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Abstract

Learning from Crowds (LFC) seeks to induce a high-quality
classifier from training instances, which are linked to a range
of possible noisy annotations from crowdsourcing workers
under their various levels of skills and their own precondi-
tions. Recent studies on LFC focus on designing new meth-
ods to improve the performance of the classifier trained from
crowdsourced labeled data. To this day, however, there re-
main under-explored security aspects of LFC systems. In
this work, we seek to bridge this gap. We first show that
LFC models are vulnerable to adversarial examples—small
changes to input data can cause classifiers to make predic-
tion mistakes. Second, we propose an approach, A-LFC for
training a robust classifier from crowdsourced labeled data.
Our empirical results on three real-world datasets show that
the proposed approach can substantially improve the perfor-
mance of the trained classifier even with the existence of
adversarial examples. On average, A-LFC has 10.05% and
11.34% higher test robustness than the state-of-the-art in the
white-box and black-box attack settings, respectively.

Introduction
A significant prerequisite for the use of supervised learn-
ing is the availability of large, well-labeled datasets. Crowd-
sourcing (Zheng et al. 2017; Fang et al. 2018; Tong et al.
2020) offers an affordable method of annotating data by us-
ing freelance workers located on the internet platforms such
as Amazon Mechanical Turk 1(AMT). When it comes to
crowdsourced labeled data, a general rule of thumb is that
the annotations may often be noisy because of the unskilled
or malevolent behavior of workers. To alleviate this issue,
the common practice is to ask numerous workers to provide
labels for each instance. In the crowdsourcing-learning sce-
nario, a question is raised: how to learn a decent classifier
with the noisy labeled data.

The straightforward solution to the problem is to first esti-
mate the latent true labels using the answer aggregation tech-
niques such as majority voting (MV) (Sheng, Provost, and
Ipeirotis 2008), Dawid Skene (DS) (Dawid and Skene 1979),
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Figure 1: The distinctive influence of adversarial examples
on LFC models: (i) GT, the neural networks trained in the
ideal case when ground truth labels are known; (ii) MV/DS,
first estimates the ground truth by MV/DS model and then
trains the neural networks; (iii) CL; (iv) AggNet. We test the
robustness (test accuracy (%)) of different strategies on three
real-world benchmarks (LabelMe (Rodrigues and Pereira
2018), MGC (Rodrigues, Pereira, and Ribeiro 2013), and
Sentiment (Rodrigues, Pereira, and Ribeiro 2013)) under the
FGSM (Goodfellow, Shlens, and Szegedy 2015) with vary-
ing the perturbation scale ϵ.

and then train the neural networks with the aggregated la-
bels. Alternatively, more recently proposed one-stage meth-
ods (Luo et al. 2018; Yang et al. 2018a) such as CrowdLayer
(CL) (Rodrigues and Pereira 2018) and AggNet (Albarqouni
and Baur 2016) simultaneously infer the true labels while
learning the parameters of the deep neural network and the
confusion matrices of annotators.

We note that most models in the LFC family are based on
the assumption that all the examples are benign (Cao et al.
2019; Chen et al. 2020b) and focus on producing accurate
classifiers with the estimation of ground truth labels inferred
from the noisy labels of crowd workers. Unfortunately, re-
cent studies (Goodfellow, Shlens, and Szegedy 2015; Dong
et al. 2020) have found that even in the ideal case when
ground truth labels are known, the classifier trained from in-
stances could perform rather poorly in presence of adversar-
ial examples—small changes to images can cause computer
vision models to make mistakes such as identifying a school
bus as an ostrich (Carlini and Wagner 2017). In crowdsourc-
ing settings, the noise of crowd labels aggravates the vulner-
ability of LFC models and existing LFC models can hardly
learn a robust model, without the consideration of the ex-
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istence of adversarial examples. For instance, as shown in
Figure 1, in most cases of LFC models, the final robustness
drops drastically, compared with the classifier trained from
instances with ground truth labels 2. Despite such vulnera-
bility of LFC models under adversarial attacks, LFC appli-
cations (Luo et al. 2018; Cao et al. 2019) are still preva-
lent in practice and even in some security-sensitive domains
such as medical imaging (Raykar et al. 2010; Albarqouni
and Baur 2016). Hence, there is an urgent need to investi-
gate and understand the adversarial attacks and defense for
the LFC family.

In this work, we move one step further and explore how
to learn an LFC model robust to the adversarial examples.
We first show that LFC models are vulnerable to adversarial
attacks, in which small changes to input data can cause clas-
sifiers to make prediction mistakes. In particular, we find the
adversarial attacks can significantly decrease the test accu-
racy of trained classifiers from crowdsourced labeled data
in white-box and black-box settings. To improve the ad-
versarial robustness of LFC, we formulate the problem of
learning from crowds under adversarial attacks as a bilevel
min-max problem, in which the inner maximization prob-
lem serves as a constraint of the outer minimization prob-
lem. We found this problem is highly non-linear and non-
convex, which is intractable to exactly solve. To address this
challenge, we propose an approach for adversarial learning
from crowds (A-LFC), which solves the outer minimiza-
tion problem by the expectation-maximization (EM) algo-
rithm and the inner minimization problem by projected gra-
dient descent. We evaluate our approach using three well-
known benchmark datasets in the LFC community. For in-
stance, in one dataset called music genres classification
(MGC) dataset (Rodrigues, Pereira, and Ribeiro 2013) con-
tains 1000 samples concerning songs involving ten music
genres i.e., country, disco, etc. 700 samples are randomly
selected and labeled by 44 crowd workers from AMT. Ex-
perimental results show that our approach substantially in-
creases the test robustness.

Our contributions are summarized as follows:

• We investigate the influence of adversarial examples on
the performance of representative LFC models. We find
that these models are very vulnerable to adversarial ex-
amples;

• We formulate the problem of LFC in the environment as a
bilevel min-max problem and propose a novel approach,
A-LFC for training classifiers robust to the adversarial
examples;

• We conducted an extensive evaluation of the proposed
A-LFC, showing that A-LFC is able to outperform the
state-of-the-art in both white-box and black-box settings.

To the best of our knowledge, this is the first work on ex-
ploring the impact of adversarial examples on learning from
crowdsourced labeled data and developing the LFC model
robust to adversarial example attacks.

2Details of parameter setting are provided in the section of the
experimental setup.

Related Work
Answer Aggregation in Crowdsourcing. In two-stage ap-
proaches, the true labels are inferred from the crowd la-
bels using answer aggregation methods (Chen et al. 2018,
2020a). Then, it applies the general supervised learning
methods along with the inferred labels (Wang and Zhou
2016). In the stage of answer aggregation, the simplest
model, MV (Sheng, Provost, and Ipeirotis 2008), derives the
majority labels by counting the workers’ votes for each al-
ternative label. Due to the ignorance of varying reliability
among workers, MV is error-prone. In contrast, WMV (Li
and Yu 2014) and CATD (Li et al. 2014) assigns differ-
ent weights to workers’ votes considering workers’ relia-
bility. Besides, a major type of answer aggregation model
leverages probabilistic models to estimate worker reliabil-
ity. DS (Dawid and Skene 1979) models each worker’s reli-
ability with a confusion matrix and uses the EM algorithm
to iteratively update the true label of each instance and the
workers’ confusion matrices. ZC (Demartini et al. 2012) is a
simplified version of DS: it does not consider the priors and
models each worker’s reliability with a single probability of
correct labeling. There also exist some other models that can
be viewed as extensions of ZC, e.g., GLAD (Whitehill et al.
2009) and SEEK (Han et al. 2016).

In this approach, answer aggregation of labels and model
training are isolated processes. After inferring the true la-
bels, several types of additional information about each in-
stance in the training data, such as its features, are lost. How-
ever, the additional information may be good for further im-
proving the quality of inferred labels as well as re-training a
more robust model (Zhang, Wu, and Sheng 2019).
One-Stage Approaches. Raykar et al. (2010) come up
with the one-stage approach, LFC which jointly estimates
the instances’ true labels and trains the logistic regression
classifier. Rodrigues et al. (2018) propose an end-to-end
method named Crowd Layer which directly applies back-
propagation to train deep neural networks from the crowd-
sourced labeled data. Considering the lack of Interpretabil-
ity of Crowd Layer, Chen et al. (2020b) propose a struc-
tured end-to-end model which endows Crowd Layer the
probabilistic interpretability. Chu et al. (2021) divide the
confusion matrix into two components: namely frequently-
shared confusion matrix and the individually-specific confu-
sion matrix. Zhong et al. (2017) propose an approach whose
objective involves the label reliability learned with the dis-
crepancy between crowdsourced annotation from crowds
and the predictions of the model. Yang et al. (2018b) de-
scribe a newly proposed model based on adversarial neural
networks that relies on crowdsourced annotation data. They
learn a classifier as well as the common and private features
of crowd workers using data labeled by these workers.

However, the impact of adversarial attacks on the qual-
ity of learning from noisy crowdsourced labeled data has
not been considered in these works. To this end, some re-
searchers (Miao et al. 2018a,b; Fang et al. 2021) access and
analyze the vulnerability of answer aggregation step of LFC
models under data poisoning attacks by designing label at-
tack strategies.

Different from these works, we are concerned with feature
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attacks induced by adversarial examples. Besides accessing
the vulnerability of LFC models under adversarial examples,
we propose a new approach for training classifiers that is
robust to the adversarial examples.

Problem Formulation
We formulate the studied problems concerning how to use
crowdsourced data to train a classifier that is robust to ad-
versarial examples.

LFC Problem in Adversarial Environment
We use capital letters (e.g. A) in calligraphic math font to
denote sets. We use boldface uppercase letters to denote ma-
trices, e.g., M, in which the entry (i, j) is denoted by the
corresponding lowercase letters mij and the entries of i-th
row is denoted by Mi∗. We use boldface lowercase letters
to denote vectors (e.g., v). Formally, let X = {xi}Ni=1 de-
note the set of instances. The i-th instance xi’s unobserved
ground truth is denoted by ti which takes on K ≥ 2 possi-
ble values. Let U = {uj}Mj=1 be the worker set. The work-
ers’ labels are represented as a matrix Y = (yij)N×M , in
which yij is the label from the worker uj to instance xi. Let
D = {(xi,Yi∗)}Ni=1 denote the i.i.d. data set whose labels
are from crowd workers U , and Yi∗ = (yi1, yi2, · · · , yiM )
denotes the labels from U to the i-th instance. In this work,
we are concerned with the problem of how to use D to train
a high-quality classifier hθ with parameter θ for predicting
t given new data which may be the adversarial example.

Note that we are concerned with the feature attack in-
duced by adversarial examples in LFC settings, which is
different from the label attacks in existing crowdsourcing
research (Miao et al. 2018a,b; Fang et al. 2021).

Adversarial Learning from Crowds
Several defense approaches (Wang et al. 2020) e.g. model
compression (Wang et al. 2020) and activation pruning (Das
et al. 2018) have been proposed to train Deep Neural Net-
works (DNNs) intrinsically robust against adversarial ex-
amples. Among these, the most effective one is adversarial
training. Thus, we choose the adversarial training technique
to cope with the LFC problem in an adversarial environment.

We begin by introducing adversarial training which trains
the classifier on adversarial examples and can be viewed the
bilevel min-max problem as follows.

min
θ

1

N

N∑
i=1

max
∥x′

i−xi∥
p
≤ϵ

L (hθ (x
′
i) , ti) , (1)

where L(·) denotes the objective e.g. the cross-entropy loss.
x′
i denotes an adversarial example generated by solving the

inner maximization problem, i.e., the natural example is cor-
rectly classified before perturbation, but misclassified after
the perturbation. In general, the perturbation is of small size
bounded with the Lp-norm which makes x′ within the ϵ-ball
whose center is x.

Traditional adversarial learning entails the prior knowl-
edge of the ground truth label ti; whereas ti is difficult to
know beforehand in the setting of LFC. What we can obtain

is the noisy labels provided by crowd workers. Thus, we re-
formulate the problem of adversarial learning from crowd-
sourced labeled data as follows.

min
Θ

−α log p(Y | X ,Θ)− (1− α) log p(Y | X ′,Θ)

s.t. X ′ = argmax
X ′

− log p(Y | X ′,Θ),

and X ′ = {x′
i| ∥x′

i − xi∥p ≤ ϵ}, (2)

where log p(Y|X ,Θ) and log p(Y|X ′,Θ) denote the log
conditional likelihood of the observed crowd labels given
the natural examples and adversarial examples. Θ =

{θ,Π(1), . . . ,Π(M)} and Π(j) denotes the confusion ma-
trix of worker j. α is the imitation parameter for balancing
the two parts. In this bilevel min-max optimization problem,
the outer subproblem is to minimize the objective function
by finding optimal parameters Θ of the classifier and work-
ers; the inner problem is to find the adversarial examples
X ′ by maximizing the negative log-likelihood. The bilevel
problem is general NP-hard (Fang et al. 2021). Since the
outer problem is subject to the inner problem, directly im-
plementing the common algorithms such as backpropaga-
tion cannot effectively resolve this optimization problem.

Method
In this section, we provide the solution to the problem for-
malized in Equation 2. First, we give the approach to resolv-
ing its inner subproblem. Second, we aim at solving its outer
subproblem. Finally, we introduce the proposed algorithm,
A-LFC.

Solving the Inner Problem
We reformulate the optimization objective of the inner prob-
lem as follows.

−
∑

i
Eρ(ti) log [p (ti | x

′
i;θ)] , (3)

where ρ (ti) is estimation of ti which is obtained by solving
the outer problem and ti | x′

i;θ ∼ Cat (ti; fθ (x
′
i)) is a

conditional categorical distribution. fθ is a flexible neural
network model parametrized by θ.

Recently, adversarial training with adversarial examples
generated by Projected Gradient Descent (PGD) (Madry
et al. 2018) has been proved to be the sole way to prevent
the trained DNNs from being fully attacked. To this end, we
propose to use PGD to maximize the optimization objective
of the inner problem.

Solving the Outer Problem
In the outer problem, the optimization objective is minimiz-
ing the negative log conditional likelihoods of the observed
crowd labels given features of natural and adversarial ex-
amples, w.r.t. the parameters Θ = {θ,Π(1), . . . ,Π(M)}.
These parameters can be estimated with the expectation-
maximization (EM) algorithm that iteratively learns the pa-
rameters in the M-step and at the same time infers the latent
ground truth ρ (ti) in the E-step.
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M-Step. We do not directly optimize the objective in
Equation 3. In our objective, we not only consider the perfor-
mance of the trained classifier on adversarial examples but
also take into account its performance on natural examples
as follows.

−α log p(Y | X ,Θ)− (1− α) log p(Y | X ′,Θ), (4)

where

log p(Y | X ,Θ) =
∑

i
Eρ(ti) log [p (ti | xi;θ)] . (5)

Our approach forces the neural network to update the pa-
rameters θ for minimizing the objective in Equation 4.

Now, we proceed to updating the parameters of the crowd
annotators {Π(1), . . . ,Π(M)}. Similar to the optimization
of the parameters of the neural network, we seek the deriva-
tive of the optimization objective w.r.t. the worker’s param-
eter and set the gradient equal to 0. Finally, we derive the
closed-form solution as follows:

π
(j)
kk′ =

∑
i ρ (ti = k) I (yij = k′)∑
i ρ (ti = k) I (yij ̸= ⊥)

, (6)

where yij ̸= ⊥ denotes the j-th worker provide label to
instance i; and I is an indicator function. When its internal
declaration is true, it takes a value of 1, or otherwise. Then,
the estimation of latent ground truth ρ (ti) will be updated
in the E-step presented next.

E-Step. Formally, given the new parameters of the classi-
fier and the workers provided by M-step, the EM algorithm
dictates that we adhere to the recipe while additionally mak-
ing use of the Bayesian formula to infer the latent variable’s
posterior distribution.

ρ (ti = k) ∝
∏

j
p
(
yij | ti = k;Π(1), . . .Π(N)

)
· (αp (ti = k | xi;θ) + (1− α)p (ti = k | x′

i;θ)) ,
(7)

where p
(
yi,j | ti = k;Π(1), . . .Π(N)

)
is the distribution of

label yij from worker j to instance i when the ground truth
label of instance i is k.

Note that we infer the latent ground truth label by consid-
ering three components i.e. the worker annotations, the ad-
versarial examples, and the natural examples, which is dif-
ferent from the answer aggregation methods that only infer
the true labels from the worker annotations.

A-LFC Algorithm
We introduce our mechanism named A-LFC for learning
a robust model from crowds. A-LFC mainly includes two
steps. The former serves to resolve the inner subproblem.
And the latter is responsible for tackling the outer subprob-
lem. These two steps are iteratively conducted to derive the
optimum of the bilevel min-max problem.
Step 1. With the estimate Θ, namely the parameters of the
classifier and the workers, A-LFC applies the PGD algo-
rithm to generate the adversarial examples X ′ that maxi-
mizes the objective in Equation 3.

Algorithm 1: A-LFC
Input: Training set D, imitation parameter α
Output: Optimal θ

1 Initialize ρt with MV and X ′ with X ;
2 while It does not achieve convergence and the limit of

iteration do
3 for each minibatch of the epoch do
4 Update θ by the backprop. with Equation 4

5 Update the worker parameters with Equation 6;
6 Update the estimation of ρt with Equation 7;
7 Update X ′ using PGD algorithm with Equation 3;

8 return The parameters of classifier θ;

Step 2. On the basis of the generated adversarial exam-
ples X ′ in step 1, A-LFC applies EM algorithm to up-
date the parameters Θ in M-step following Equation 4 with
the backpropagation and the parameters of the workers
{Π(1), . . . ,Π(M)} with Equation 6, and update the estima-
tion of the ground truth in E-step following Equation 7.

The procedure of A-LFC is summarized in Algorithm 1.
ρt is initialized with the aggregated labels using MV and X ′

is initialized with X .

Experiments
This section presents the experimental results for evaluating
the effectiveness of A-LFC 3. Specifically, we answer the
following questions:

• Q1: Is the proposed approach sensitive to the imitation
parameter α and how to properly set this parameter?

• Q2: How well does the proposed method perform under
white-box attacks?

• Q3: How well does the proposed method perform under
black-box attacks?

• Q4: Is the proposed method effective for learning the
confusion matrices for representing the workers?

Real-World Datasets
We use three publicly available, widely used benchmark
datasets with real annotations from AMT.
Music Genre Classification dataset (MGC). The MGC
dataset (Rodrigues, Pereira, and Ribeiro 2013) contains one
thousand samples concerning songs of different genres. All
songs belong to ten music genres (i.e., class 0 to class 9) and
each song takes 30 seconds. The ten music genres of songs
are country, disco, rock, pop, hiphop, jazz, reggae, metal,
classical, and blues. 700 samples are randomly selected and
labeled by 44 crowd workers from Mechanical Turk with a
mean accuracy of 73.28%. Each worker provides an average
of 66.93 labels. Finally, 2,946 crowd labels are obtained. The
feature of each instance is extracted to 124 dimensions
LabelMe. Dataset LabelMe is an image classification
dataset (Rodrigues and Pereira 2018) involving 8 classes

3Our code is available at https://github.com/yongqiangyang/A-
LFC.
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(a) Dataset LabelMe
0

50

100

150

200

250

300

350

N
u
m

b
e
r 

o
f 

la
b
e
ls

0.10

0.25

0.40

0.55

0.70

0.85

1.00

W
o
rk

e
r 

a
cc

u
ra

cy

(b) Dataset MGC
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(c) Dataset Sentiment

Figure 2: Boxplots concerning the distribution of the number of labels from per worker and the distribution of the worker
accuracy among the workers in dataset LabelMe, dataset MGC, and dataset Sentiment.

from class 0 to class 7, i.e., highway, inside city, tall build-
ing, street, forest, coast, mountain, and open country. To-
tally, it contains 2,688 instances. Among them, 1,000 in-
stances were labeled by workers from AMT. An instance
corresponds to an average of 2.547 labels elicited from the
crowds. The average worker accuracy is 69.2%.
Sentiment Polarity Classification (Sentiment). The Sen-
timent dataset (Rodrigues, Pereira, and Ribeiro 2013) con-
tains 5000 sentences (with crowdsourced annotations) from
movie reviews extracted from the website RottenToma-
toes.com and their sentiment polarity was classified as posi-
tive or negative, The datasets received a total of 27747 anno-
tations from 203 distinct annotators on AMT. For the tasks,
5429 instances are provided as test sets.

For the three real-word datasets, Figure 2 presents the
boxplots concerning the distribution of the number of la-
bels per worker and the distribution of the worker accu-
racy among the workers. It reveals that the distribution of
the number of labels provided per worker follows a highly
skewed distribution, that is a small number of workers pro-
vide the great majority of labels.

Baselines
We compare the method with the following representative
baselines.
– MV (Wang and Zhou 2016): MV is used to determine

the true labels, after which a neural network classifier is
trained on the basis of the aggregate results.

– DS: Like MV, but using Dawid Skene’s label aggregation
algorithm (Zheng et al. 2017).

– AggNet (Albarqouni and Baur 2016): The generic ver-
sion of LFC model, in which the classifier is based on a
deep neural networks.

– Crowd Layer (CL) (Rodrigues and Pereira 2018): We im-
plement the MV version of CL. The deep neural network
is trained directly from the crowd labels by using back-
propagation.

Experimental Setup
Details of Parameter Setting. For the LabelMe dataset
pre-processed by the pre-trained convolutional neural net-
works (CNN) layers of VGG network (Rodrigues and
Pereira 2018), we apply one fully connected (FC) layer with
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Figure 3: Sensitivity to imitation parameter α

128 units. For the MGC and Sentiment dataset, we apply
one fully connected (FC) as the one hidden layer with 128
units, respectively. For each dataset, we use ReLU activa-
tions, 50% dropout, and Adam stochastic optimization. The
learning rate is 0.001, the batch size is 64, and the number of
epoch is 200. The worker parameters were initially with the
result of MV. The training attack is 10-step PGD with ran-
dom start and step size ϵ/4. The perturbation ϵ of training
attack is 8/255 and the parameter α is set to 0.5. All exper-
iments were performed 50 times on NVIDIA Tesla V100
GPUs and we report the average result.

The Adversarial Attacks. We evaluate the A-LFC model
under the black-box and white-box attack settings, and im-
plement the following four adversarial attack methods to
generate the adversarial examples.
– FGSM (Goodfellow, Shlens, and Szegedy 2015): It is a

representative method fast to execute, in which the sign
of the perturbation is based on the gradients of the objec-
tive w.r.t. the examples.

– PGD (Madry et al. 2018): This is one of the most power-
ful gradient-based attacks. Given a natural example, the
process of PGD starts with a random perturbation and
proceeds by updating the perturbation iteratively.

– CW (Carlini and Wagner 2017): It minimizes a non-
linear mapped perturbation to get a considerably smaller
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(a) Dataset LabelMe.
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(b) Dataset MGC.
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(c) Dataset Sentiment.

Figure 4: White-box robustness (test accuracy (%) of the
classifier under white-box attacks) on real-world datasets
LabelMe, MGC, and Sentiment.

perturbation size, resulting in a huge speed reduction.
– MIM (Dong et al. 2018): The momentum element is in-

corporated into the iterative process; it also helps stabi-
lize the attack’s update direction, allowing the attacker to
avoid weak local maxima and therefore producing more
transferrable adversarial examples.

Exp 1: Sensitivity to Imitation Parameter α

In this experiment, we further investigate the imitation pa-
rameter α in objective function defined in Equation 2. which
controls the weight of optimization of the natural exam-
ples and the adversarial examples of the proposed method
A-LFC. The test attack is 10-step PGD with random start,
the size of ϵ is 0.001, and the step size is ϵ/4. We present
the results in Figure 3 concerning the three datasets, i.e.,
dataset LabelMe, dataset MGC, and dataset Sentiment. By
exploiting adversarial learning from crowds, A-LFC excels
in many settings of imitation parameter α and delivers ex-
cellent stability and robustness. In all of our experiments, we
used α = 0.5. We did not see the need to search for other
better setting of this hyperparameter because it worked well
enough.

Exp 2: White-Box Robustness
We evaluate the robustness of all the five LFC models
against four types of adversarial attacks for datasets La-
belMe, MGC, and Sentiment: FGSM, PGD (10-step PGD),
CW, and MIM. Every adversarial attack is fully able to uti-
lize the model parameters and is subject to the constraints
of the same perturbation scale. The LFC models’ white-box
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(a) Dataset LabelMe.
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(b) Dataset MGC.
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(c) Dataset Sentiment.

Figure 5: Black-box robustness (test accuracy (%) of the
classifier under black-box attacks) on real-world datasets
LabelMe, MGC, and Sentiment.

robustness is shown in Figure 4. First, A-LFC achieves the
best robustness against all four types of attacks on dataset
LabelMe, MGC, and Sentiment. On average, A-LFC has
a 10.05% higher test robustness than the state-of-the-art
model, CrowdLayer. Second, we can observe that no mat-
ter what strategy is used to instigate an attack, there appears
to be a direct relationship between the scale of the pertur-
bation and the amount of damage it can do to the test ac-
curacy, as verified in previous studies (Goodfellow, Shlens,
and Szegedy 2015; Dong et al. 2018). In addition, A-LFC
outperforms baseline approaches more when the value of
perturbation grows. The reason is that A-LFC adopts adver-
sarial training from crowdsourced labeled data to establish
that their model is robust even in the face of significant per-
turbation. Additionally, we examine that the attacks (such as
PGD) that have tremendous potential to have better attack
success rates than weaker attacks (e.g., FGSM).

Exp 3: Black-Box Robustness
Black-box attacks are crafted from the natural test examples
by attacking a substitute model with an architecture that is
a duplicate of MV (using MV to infer the labels and train
the DNNs with the hidden layer containing a Fully Con-
nected (FC) layer of 32 units). A variety of attacking tech-
niques have been employed: FGSM, PGD (10-step PGD),
CW, and MIM. We report the black-box robustness of all
LFC models in Figure 5. Again, the proposed LFC model
A-LFC achieves higher robustness than other baselines. A-
LFC is found to achieve more robustness than those of the
others. On average, A-LFC has 11.34% higher test robust-
ness than the state-of-the-art, CL. We can also observe that
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Figure 6: Comparison among true confusion matrices and confusion matrices learned with A-LFC on the real-world dataset
Sentiment. The principal diagonal elements of a confusion matrix denote the reliability parameters. The color intensity of the
cells increases with the relative magnitude of value.

all LFC models are more robust than those in the white-
box attack setting. This hints that the potential of adversarial
learning from crowds for being extended to the scenarios of
the physic world where the target model conceals from pos-
sible attackers. Additionally, CL’s performance is slightly
larger than that of A-LFC when the perturbation is smaller
than 0.02 in some cases. In this case, no matter whether the
adversarial examples are included in the learning process,
their effect on the model is quite small and even can be ig-
nored. Along with the increase of perturbation scale, A-LFC
achieves the best robustness among all the LFC models on
the three datasets.

Exp 4: Performance of Representing Workers
Besides the trained classifier, we also evaluate the learned re-
liability parameters of each worker which can be represented
as a confusion matrix on three datasets LabelMe, MGC, and
Sentiment. The training attack is 10-step PGD with step size
ϵ/4. For the six normal workers who provide the most la-
bels in the three datasets, Figure 7, Figure 8, and Figure 9
show the comparison among the true confusion matrices, the
learned weight matrices of A-LFC, where darker cells cor-
respond to a larger value, while lighter cells correspond to
a smaller value. The true confusion matrices are calculated
with the workers’ labels and ground-truth labels of instances
in the datasets. Even we incorporate adversarial examples
into the learning process, we can see that the learned confu-
sion matrices are much close to the true confusion matrices,
which indicates the good performance of A-LFC for repre-
senting the workers.

Conclusion
In this work, we perform a systematic study on the effect
of adversarial examples on LFC models from attack and de-
fense perspectives. On the one hand, we have demonstrated
that the LFC-based crowdsourced learning system is vulner-
able to adversarial examples. On the other hand, we formu-
late the problem of LFC in the adversarial environment as a
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Figure 7: Comparison among true confusion matrices, Con-
fusion Matrices (CM) learned with A-LFC on the real-world
dataset LabelMe.
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Figure 8: Comparison among the true confusion matrices,
confusion matrices learned with A-LFC on the real-world
dataset MGC.

bilevel min-max problem and propose a novel LFC frame-
work robust to the adversarial examples. Extensive valida-
tion on several real-world benchmark datasets shows that A-
LFC is an effective approach to learning from crowdsourced
labeled data and substantially outperforms the state-of-the-
art in white-box and black-box attack settings. On average,
A-LFC has a 10.05% and 11.34% higher test robustness than
CrowdLayer in white-box and black-box attack settings, re-
spectively. In future work, we plan to investigate approaches
to defending against other types of adversarial attacks such
as data poisoning.
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