/ex (min) 0.60 ± 0.03 0.62 ± 0.03 0.68 ± 0.04 0.54 ± 0.04 0.68 ± 0.05 0.65 ± 0.08 0.69 ± 0.05
AI-Reliance (%) 55.2 ± 3.6 48.9 ± 3.6 45.4 ± 3.6 53.3 ± 4.9 58.9 ± 5.0 52.8 ± 3.6 43.6 ± 4.3

Table 2: Comparison of the metrics between our teaching condition (split into all participants, those who gave accurate lessons
(acc) and those who didn’t (inacc), see description below), the No-teaching+AI-prediction condition and LIME teach-
ing. Shown are averages across all participants with 95% confidence interval error bars. The F1 of the AI alone in this setting is
46.7%; we did not separately measure the F1 of the human in isolation.

9 point average overall F1 difference significant at p-value
0.01 compared to those with inaccurate lessons. With LIME-
Teaching we found that only 14 out of 50 participants were
able to properly extract the right lessons. The difference be-
tween LIME and our method in enabling teaching is sig-
nificant at p-value 0.02 with t = 2.3, however, we observe
that accurate teaching has a similar effect in both conditions.
Note, that even when participants have accurate lessons, they
often don’t always follow their own recommendations as ev-
idenced by the low Defer F1 score.

Additional Synthetic Experiment
To complement our NLP-based experiments, we run a study
on CIFAR-10 (Krizhevsky, Hinton et al. 2009) consisting of
images from 10 classes. We train a WideResNet model with
no data augmentation as the AI (Zagoruyko and Komodakis
2016). The message the AI sends is the pair A = (ŷ, ĉ) con-
sisting of the prediction ŷ and confidence score ĉ (softmax
output of the model). We use the human expert model from
Mozannar and Sontag (2020): if the image is in the first 6
classes, the expert is perfect, otherwise the expert predicts
randomly. During teaching, we assume the human learns ac-

cording to Assumption 2 and uses the radius given by the
teaching set. The human’s prior is to ignore the AI if ĉ is
less than .5. We find that with only 4 teaching examples,
DOUBLE-GREEDY increases accuracy from 90.98 to 96.3
± 0.1 on the test set. Additional results are in the appendix.

Discussion
One limitation of our experiments is that we used a simu-
lated AI that has an easier to understand error boundary. This
enabled us to have a more in-depth study of the crowdworker
responses than otherwise would have been possible. Another
limitation is that our test interface did not include model
explanations, which was done to eliminate additional con-
founding factors when comparing approaches. Future work
will remedy both limitations. Teaching is used in our work
to influence a human’s perception of an AI model; this could
potentially be misused if the AI predictions are not faithful.
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