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Abstract

The new generation of language models is reported to solve
some extraordinary tasks the models were never trained for
specifically, in few-shot or zero-shot settings. However, these
reports usually cherry-pick the tasks, use the best prompts,
and unwrap or extract the solutions leniently even if they are
followed by nonsensical text. In sum, they are specialised re-
sults for one domain, a particular way of using the models and
interpreting the results. In this paper, we present a novel the-
oretical evaluation framework and a distinctive experimental
study assessing language models as general-purpose systems
when used directly by human prompters—in the wild. For a
useful and safe interaction in these increasingly more com-
mon conditions, we need to understand when the model fails
because of a lack of capability or a misunderstanding of the
user’s intents. Our results indicate that language models such
as GPT-3 have limited understanding of the human command;
far from becoming general-purpose systems in the wild.

Introduction
In recent years, remarkable progress in language models such
as BERT (Devlin et al. 2018), T5 (Raffel et al. 2019), GPT
(Brown et al. 2020) and PanGu-𝛼 (Zeng et al. 2021) has
consolidated a new way of interacting with them through
‘prompts’: small pieces of text the user supplies for the model
to continue. No fine-tuning is required; the model can be used
out-of-the-box in new tasks, provided an appropriate prompt
(Xu et al. 2020; Izacard and Grave 2020; Hendrycks et al.
2020). A particularly interesting setting is called few-shot
inference, where the prompt includes illustrative examples
(Brown et al. 2020; Reynolds and McDonell 2021; Scao and
Rush 2021; Schick and Schütze 2020; Bragg et al. 2021).
But even with zero-shot prompts, amazing applications are
reported. For instance, Fig 1 (left) shows a prompt and a use-
ful continuation given by a language model. In Fig 1 (right),
however, the model makes a plausible continuation, but it
does not understand the ‘command’.

A careful design of prompts for a particular task can ex-
tract the full potential from these models with some control
of the unintended behaviours. However, it also limits the key
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A song for a two-year-old child
about a bird in a cage

and a little mouse goes like this:

"I’m a bird in a cage,
and I’d like to fly away.

And the more I say I want to,
the more they say I can’t".

You need to write a song
for a two-year-old child about

a cat skateboarding
and a dog playing with a ball.

This is your chance
to be creative!

Figure 1: Two prompts (in blue) and continuations (in green)
generated by GPT-3. The example of the right shows that
getting a language model to do what you want requires more
than raw capabilities: ‘understanding’ the command is im-
portant in making these systems useful and reliable.

property of these models: direct model prompting is the clos-
est scenario today to a general-purpose AI system.

This flexibility comes with many risks. Because of this,
we see an ongoing debate on whether non-expert users
should interact freely with language models (Solaiman et al.
2019). However, the reality is that these systems are now
widely available1. Second, AI researchers and companies
have favoured controlled scenarios for a narrow domain
because these systems can be optimised towards the best
prompt in terms of intended results (Xu et al. 2020; Izacard
and Grave 2020; Hendrycks et al. 2020; Liu et al. 2021; Qin
and Eisner 2021). The search for the best prompt includes
hyperparameters such as ‘temperature’ or the unwrapping
of results, known as the ‘decoding strategy’ (Perez, Kiela,
and Cho 2021). Unfortunately, even small variations of the
prompt make the results much worse (Zhao et al. 2021).

It is only then through direct use of these models for a
wide range of tasks—in the wild—, where we can really see
the potential of general-purpose AI systems and their risks.
In particular, we can properly evaluate when these systems

Supplementary material and experimental data can be found in
https://github.com/PabloAMC/LM_AAAI22.

1Through code (https://github.com/lucidrains/DALLE-
pytorch), initiatives such as BigScience (https://bigscience.
huggingface.co/) (Hao 2021), GPT-NeoX (https://github.
com/EleutherAI/gpt-neox/), and available demos or APIs
such as Eleuther (https://6b.eleuther.ai/), AI21 (https:
//studio.ai21.com/docs/api/) or CogView (Ding et al. 2021).
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fail because of limited capability or lack of understanding
of the user’s intentions, usually referred to as ‘command un-
derstanding’ (Ngo et al. 2012; Walker, Peng, and Cakmak
2019)2. We also recognise that language models through di-
rect prompting must be evaluated for an average case situ-
ation by considering the way humans would interact with
these systems. This includes wrapping their commands (e.g.
prompting) in an appropriate form such that the system is ‘bi-
ased’ or ‘induced’ to complete the prompts according to the
user’s intention, and unwrapping the outputs from the sys-
tem (extracting the relevant part of the answer). All this is
required if we aim at evaluating these models with ecologi-
cal validity (De Vries, Bahdanau, and Manning 2020).

In this paper, we present a new way of evaluating the
usefulness and safety of general-purpose systems that are
instructed by natural language prompts. We consider sev-
eral elements: (1) the human effort involved in devising the
appropriate prompts, thinking of wrapping and unwrapping
strategies, (2) the human effort when applying these strate-
gies to write the prompt and extract the results, (3) the hu-
man cost of validating or discarding the solution given by
the model and, ultimately, (4) the usefulness and safety of
the solution. We express these terms using a novel theoret-
ical formulation based on the cost of the human solving a
problem using the model, 𝐶𝐻,𝑀 , and compare it to the cost
that the human would incur without the model 𝐶𝐻 . We see
this approach as the most ‘ecological valid’ way of evaluating
a generic use of these models, especially because 𝐶𝑀 (as an
autonomous system magically guessing what the user wants)
would not include all the costs involved in formulating and
understanding the command, required in a general-purpose
scenario. We use the new evaluation framework as a basis for
a series of questionnaires for human users, designed to cap-
ture the components 𝐶𝐻,𝑀 and 𝐶𝐻 over several domains.
Only by doing this estimation can we accurately calculate
the expected gain 𝐶𝐻,𝑀 −𝐶𝐻 for a range of tasks and assess
language models meaningfully in this setting.

The usability and safety of language models as general-
purpose systems to (semi-)automate human tasks in the wild
also involves analysing failure as being caused by lack of ca-
pability or by misunderstanding the command. The latter is
usually more dangerous than the former. For instance, a lan-
guage model can give the steps to make an actual bomb when
queried for ‘the ingredients of a brownie bomb’.

The major contributions of this work are: (1) The first
theoretical framework of how language models should be
evaluated as general-purpose systems in the wild. (2) The
decomposition of failure due to lack of capability and lack
of command understanding and a difficulty-based approach
to disentangle them. (3) A methodology for devising exper-
imental studies that capture the elements that are required
in the theoretical framework and how they can be organ-
ised into off-line questionnaires for a more systematic control
of human prompts and language model results. (4) A com-

2We do not mean fully understanding the command linguisti-
cally, as in the area of natural language understanding (Bender and
Koller 2020), but sufficiently so to do the right task, in the same
way a dog ‘identifies’ a command such as “bring me my slippers".

plete experimental study using the data from three question-
naires on a population of 𝑁𝐴 = 36 and 𝑁𝐵 = 34 humans,
requiring approximately 52 hours of human work and 432
prompts answered by GPT-3, leaving the results as a novel re-
alistic benchmark of human prompting, from which to build
more comprehensive and balanced batteries to measure the
progress of general-purpose AI systems.

The rest of the paper is organised as follows: first, we
summarise the relevant background for this paper. Then we
develop the theoretical framework used to evaluate general-
purpose systems. In the methodology section, we present the
experimental setup, followed by our findings in the analysis
of results. Finally, we close with a discussion of the main
takeaways and ideas for future work.

Background
The open interaction with machines via natural language
commands has its ground well before the early days of com-
puter science. Ada Lovelace conceived the idea that a ma-
chine could do “whatever we know how to order it”3. Since
Ada Lovelace, the way of instructing machines has been
mostly through programming languages, and more recently,
through examples, using machine learning. Today, instruct-
ing machines using natural language instead of programming
languages is usually represented by digital assistants (Cam-
pagna et al. 2019; Cho and Rader 2020; Rapp, Curti, and
Boldi 2021), which can do many tasks following our orders
in natural language. However, these systems are based on a
‘task repertoire’ (Maedche et al. 2019), which is not fully
general, unlike programming languages or even training ex-
amples. A fixed repertoire of tasks makes the reliability and
safety issues easy to deal with, which gradually resulted in
the preferred kind of interaction of digital assistants over
time. In fact, this kind of ‘task-oriented AI agents’ has been
advocated as a safe approach to more general AI in the future,
such as Comprehensive AI Services (Drexler 2019).

But only when the range of tasks is completely open, we
have a real general-purpose system. This way of interacting
with machines has not been realised in human-computer in-
teraction (Lazar, Feng, and Hochheiser 2017; Rapp, Curti,
and Boldi 2021), but it has been theorised many times. Per-
haps the closest vision where machines are openly instructed
in natural language is Lieberman and Maulsby’s ‘instructible
machines’ (1996) and the related notion of programming by
example (Lieberman 2001). In short, prompts for language
models combine these two worlds: instructions in natural
language and few-shot learning.

But why are language models instructable? We need to
go back to the origins of ‘language models’, introduced by
Shannon in 1949. The notion of compression is grounded by
efficiently coding the message based on the idea of a non-
entropic distribution of the next bits of information. Today,
informational metrics such as entropy or perplexity are still
being used to evaluate language models. Their relevance and
general use were anticipated by (Mahoney 1999), among oth-
ers. However, only recently language models have been con-

3Quoted by Turing (1950) when arguing that ‘programmable
machines’ could become ‘learning machines’.
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ditioned with prompts to do many different tasks, from lan-
guage translation (Wang et al. 2021) to mathematical prob-
lems (Hendrycks et al. 2021). This is possible as these lan-
guage models have been fed with massive datasets of human
behaviour in the form of text. By compressing the next tokens
in a text on such a diversity of topics and even languages, the
model ultimately develops powerful abstraction capabilities.
This allows it to make continuations that look as if a human
(or an archetypical human of the 21st century) were writing
the continuation. Interestingly, when given some appropriate
question or command, many contemporary humans follow it
with the answer or the task done, which is why these models
can act as general-purpose systems. Indeed, prompt-based
interaction with language models may be the closest thing to
a general-purpose system in the history of AI.

But how can we evaluate generality? By generality, we do
not mean a rich and meaningful conversation as could be in-
formally assessed by any variant of the imitation game (Tur-
ing 1950), but instead, we are referring to the capability of
solving a range of tasks, up to some difficulty (Hernández-
Orallo et al. 2021). As mentioned before, digital assistants
are able to solve a range of simple tasks, but they are usually
restricted to a fixed repertoire. To discuss command gener-
ality in depth we need to consider these important elements:
• A probability distribution 𝑝(𝜇) that captures a wide range

of everyday tasks that humans face on a regular basis.
• A difficulty metric ℏ(𝑥) for each instance in 𝜇. For in-

stance, most humans can do additions, but not equally ro-
bustly and fast for all numbers of digits.

• The process of conceiving the instruction and interpret-
ing the solution, which involves that the human thinks of
the best ways of phrasing the command for a particular
task and instance, the model understands and solves it,
and the human extracts and interpret the result.

• The trade-off of semi-automation, finding the balance in
the continuum between the cost𝐶𝐻 when the human does
the task, and the cost of 𝐶𝐻,𝑀 when the human just for-
mulates the task. There are situations in between, where
the human partially solves or prepares the task for 𝑀 .

• The desired levels of safety and competence for each task
not only depend on the robustness and capability of the
system, but the degree of understanding of the command.
A very capable system doing 𝜇𝐴 when ordered 𝜇𝐵 may
be more dangerous than a very incapable agent.

The last item is related to all the others, and the ‘specification
problem’ in (software) engineering and more recently in AI
(Rahimi et al. 2019). In AI safety, this is more commonly ex-
pressed in terms of alignment (Leike et al. 2017; Hernández-
Orallo et al. 2020). Kenton et al. (2021) mention the classical
decomposition of alignment as an intent+competence prob-
lem: the system must try to do what the human wants (right
system’s intent) and the system must be able to achieve it
(sufficient capability). However, the capability of the systems
to ‘understand’ commands, separate from the capability to
satisfy them, has received little attention until now (Tamkin
et al. 2021). Command understanding is still much narrower
than the full area of natural language understanding, and a

system can still recognise many commands without a full
command of natural language. However, in an open interac-
tion against general-purpose systems instructed with natural
language, understanding must also be considered as an extra
third element, separate from the model capability to solve the
task. This just reflects the traditional distinction between val-
idation and verification, one of the fundamental elements of
safety. We refine alignment as follows:

alignment = intent + understanding + competence. (1)
One can argue that in AI safety, in the context of the mis-
specification problem (Amodei et al. 2016; Russell 2019),
we should also cover for human stupidity or naivety on un-
expected consequences (e.g., King Midas problem). We will
however not consider here a patronising perspective of the
system understanding what the human really wants. On the
other hand, language models are not agents, and we can then
assume that they always ‘want’ to do the task. Consequently,
we will not consider human-vs-machine intent in this paper
and will focus only on whether the system ‘understands the
command’ and has the competence to solve it.

Overall, the problem of alignment for a general-purpose
system is complicated. It is very ambitious to construct a
framework that considers all these elements precisely, espe-
cially because there is limited foundation in the field for this.
However, the relevance of language models and its multi-
modal variants —recently referred to as ‘foundation models’
(Bommasani et al. 2021)—, requires to make some steps in
this direction. This is what we do next.

Framework
In this section we introduce a new framework to measure
the utility of language models when solving general every-
day tasks. This implies the comparison of two quantities we
will define: 𝐶𝐻 and 𝐶𝐻,𝑀 . They will measure the cost of the
human 𝐻 solving the task with and without making use of
a language model 𝑀 , respectively4. The aim is to provide
insight on the different effort terms that will be measured in
our experiment with humans.

Let us consider a discriminative or generative task 𝜇 with
an input space 𝑋 and an output space 𝑌 . Instances are sam-
pled over a distribution 𝑝(𝑥), with 𝑥 ∈ 𝑋. The human, pos-
sibly stochastically, produces an output 𝑦 for 𝑥 as defined by
𝑝𝐻 (𝑦|𝑥). Our framework has to evaluate the cost of produc-
ing this 𝑦 and its quality. The cost of producing or guessing
an answer 𝑦 is defined as 𝐺𝐻 (𝑦|𝑥), and the loss of such an
answer is 𝐿(𝑥, 𝑦) (values of 𝐿 closer to 0 are valid or useful
outputs). Note that a single 𝑥 may have many valid outputs,
especially in generative tasks. With all these elements, we
define 𝐶𝐻 (𝑛) for 𝑛 instances5 as follows:
𝐶𝐻 (𝑛)

def
= 𝑛

∑

𝑥,𝑦
𝑝(𝑥) ⋅ 𝑝𝐻 (𝑦|𝑥)

[

𝐿(𝑥, 𝑦) + 𝛽𝐺𝐻 (𝑦|𝑥)
]

. (2)

4A summary of the notation and interpretation of all compo-
nents can be found in Table 1 in the appendix.

5In this case, we assume no familiarisation curve for the humans
when doing many instances of the task, and the cost is linear on
the number of instances, but this will change for the model-assisted
cost, so we introduce 𝑛 here to have the same format for both costs.
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As loss and effort are rarely expressed in the same units, their
relative weight is indicated by a parameter 𝛽.

The expression of cost when a human 𝐻 is assisted by a
language model 𝑀 in a few-shot or zero-shot prompt-based
setting involves more elements. First we need to consider the
processes of wrapping and unwrapping. When providing one
or more instances to the model, the user needs to think of a
wrapper 𝑤 that can be used for each instance. For instance, if
the task is addition, and we have an instance, 𝑥1 = 13 + 2, this
can be wrapped into prompt 𝑤(𝑥1) = 𝑥1 = “The sum of
13 and 2 is:”, which is fed to the language model. Using
the same wrapping pattern, the instance 𝑥2 = 7 + 12 would be
wrapped into prompt 𝑤(𝑥2) = 𝑥2 = “The sum of 7 and
12 is:”. Note that we could use some other wrappers, e.g.,
a more complex wrapper could transform the first instance
into “How much is thirteen plus two?”.

As mentioned in the introduction, success or failure with
a few-shot use of language models depends on the quality
of the prompts. The process of unwrapping is also very im-
portant. If a model returns 𝑦1 =“15” to instance 𝑥1, then
it is easy to extract the answer, 𝑦1 = 15. However, it is not
uncommon to get things such as 𝑦′1 = “the same as the
sum of 2 and 13, which is 15”. While the answer is
correct, it needs more effort and interpretation, and is hard to
do automatically. Of course, some other responses are even
more difficult to parse, such as 𝑦′′1 = “15, and the sum
of 13 and 2 is 17”, which would be correct if we stop
at the comma, but incorrect (and inconsistent) if we keep
on reading. The appendix includes many examples of tasks,
wrappers and unwrappers in Table 2.

Now we are ready to introduce the components for
𝐶𝐻,𝑀 (𝑛). As in the unassisted case, the cost is for 𝑛 instances
following a probability distribution of tasks 𝑝(𝑥). The first
term,𝐷𝐻 (⟨𝑤, 𝑢⟩)measures the cost of devising the wrapping
and unwrapping strategies ⟨𝑤, 𝑢⟩. As ⟨𝑤, 𝑢⟩ is produced by
the human𝐻 we need to define the probability of each pair as
𝑝𝐻 (⟨𝑤, 𝑢⟩). The cost of applying the wrapper 𝑤 to instance 𝑥
is denoted by 𝑊𝐻 (𝑤, 𝑥); and the cost of unwrapping the out-
put of the model 𝑦 into an answer is 𝑈𝐻 (𝑢, 𝑦). Finally, the hu-
man 𝐻 will need to validate the answer. This does not mean
solving it, but checking that the language model completion
makes sense and is useful. For instance, if 𝑥1 = “The sum
of 13 and 2 is” is completed by 𝑦1 = “a number”, the
completion would not be valid (makes sense but it is not use-
ful). This is especially important for generative tasks where
the human validation cost is much lower than the cost the
human would incur by solving the task herself (e.g., creating
an image) or when there might be fairness and discrimination
issues (Bender et al. 2021; Tamkin et al. 2021). We denote
this cost of validation as 𝑉𝐻 (𝑥, 𝑢(𝑦)). Finally, as in the unas-
sisted case, we measure the quality of the result as 𝐿(𝑥, 𝑦).
With all this, the assisted expected cost 𝐶𝐻,𝑀 (𝑛) of human
𝐻 with model 𝑀 for 𝑛 instances is defined as:

𝐶𝐻,𝑀 (𝑛)
def
=

∑

𝑢,𝑤
𝑝𝐻 (⟨𝑤, 𝑢⟩)

[

𝛼𝐷𝐻 (⟨𝑤, 𝑢⟩) + (3)

𝑛
∑

𝑥,𝑦
𝑝(𝑥) ⋅ 𝑝𝑀 (𝑦|𝑤(𝑥)) ⋅ [𝐿(𝑥, 𝑢(𝑦)) + 𝑇 (𝑤, 𝑢, 𝑥, 𝑦)]

]

.

where
𝑇 (𝑤, 𝑢, 𝑥, 𝑦)

def
= 𝛾(𝑊𝐻 (𝑤, 𝑥) + 𝑈𝐻 (𝑢, 𝑦)) + 𝛿𝑉 (𝑥, 𝑢(𝑦)).

In this case we also have parameters 𝛼, 𝛿 and 𝛾 indicating
the relative weight of different terms. Notice that we con-
sider that the conception of the prompt ⟨𝑤, 𝑢⟩ has to be done
just once, while other terms such as 𝑊𝐻 (𝑤, 𝑥), 𝑈𝐻 (𝑢, 𝑦)
and 𝑉 (𝑥, 𝑢(𝑦)), integrated into the transformation cost 𝑇 , and
𝐿(𝑥, 𝑢(𝑦)), represent a per-instance cost.

The definition of 𝐶𝐻,𝑀 may look convoluted, but it re-
ally contains the elements that must be considered to evaluate
these models in the wild. Looking only at 𝐿 of the solutions
is clearly insufficient to make these judgements, as it will
disregard all the efforts that are associated, as well as the di-
versity of prompts. With 𝐶𝐻 and 𝐶𝐻,𝑀 defined, and all their
components estimated (as we do in the following sections),
we can really assess whether using the model pays off.

It is also important to determine whether the model gives
poor results because of lack of capability or command under-
standing, especially if the validation procedure performed by
the human is unreliable or meant to be eliminated. Unfortu-
nately, language models are not very good explaining their
answers, so we need to use a different approach.

Let us consider that we have a difficulty or hardness metric
ℏ(𝑥) for each instance of a task. In this case, if the model is
capable enough for solving very easy instances, we should be
able to assign some degree of reliability of the model, as well
as some level of understanding of the command. However, if
𝐿 is very high for very easy instances, then the system may
have no capability at all, or it is not understanding, or both.
On the contrary, if 𝐿 is low initially, but starts increasing
at some point, we can disentangle the loss given by lack of
understanding (and other reliability issues) and capability.

Methodology
We are going to estimate all the terms appearing in (2) and
(3) through well-thought questionnaires with human respon-
dents. With them we will be able to answer the first experi-
mental question about whether there is a gain when humans
are assisted by a state-of-the-art language models such as
GPT-3. The second major experimental question is to assess
whether language models fail to complete the task due to a
lack of command understanding or competence.

Relying on human data is powerful but limits the number
of tasks that we can consider, especially as we need several
instances per task, of a range of difficulties. In order to ap-
proximate a diverse group of tasks resembling a distribution
over everyday tasks 𝑝(𝜇), we chose four tasks covering each
of the four main categories in the human capability hierarchy
according to Cattell–Horn–Carroll theory (Carroll 1997) that
are not specific to humans (e.g., short memory). In particular,
we have one task in each of the following categories:
• "Numerical abilities", represented by a task where price

discounts have to be applied. Instance difficulty is given
by how many operations are needed.

• “Communication abilities”, represented by a task where
an email has to be written for a costumer explaining them
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Quest ionnaire 1

Measurable variables

DH(?u,w?) pH(?u,w?) WH(w,x)

Cost  of 
devising a 

parametrized 
prompt

Time spent  on 
1st  quest ion on 

each task

Probability 
of a given 
prompt

Cost  of applying 
the prompt  to 
new instances

Sampling 
based: 1 for 
the answers, 
0 otherwise

Time spent  on 
2nd and 3rd 

quest ion on each 
task

Get  GPT-3 complet ions

Quest ionnaire 2

Measurable variables

Cost  of 
decoding the 

model's 
answer

Time 
required to 
ext ract  the 

answer

VH(x, y)

Cost  of 
validat ing 
an answer

Time required 
to mark Likert  

scale 
usefulness 

Quest ionnaire 3

Measurable variables

GH(x,y)

Cost  of the 
human 

solving the 
problem

Time 
required to 
guess the 
answer

LH(x, y)

Validity of 
answer y to 

task x

Likert  scale 
usefulness, 

converted to 
Loss (0 to 1)

LH(x, y)

Validity of 
the answer

Likert  scale 
usefulness, 

converted to 
Loss (0 to 1) 

pH(x,y)

Probability of 
the human 
answering y 

given x

Sampling 
based: 1 for 

the answers, 0 
for the rest

Group A

Group BNA= 36

NB= 34pM(      ,w(x))

UH(u,   )

Figure 2: Variables appearing in the cost definitions (2) and (3), and forms from which to obtain them.

whether they made or lost money after an investment. Dif-
ficulty is measured by increasingly bad news, as in such
situation we expected participants to take more care and
time on the framing of the email (MUM effect).

• “Reasoning”, represented by the task of proposing a
recipe from a list of ingredients and utensils. Difficulty
is assessed by the number of ingredients and utensils.

• “Creative writing”, represented by the task of writing the
lyrics of a song for a two-year old child about animals and
what they are doing. In this case, difficulty is measured by
the number of animals to be included in the lyrics.

We built three questionnaires in English with three instances
in each domain: Q1 and Q2 (group A) aimed at estimating
the parameters in 𝐶𝐻,𝑀 , and Q3 (group B) for 𝐶𝐻 .

Q1 starts with some information about what an ‘autocom-
pletion’ system is and some examples at the beginning. It
also collects some information about the participants (En-
glish level, age, familiarity with language models, and use
of virtual assistants). Then, volunteers are asked to gener-
ate prompts to make the language model solve the tasks. Af-
ter they have finished Q1, we use their prompts to generate
GPT-3 completions (using davinci-instruct, with default pa-
rameters and 256 tokens), which we use to build Q2, where
usefulness of GPT-3’s completions are assessed. Q1 and Q2
are paired, such that the users receive the completion to their
respective prompts. Q3 is independent. A different group of
volunteers complete the same tasks but without using lan-
guage models. It also collects their age and English level.
To ensure similar samples for group A (Q1-Q2) and group B
(Q3), and no contamination between groups, volunteers were
randomly divided into two groups A and B, with question-
naires Q1 and Q2 sent to group A, and Q3 sent to B. In the
end, we had 𝑁𝐴 = 36 and 𝑁𝐵 = 34 respondents recruited
via posts in social networks and internet forums. The tests
were administered online using the open-source testing plat-
form Concerto (Harrison et al. 2020).

The way we estimate the value of each term in 𝐶𝐻 and
𝐶𝐻,𝑀 (Eqs. 2 and 3) can be found in Fig. 2. In general, use-
fulness of the answers is asked to humans through a Likert

scale 𝑠 (1 to 5, from least to most useful), which we convert
into loss as 𝐿𝐻 = 1 − (𝑠 − 1)∕4. This loss is estimated by
the humans themselves. In addition, we conduct an external
evaluation 𝐿𝐸 , measured by a member of the research team,
and serves to give comparable scores across volunteers, and
avoid discounting difficulty. Human effort (𝐷𝐻 , 𝑊𝐻 , 𝑈𝐻 ,
𝑉𝐻 , 𝐺𝐻 ) is measured in seconds.

The forms are structured in 4 tasks with 3 instances. We
assume that the first instance of each task has a prompting
cost (measured in time) of 𝐷𝐻 +𝑊𝐻 , while for the second
and third instances the cost is only 𝑊𝐻 . 𝑈𝐻 is just the av-
erage effort to find the answer in the model completion, and
𝑉𝐻 the time to estimate its usefulness.

For the different effort components we use the median of
the measured time. It so happens that even if volunteers are
specifically instructed to avoid making stops in the forms,
some of them inevitably get distracted. As a consequence,
the median represents a better way to reduce the possible bias
in the time estimates. On the other hand we use the mean for
assessing the quality of the answers given by a Likert scale.

Analysis of Results
Let us first compare the correlations between all variables.
As indicated in the caption of Fig. 3, we can confidently re-
ject the normality hypothesis for all time distributions. Be-
cause of this, we use Spearman correlations. In Fig. 2 (and
Fig. 3 in the appendix segregated by domain) we see that
a good command of English and previous experience with
language models seems useful. The use of virtual assistants
however seems uncorrelated, which may be due to contin-
uations being frequently expressed differently from com-
mands. Finally, the use of language models is weakly neg-
atively correlated with self-assessed loss, 𝐿𝐻 (𝑥, 𝑦) but not
with externally-evaluated 𝐿𝐸(𝑥, 𝑦), suggesting that people
without experience may be easier to impress.
Effort and Loss
Fig. 3 (left) shows the effort to use language models, includ-
ing the cost of generating a prompt (𝐷𝐻 ), wrapping to the
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Figure 3: Effort required (median values, in s) to perform each of the tasks with and without access to GPT-3. In all cases except
the last one (lyrics) the effort to generate the prompt and validate the answer is greater than to solve it by themselves. Each
distribution was Shapiro-tested (𝑝 ≤ 3 ⋅ 10−4 in all cases). Then we performed Mann-Whitney U test to compare the effort with
and without GPT-3. The Holm-corrected (Holm 1979; Aickin and Gensler 1996) p-values are 𝑝 < 1.3 ⋅ 10−7 for Numeric and
Reasoning domains, 𝑝 = 1.15 ⋅ 10−2 for Communication and 𝑝 = 0.33, that is, no evidence of difference, for the Writing task.

specific instance (𝑊𝐻 ), unwrapping the model completion
(𝑈𝐻 ) and validating it (𝑉𝐻 ). In all cases, except in the task
of writing song lyrics, the sum of the human effort required
to interact with the system is larger than the effort to solve
the task without making use of it, as shown in Fig. 3 (right).

On the other hand, if we compare the loss for different
tasks in Table 1 we can see that in the Numeric and Com-
munication tasks, the answers of GPT-3 achieve worse self-
assessed usefulness (higher loss). In contrast, loss is simi-
lar for the other two. We have to note that in Q3 the use-
fulness of the answers from humans is also self-assessed, so
they may differ from the perceived usefulness of answers by
others (Hoorens 1993). Furthermore, in the Reasoning task
(recipes), answers from the model and human are different:
the human just names the dish; while the model often pro-
vides the entire recipe, but with unavailable ingredients.

Overall, considering Fig. 3 and Table 1 together indicates
that for the first three tasks (Numeric, Communication and
Reasoning) the use of GPT-3 would be unwise: it achieved
a higher loss and required more time overall to complete. A

𝐿𝐻 (𝑥, 𝑦) Numeric Commun. Reason. Writing
GPT-3 0.61 0.59 0.35 0.47
Human 0.31 0.38 0.35 0.47
p-value 8 ⋅ 10−6 1.1 ⋅ 10−4 0.9 0.9

Table 1: Usefulness of the result making use or not of model.
Mean values for the loss derived from the Likert values. We
also include the Holm-corrected p-values to check for simi-
lar mean in each domain. Prior to that we performed Shapiro
(normality) and Levene (standard deviation) tests; and as a
consequence used Mann-Withney U test for Numeric, Com-
munication and Reasoning tasks, and t-test for Writing.

more lenient appraisal for Writing has to do with the fact that
generative tasks are currently the domain where language
models shine the most: tasks that are easy to describe and
evaluate but hard to solve. However, the fact that loss values
are at best as good as humans’ indicate that there is still space
for future models to improve.

Finally, the communication task was the one the human
volunteers found most challenging. Not only does Fig. 3
show 𝐷𝐻 to be much larger than for the other tasks, but also
the number of prompts not containing enough information
for the model is much larger than in other cases (33% vs up
to 14%). However, an important caveat to mention here is
that this task is perhaps the one where the stakes were the
most difficult to emulate (telling a customer bad news).
Difficulty
Now we discuss how the difficulty of the question affects the
quality of the answers given by the system. This is a natural
question looking at the proposed decomposition of alignment
in (1). To measure this, we look at the easiest instances and
see whether the loss falls to 0, not the same thing as what
volunteers were measuring: ‘usefulness’. This difference is
reflected in the loss values in Fig. 4 in the appendix. The
difference arises because simple questions such as assessing
the price of a 2 for 1 offer are too simple to be perceived as
useful. As such, the loss does not have a well-defined trend,
or even decreases for more complex tasks.

In order to correctly evaluate how well the answer of the
model performs the task at hand, we will use an externally
evaluated cost, denoted by 𝐿𝐸(𝑥, 𝑦). The results, shown in
Fig. 4, are very different between the numeric task and the
rest. While loss increases withℏ for Numeric, the easiest pos-
sible instance still has an average loss of 𝐿𝐸(𝑥, 𝑦) = 0.71,
suggesting an understanding gap as indicated in Eq. 1. The
other tasks and the self-assessed loss of both GPT-3 and hu-
man answers do not show any clear trend, but we think the
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reasons are different: for Reasoning there is an intermedi-
ate level of understanding, while for Writing and especially
Communication the task overall is hard and the lack of a clear
growing trend does not allow us to tell between lack of com-
petence and failing at understanding commands.

Discussion and Future Work
The progress and full democratisation of language models
should be based on a better understanding of their capabili-
ties. One key finding of our work is that, despite sometimes
providing excellent answers, the use of these models still re-
quires significant effort by the common human to generate
good prompts. Indeed, except for the writing tasks, our re-
sults indicate that it would be faster and better if the user
solved the task without the help of GPT-3. We expect this to
change in the future as models become more accurate, but
also as the users adapt to the way models understand com-
mands. It is crucial that we evaluate this properly, using hu-
man questionnaires like this one, and not only the results
from massive batteries of language models where prompts
are specialised for each task (Kohler and Daniel Jr 2021).

In NLP it is usual to evaluate the quality of responses sub-
jectively, but it is less so to measure times. This is more com-
mon in other areas where productivity is key, such as soft-
ware engineering (Sadowski and Zimmermann 2019) and
human-computer interfaces (Lewis 1995; Lazar, Feng, and
Hochheiser 2017). It is nevertheless essential to take all fac-
tors into account and compare both situations in an ecolog-
ically valid experiment (De Vries, Bahdanau, and Manning
2020). For example, one could mistakenly believe that the
model used in our experiments, GPT-3, is almost as good as
humans in generating recipes from lists of ingredients. Un-
fortunately, this does not take into account that to make these
systems useful, humans would need to be able to prompt and
read the model’s answer faster than they are to solve the task
themselves. The advantage of using these models only seems
to appear for generative tasks, such as the song lyrics writ-
ing. For future studies, we believe it would be informative to
carry out similar research with multimodal models. In fact
our tasks were designed with this consideration in mind, such
that the tasks could be adapted to multimodal input, includ-
ing the images of our forms, and output, such as videos. An-
other extension is to analyse other languages, where the ca-

pability of the system and the kind of prompts may differ
from English significantly.

Similarly, future studies should focus on ecological valid-
ity by considering realistic situations where these models are
used. This involves modelling different kinds of users using
empirical evidence in the short and long terms, analogous
to the way software systems and human-computer interfaces
are evaluated. This should include how users adapt to these
systems and learn to improve the construction and applica-
tion of prompts, as well as choosing those tasks whose assis-
tance is more useful and safe.

Our work aimed to shed some light into the decomposition
of alignment in Eq. 1. For the numeric task (discount appli-
cation), we can measure both the understanding gap (the gap
that happens when the difficulty of the task is minimal but
still requires command understanding) and the capability of
the system, which was quickly saturated. Unfortunately, one
limitation of this methodology is that it is not always easy
to find a good range of instances from very easy cases to
more difficult ones, because the range of capability of lan-
guage models is still limited. We hope that future studies
with more powerful models will provide some insight on how
to better measure the difficulty increase, or even compare
what tasks language models and humans find difficult. Fur-
thermore, with the objective of helping make better models,
we open source the data collected in our experiments. This
should provide a benchmark of prompts where most of the
heavy work (prompt generation and task solving without the
model) has already been carried out, and the only remaining
task is the evaluation of the answer of new models.

We believe the methodology proposed here opens the door
to a fairer and more insightful evaluation of language mod-
els and other foundation models of the future, which should
help better assess their generality and usefulness. It should
also help address a crucial aspect of the reliability and safety
of these models such as their understanding of commands:
very capable systems with poor understanding of our will
may pose risks. As such, we advocate for a more realistic
evaluation of these models, as they will be used by humans
—in the wild.
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