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Abstract

In attempts to “explain” predictions of machine learning
models, researchers have proposed hundreds of techniques
for attributing predictions to features that are deemed impor-
tant. While these attributions are often claimed to hold the
potential to improve human “understanding” of the models,
surprisingly little work explicitly evaluates progress towards
this aspiration. In this paper, we conduct a crowdsourcing
study, where participants interact with deception detection
models that have been trained to distinguish between genuine
and fake hotel reviews. They are challenged both to simulate
the model on fresh reviews, and to edit reviews with the goal
of lowering the probability of the originally predicted class.
Successful manipulations would lead to an adversarial exam-
ple. During the training (but not the test) phase, input spans
are highlighted to communicate salience. Through our evalu-
ation, we observe that for a linear bag-of-words model, par-
ticipants with access to the feature coefficients during training
are able to cause a larger reduction in model confidence in the
testing phase when compared to the no-explanation control.
For the BERT-based classifier, popular local explanations do
not improve their ability to reduce the model confidence over
the no-explanation case. Remarkably, when the explanation
for the BERT model is given by the (global) attributions of a
linear model trained to imitate the BERT model, people can
effectively manipulate the model.

Introduction
Owing to their remarkable predictive accuracy on supervised
learning problems, deep learning models are increasingly
deployed in consequential domains, such as medicine (Kim
et al. 2019; Aggarwal et al. 2021), and criminal jus-
tice (Kleinberg et al. 2017). Frustrated by the difficulty of
communicating what precisely these models have learned,
a large body of research has sprung up proposing methods
that are purported to explain their predictions (Doshi-Velez
and Kim 2017; Lipton 2018; Guidotti et al. 2018). Typi-
cally, these so-called explanations take the form of saliency
maps, attributing the prediction to a subset of the input fea-
tures, or assigning weights to the features according to their
salience. To date, while hundreds of such attribution tech-
niques have been proposed (Ribeiro, Singh, and Guestrin
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2016; Hendricks et al. 2016; Sundararajan, Taly, and Yan
2017; Smilkov et al. 2017), what precisely it means for a
feature to be salient remains a point of conceptual ambiguity.
Thus, many proposed techniques are evaluated only via vi-
sual inspection of a few examples where the highlighted fea-
tures agree with the author’s (and reader’s) intuitions. Across
papers, one common motivation for such attributions is to
improve human “understanding” of the models (Ribeiro,
Singh, and Guestrin 2016; Doshi-Velez and Kim 2017; Sun-
dararajan, Taly, and Yan 2017). However, whether these at-
tributions confer understanding is seldom evaluated explic-
itly and there is relatively little work that characterizes what
explanations enable people to do.

One suggestion to evaluate model understanding is to use
simulatability as a proxy for understanding—i.e., if a par-
ticipant can accurately predict the output of the model on
unseen examples (Doshi-Velez and Kim 2017). Following
this idea, a few prior studies examine if explanations help
humans predict model output (Chandrasekaran et al. 2018;
Hase and Bansal 2020). Such studies are typically divided
into a training and a test phase. In the training phase, par-
ticipants see a few input, output, explanations triples, and in
the test phase, they are asked to guess the model output for
unseen examples.1 Many prior studies on evaluating model
explanations have reached negative results, noting that they
do not definitively aid humans in predicting model behavior
on visual question answering (Chandrasekaran et al. 2018)
and text classification tasks (Hase and Bansal 2020).

In this paper, we rethink the user design for evaluating
model explanations for text classification tasks, and propose
two key changes. First, we provide participants with query
access to the model: they can alter input documents to ob-
serve how model predictions and explanations change in real
time. Second, we extend the simulation task by prompt-
ing participants to edit examples to reduce the model
confidence towards the predicted class. While prior work
(Kaushik, Hovy, and Lipton 2019) prompts humans to edit
examples for data augmentation, editing exercises haven’t
been explored for evaluating explanations. This editing exer-
cise allows us to capture detailed metrics, e.g., average con-

1Chandrasekaran et al. (2018) present model explanations dur-
ing the testing phase, whereas Hase and Bansal (2020) do not in-
clude explanations at test time, as explanations could “leak” model
output (see Pruthi et al. (2020); Jacovi and Goldberg (2021).).
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Figure 1: Our user study, as shown to participants during the training phase: a) first, participants guess the model prediction;
(b) next, they edit the review to reduce the model confidence towards the predicted class. Through highlights, we indicate the
attribution scores produced by different techniques. Participants receive feedback on their edits, observing updated predictions,
confidence and attributions, all in real time. The test phase does not include attributions but is otherwise similar to the training.

fidence reduced, which, as we shall later see, can be used to
compare relative utility of different explanation techniques.

We perform a crowdsourcing study using the proposed
paradigm on a deception detection task, with machine learn-
ing models that are trained to detect whether hotel reviews
are genuine or fake (Ott et al. 2011). In this task, the hu-
man performance is only slightly better than that of random
guessing, while machine learning models are significantly
more accurate, making it an interesting testbed for study-
ing whether attributions help people to understand the asso-
ciations employed by the models. In our study, the partic-
ipant first guesses whether the given hotel review is clas-
sified as fake or genuine (see Figure 1). We then prompt
the participant to edit the review such that the model con-
fidence towards the predicted class is reduced. During the
training phase, we present attributions by highlighting in-
put spans. For instance, the attribution in Figure 1 suggests
that the model associates tokens “My” and “family” with
the fake class, perhaps indicating that fake reviews tend to
mention external factors instead of details about the hotel.
In our setup, a participant could test any such hypotheses, by
editing the example and observing the updated predictions,
outputs, and attributions immediately.

We seek to answer the question: Which (if any) attribu-
tion techniques improve humans’ ability to guess the model
output, or edit the input examples to lower the model confi-

dence? From the evaluation methodology standpoint, we as-
sess if the interactive environment with query access to the
models makes it possible to distinguish the relative value of
different attributions. For these research questions, we com-
pare popular attribution techniques—LIME (Ribeiro, Singh,
and Guestrin 2016) and integrated gradients (Sundararajan,
Taly, and Yan 2017), against a no-explanation control.

Our evaluation reveals that (i) for both a linear bag-of-
words model and a BERT-based classifier, none of the ex-
planation methods definitively help participants to simulate
the model’s output more accurately at test time (when ex-
planations are unavailable); (ii) however, access to feature
coefficients from a linear model during training enables par-
ticipants to cause a larger reduction in the model confidence
at test time; and (iii) most remarkably, feature coefficients
and global cue words2 from a linear (student) model trained
to mimic a (teacher) BERT model significantly help par-
ticipants to manipulate BERT. Additionally, we notice that
participants respond to the highlighted spans, as over 40%
of all the edits are performed on these spans. Our compar-
isons lead to quantitative differences among evaluated attri-
butions, underscoring the efficacy of our paradigm.3

2Words that correspond to the largest feature coefficients.
3The code used for our study is available at: https://github.com/

siddhu001/Evaluating-Explanations.
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Related Work
We briefly discuss past attempts to evaluate explanation
methods, both via user studies and automated metrics.

Model simulatability measures human ability to predict
the model output on fresh examples. It is a prominent metric
to evaluate explanation methods, and is treated as a proxy for
model understanding (Doshi-Velez and Kim 2017). Using
simulatability, a recent study evaluates five different expla-
nation generation schemes for text and tabular classification
tasks (Hase and Bansal 2020). Their study runs two differ-
ent types of tests: (i) forward simulation which measures
simulatability on unseen examples without explanations, af-
ter presenting participants 16 training examples with expla-
nations; and (ii) counterfactual simulation which captures
participants’ ability to guess the model output of perturbed
input examples while observing the true labels, predictions,
and explanation for the original examples. The study con-
cludes that for the text classification task, none of the five
evaluated explanations definitively help participants better
simulate the model in the forward simulation task (when
explanations were provided only at training time). The par-
ticipants in their study report found it difficult to retain the
insights learned from the training phase during the testing
phase. Another study examines the extent to which explana-
tions from a VQA model help humans predict its responses
and failures (Chandrasekaran et al. 2018). In their setup,
visual saliency maps were provided both during the train-
ing and the testing phase. This study too leads to a simi-
lar conclusion: visual attributions do not help in simulating
the VQA model. Another recent study measures simulata-
bility of several regression models that estimate the value
of real-estate listings (Poursabzi-Sangdeh et al. 2021). They
observe that participants could simulate a linear model with
2 features but fail to simulate one with 8 features. They also
note that participants could not correct model mistakes for
any of the given models. Another paper investigates if hu-
mans could predict model output using explanations alone,
and found erasure and attention-based explanations to be
useful (Treviso and Martins 2020).

Our work differs with the above studies in a number of
ways: none of the prior studies allow participants to test out
models for inputs of their choice (query access). Addition-
ally, we ask participants to edit examples with a goal to re-
duce the model confidence, in an attempt to identify adver-
sarial examples. This exercise allows us to capture detailed
metrics, including the average amount of confidence reduced
and number of examples successfully flipped. Furthermore,
we interleave the training and test phase thereby mitigating
retention issues reported in (Hase and Bansal 2020).

There have been several other user studies that evalu-
ate different aspects of explanations (Binns et al. 2018; Cai
et al. 2019; Green and Chen 2019a,b; Yin, Vaughan, and
Wallach 2019; Kunkel et al. 2019). Mohseni, Zarei, and Ra-
gan (2021) categorize these efforts based on the goals they
aim to achieve, the intended audience, and the evaluation
metrics. Few studies measure if explanations enable partici-
pants to better predict the task output (i.e., the ground truth)
instead of the model output—specifically, if explanations
help participants gain sufficient insights to distinguish gen-

uine reviews from fake reviews (Lai and Tan 2019; Lai, Liu,
and Tan 2020). Lertvittayakumjorn and Toni (2019) evalu-
ate if explanations help in identifying the better performing
model. Lastly, a recent study examines saliency maps for an
age-prediction model, and concludes that none of the expla-
nations impact human’s trust in the model (Chu, Roy, and
Andreas 2020).

A variety of automated metrics to measure explanation
quality have been proposed in the past. However, many of
them can be easily gamed (Hooker et al. 2019; Treviso and
Martins 2020; Hase et al. 2020) (see (Pruthi et al. 2020) for
a detailed discussion on this point). A popular way to eval-
uate explanations is to compare the produced explanations
with expert-collected rationales (Mullenbach et al. 2018;
DeYoung et al. 2020). Such metrics only capture whether
the produced explanations are plausible, but do not com-
ment upon the faithfulness of explanations to the process
through which predictions are obtained. A recently proposed
approach quantifies the value of explanations via the accu-
racy gains that they confer on a student model trained to
simulate a teacher model (Pruthi et al. 2020). Designing au-
tomated evaluation metrics is an ongoing area of research,
and to the best of our knowledge, none of the automated
metrics have been demonstrated to correlate with any human
measure of explanation quality.

Evaluation through Iterative Editing
This section first describes our evaluation paradigm and dis-
cusses how it is different from prior efforts. We then intro-
duce several metrics for evaluating model explanations.

Experimental Procedure
We divide our evaluation into two alternating phases: a train-
ing phase and a test phase. During the training phase, par-
ticipants first read the input example, and are challenged to
guess the model prediction. Once they submit their guess,
they see the model output, model confidence and an ex-
planation (explanation type varies across treatment groups).
As noted earlier, several prior studies solely evaluate model
simulatability (Hase and Bansal 2020; Chandrasekaran et al.
2018; Treviso and Martins 2020; Poursabzi-Sangdeh et al.
2021). We extend the past protocols and further prompt par-
ticipants to edit the input text with a goal to lower the confi-
dence of the model prediction. As participants edit the input,
they see the updated predictions, confidence and explana-
tions in real time (see Figure 1). Therefore, they can validate
any hypothesis about the input-output associations (captured
by the model), by simply editing the text based on their hy-
pothesis and observing if the model prediction changes ac-
cordingly. The editing task concludes if the participants are
able to flip the model prediction, or run out of the allocated
time (of three minutes). The instructions for the study pro-
hibit participants to edit examples in a manner that changes
the meaning of the text (more details in the next section).

The test phase is similar to the training phase except for
an important distinction: explanations are not available dur-
ing testing so that we can evaluate the insights participants
have acquired without the support of explanations. Holding
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back the explanations at test time eliminates concerns that
the explanations might trivially leak the output (see Pruthi
et al. (2020) for a detailed discussions). In our study, after
every two examples in the training stage, participants com-
plete one test example. In contrast to past studies, where
participants first review all the training examples before at-
tempting the test examples, we show participants one test
example after every two training examples. In the Hase and
Bansal (2020) study, participants report that it was difficult
to retain insights from the training phase during the later test
round. Our interleaving procedure alleviates such concerns.

Metrics
While simulatability has been used as a proxy measure
for model understanding (Hase and Bansal 2020; Chan-
drasekaran et al. 2018), we argue that simulating the model
is a difficult task for people, especially after viewing only a
few examples. Hence, we propose to compute detailed met-
rics that are based on participants’ ability to edit the exam-
ple to lower the model confidence towards predicted class
and to possibly flip model predictions. We believe that such
metrics are finer-grained indicators for participant’s under-
standing of the model, since participants might not compre-
hend how different factors combine to produce the output,
but they may identify a few input-output associations, which
they can effectively apply in the manipulation exercise.

Based on this motivation, we measure three metrics (a) the
simulation accuracy, (b) average reduction in model confi-
dence, and (c) percentage of examples flipped. Following
prior work (Chu, Roy, and Andreas 2020), we use mixed
effects regression models to estimate these three quantities.
For each experiment, a participant is randomly placed in one
of the 5 cohorts. All participants in the same cohort see the
same training and test examples, irrespective of the experi-
ment. Further, across different cohorts, test examples differ
(but we use a fixed set of examples for training). We use mul-
tiple cohorts so as to not rely on a few test examples for our
conclusions. The mixed effects models include fixed effect
term βtreatment for each treatment and a random effect inter-
cept αcohort to determine the impact of the cohort to which
a participant is assigned. Since mixture effect models can
effectively handle random variability introduced due to dif-
ferent data samples and different participant cohorts, it is an
appropriate choice to isolate the impact of each explanation
type. The three mixed effects models can be described as

ytarget = β0 + βtreatment × xtreatment + αcohort × xcohort,

where the target corresponds to three evaluation metrics dis-
cussed above and β0 is the intercept.

A Case Study of Deception Detection
We choose a deception detection task—distinguishing be-
tween fake and real hotel reviews (Ott et al. 2011)—as the
backdrop for our crowdsourcing study. This is because prior
studies have noted that humans struggle with this task while
machine learning models are significantly more accurate.
Our motivation for using this setup is that models exploit
subtle, unknown and possibly counter-intuitive associations

Model Accuracy

Human Accuracy (Ott et al. 2011) ≈ 60%
Logistic Regression 87.8%
BERT 89.8%

Table 1: Accuracy on the deception detection task.

to drive prediction, providing an interesting testbed to eval-
uate whether attributions communicate such associations.
Further, since human accuracy is low for this task, the par-
ticipants do not have preconceived notions that could poten-
tially conflate with the simulation task. Therefore, this task
makes an interesting testbed to characterize how much ex-
planations help humans in understanding the input-output
associations that deception detection models exploit. The
study comprises 20 training, and 10 testing examples in to-
tal, and lasts for 90 minutes per participant.

What Are Permissible Edits?
We ask participants not to alter the staying experience con-
veyed through the hotel review. If the review is positive, neg-
ative or mixed, then the edited version should maintain that
stance. They are allowed to paraphrase and can remove or
change information not relevant to the experience about the
hotel. For instance, changing “My husband and I” to “We”
is valid edit. However, inventing details that influence the
experience about the hotel are not permitted (e.g., adding
“The staff was unfriendly” is not allowed). To enforce these
guidelines, we (1) discard submissions where the edit dis-
tances between the original and edited version is large4 and
then (2) manually inspect the edits to reject submissions that
violate our instructions.

Machine Learning Models
We consider two machine learning models for our experi-
ments. The first is a linear logistic regression model with un-
igram TF-IDF features. The second model is a BERT-based
classification model (Devlin et al. 2019). We train, or fine-
tune, these models using the deception review dataset (Ott
et al. 2011). We use the original train/validation/test splits,
which are class balanced (i.e., exactly half of the reviews
are genuine). For the logistic regression model, we select
hyperparameters, i.e. regularization strength and regulariza-
tion penalty, via a 10-fold cross-validation, whereas we use
the default parameters of the BERT model. The accuracy
of the two models is significantly higher than the estimated
human performance on this task, which is around 60% (Ta-
ble 1). We refer readers to (Ott et al. 2011) for details on the
dataset and estimating human performance for this task.

Controls & Treatments
Participants are randomly placed into different control and
treatment groups which vary based on the type of explana-
tions offered and the choice of the machine learning model.

4We remove submissions where the word edit distance > 0.9 of
the length of input review, or if half of original words are deleted.
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Model Treatments Simulation
Accuracy Phase Examples flipped

(Percentage)
Avg. Confidence

Reduced

Train 8.2 [ 5.4, 11.6] 8.0 [ 7.0, 9.0]Control 54.5 [51.0, 58.0] Test 15.0 [10.8, 19.4] 5.9 [ 4.3, 7.8]
Train 36.7 [24.8, 49.3] 21.3 [19.5, 23.1]

Logistic
Regression Feature coefficients 53.1 [50.0, 57.0] Test 16.0 [10.8, 21.6] 8.9 [ 7.2, 10.6]

Train 15.0 [11.6, 18.8] 10.7 [ 8.6, 12.8]Control 57.1 [54.0, 61.0] Test 12.4 [ 7.6, 18.1] 9.2 [ 6.6, 11.9]
Train 14.4 [10.5, 19.5] 10.2 [ 8.2, 12.3]LIME 56.4 [53.0, 60.0] Test 7.7 [ 4.4, 11.3] 6.1 [ 4.1, 8.2]
Train 23.6 [19.4, 28.0] 16.5 [14.0, 19.2]Integrated gradients 56.6 [54.0, 60.0] Test 13.6 [ 8.2, 19.3] 10.4 [ 7.7, 13.3]

Train 32.2 [27.1, 37.3] 22.6 [19.7, 25.6]Feature coefficients
(from a linear student)

60.5 [57.0, 64.0] Test 21.3 [15.7, 27.4] 14.9 [11.6, 18.4]
Train 40.6 [32.0, 49.6] 29.9 [26.8, 33.0]

BERT

+ global cues
(from a linear student)

55.7 [51.0, 60.0] Test 31.6 [23.2, 40.8] 23.6 [19.7, 27.6]

Table 2: We report human performance across different explanations in our study. None of the explanations help participants to
simulate the models, whereas global explanations for the BERT model and feature coefficients for the logistic regression model
help to reduce model confidence. Bold values indicate statistically significant differences as compared to the no-explanation
control (p-value< 0.05). Square brackets indicate bootstrapped 95% confidence intervals. The simulation accuracy is computed
together as participants see the explanations only after guessing the model predictions in both the train and test phase.

For both the linear logistic regression model and the BERT
model, we run a control study without explanations. For the
linear model, we use feature coefficients of unigram features
as explanations in the treatment group. For the BERT model,
we use the following explanation-based treatments.

Local explanation refer to techniques that produce expla-
nations by observing how the model’s predictions change
upon perturbing the input slightly For the BERT classifier,
we experiment with two widely-used local explanations:
LIME (Ribeiro, Singh, and Guestrin 2016) and integrated
gradients (Sundararajan, Taly, and Yan 2017). LIME pro-
duces an explanation using the feature coefficients of a linear
interpretable model that is trained to approximate the orig-
inal model in the local neighborhood of the input example.
Integrated gradients are computed by integrating gradients
of the log-likelihood of the predicted label along the line
joining a starting reference point and the given input exam-
ple. These explanations are presented to participants through
highlights (see Figure 1).

Besides local explanations, we experiment with global
explanations that indicate common input-output associa-
tions that the models exploit. To obtain global explanations
for the BERT model, we take inspiration from prior work
on knowledge distillation (Liu, Wang, and Matwin 2018)
to first train a linear student model using BERT predictions
on unseen hotel reviews. Since the original dataset from Ott
et al. (2011) contains only 1600 reviews, we mine additional
13.7K hotel reviews from TripAdvisor.5 Note that we only
require the BERT predictions for these reviews, rather than
the ground truth labels. The student model achieves a simu-
lation accuracy of 88.2% on the downloaded set of reviews.

5To download additional reviews we follow a protocol similar
to the data collection process used for the original dataset.

We then use the trained student model to identify the words
with the highest feature weights associated with both the
classes. We present the top-20 words for each class to par-
ticipants during the training phase. Alongside these global
cue words, we also highlight words in the input as per their
feature coefficients of the student model. In a separate abla-
tion study, we isolate the effect of these global cue words by
removing them and only highlighting input tokens using the
feature coefficients from the student.

Participant Details
We recruit study participants using Amazon Mechanical
Turk platform. We use a lightweight recruitment study that
consists of 2 examples (without explanations) to select par-
ticipants. We ask participants to guess the model prediction
and edit the example to reduce the model confidence. Par-
ticipants who guess the model prediction within 5 seconds
(which we believe is insufficient to read the review) are fil-
tered out. We also remove participants who skip the editing
exercise altogether, or whose edits are ungrammatical or al-
ter the staying experience expressed in the review. For all our
studies, we include workers who are residents in the United
States, and have completed over 500 HITs in the past and
with atleast 99% approval rate. Workers selected from the
recruitment test are encouraged to participate in the main
study. For the main study, we pay the workers $20 and award
a bonus of 10 cents for each correct guess and 20 cents
for every successful prediction flip. On an average, work-
ers make 7.5 edits per review, and thus effectively see model
predictions for 225 unique inputs. In total, we had 173 par-
ticipants in our main study, with 25 in each of the treatment
and control groups (except for one group, where 2 partici-
pants were disqualified later for violating our instructions).
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Model Treatments Simulation
Accuracy Phase Examples flipped

(Percentage)
Avg. Confidence

Reduced

Train 29.3 [ 16.5, 42.1] 13.8 [ 7.6, 19.9]Logistic
Regression Feature coefficients 2.3 [-2.1, 6.7] Test 2.6 [ -3.2, 8.4] 2.9 [ -0.2, 6.0] *

Train -0.5 [ -8.6, 7.6] -0.3 [ -6.4, 5.7]LIME -0.0 [-5.5, 5.4] Test -4.4 [-12.5, 3.7] -2.9 [ -8.6, 2.8]
Train 8.8 [ 0.6, 16.9] 6.7 [ 0.7, 12.6]Integrated gradients -1.2 [-9.9, 3.1] Test 1.2 [ -6.7, 9.1] 1.0 [ -4.6, 6.6]

Train 17.1 [ 8.8, 25.4] 11.7 [ 5.7, 17.7]Feature coefficients
(from a linear student)

3.4 [-2.0, 8.8] Test 7.3 [ -0.8, 15.4]* 5.0 [ -0.7, 10.7]*
Train 25.6 [ 17.5, 33.7] 19.1 [ 13.3, 25.0]

BERT

Global cues
(from a linear student)

-1.7 [-6.9, 3.6] Test 18.7 [ 10.8, 26.6] 14.3 [ 8.7, 19.9]

Table 3: We report the fixed effect term βtreatment relative to the control for the 3 target metrics. Bootstrapped 95% confidence
intervals are in the parentheses. We observe that none of the explanations help participants simulate the models, whereas global
explanations for the BERT model and feature coefficients for the logistic regression model definitively help participants reduce
model confidence. Bold values indicate p-value < 0.05 compared to the control and ∗ indicates p-value < 0.1.

The total cost to conduct our study is about 4000 USD.

Results & Analysis
Do Explanations Help Humans Simulate Models?
First, we investigate if the query access to the model’s pre-
dictions and explanations during the training phase enables
participants to understand the models sufficiently to simu-
late its output on unseen test examples. We do not find ev-
idence of improved simulatability in Tables 2 and 3, where
the simulation accuracy of participants—which is slightly
better than random guessing—do not improve with access
to explanations. While prior studies (Hase and Bansal 2020;
Chandrasekaran et al. 2018) note similar findings, in our
opinion, this is a stronger negative result for two reasons:
first, in our study, participants can alter examples and ob-
serve model predictions and their explanations during the
training phase. This exercise allows participants more ac-
cess to predictions and explanations compared to prior stud-
ies. Second, even for linear models, which are thought to be
inherently “interpretable,” explanations do not improve sim-
ulation accuracy. The explanations of linear bag-of-words
model have not been examined for simulatability in the past.

Do Explanations Help Humans Perform Edits That
Reduce The Model Confidence?
Next, we examine if participants gain sufficient understand-
ing during the training phase to perform edits that cause the
models to lower the confidence towards the originally pre-
dicted class. Here, we find that logistic regression coefficient
weights help participants reduce the confidence of the logis-
tic regression model: the average confidence reduced dur-
ing the test phase, when they had access to explanations in
training, is 3.0 points higher than the no-explanation con-
trol. This difference is statistically significant with a p-value
< 0.05. The benefits of such explanations during the train-
ing phase are large (over 13 points), which is unsurprising as
the faithful explanations shown during the training phase can

guide participants to effectively edit the document to lower
model confidence. During the training phase, they are able
to statistically significantly flip more predictions, however,
this ability does not transfer to the test phase.

For the BERT model, neither LIME nor integrated gradi-
ents help participants flip more predictions at the test phase.
Integrated gradients-based explanations are effective only
during the training phase. In contrast, the feature coeffi-
cients, from a linear student model help participants reduce
the model confidence of the BERT model—both at train and
test time, demonstrating how associations from a simple stu-
dent model can lead to actionable insights about the original
BERT model. Including global cue words alongside feature
coefficients markedly improves participant’s ability to ma-
nipulate the BERT model. This fact that among all the in-
spected methods, attributions from a linear student model
are the most effective emphasizes the need to explicitly eval-
uate explanations with their intended users, instead of rely-
ing on the qualitative inspection of a few examples.

Another noteworthy result here is that we are able to quan-
titatively differentiate the effectiveness of different explana-
tions using the “percentage of examples flipped” and “av-
erage confidence reduced” metrics from the editing exercise
proposed in this paper. This contrasts with the the previously
used simulatability metric, therefore, we recommend future
studies on evaluation of interpretability techniques to con-
sider (similar) editing tasks and metrics instead.

Do Participants Edit Tokens Highlighted As
Explanations? Are Their Edits Effective?
One other benefit of our framework is that, in contrast to pre-
vious studies, it allows us to directly monitor whether partic-
ipants are paying attention to the explanations, specifically
by measuring how they respond to highlighted words. To do
so, we record the fraction of times edits are performed on
a word that is among the top-20% of highlighted words in
a given input text. If there is no preference towards high-
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First Edits All Edits
Model Treatments Deletion Substitution Deletion Substitution

Logistic
Regression Feature coefficients 48.5 [42.5, 54.6] 43.0 [38.3, 47.9] 40.4 [37.0, 43.8] 41.8 [39.2, 44.6]

LIME 56.8 [49.8, 63.7] 67.2 [62.8, 71.5] 39.2 [35.2, 43.2] 49.2 [46.1, 52.2]

BERT Integrated gradients 48.1 [42.0, 54.3] 50.8 [46.2, 55.4] 32.4 [29.2, 35.6] 45.9 [43.2, 48.6]
Feature coefficients
(from a linear student) 42.5 [36.6, 48.5] 47.1 [42.3, 52.0] 33.9 [30.5, 37.3] 42.4 [40.0, 44.8]

Table 4: The table records the percentage of first, and all, edits performed on words that are among the top 20% highlighted
words in the review. Participants prefer editing highlighted words, indicating that they respond to the presented explanations. If
participants were to uniformly edit the reviews, the top-20% highlighted words would receive about 20% of first and all edits.

Figure 2: Percentage of edits on the top-20% highlighted
words and their contribution towards the confidence reduc-
tion. This plot indicates that (a) highlighted tokens receive a
bulk of edits (compared to their quantity, which for the pur-
poses of this experiment is 20%); and (b) edits performed on
tokens highlighted via integrated gradients and feature coef-
ficients are effective in reducing confidence.

lighted words, this value would be close to 20%. From Ta-
ble 4, we see that the participants edit the highlighted words
significantly more often, both with respect to first edits and
all edits. For instance, across all explanations, for about 45-
55% of examples, the first deleted or substituted word is a
word among the top-20% of highlighted words.

We further analyze if the edits on the top-20% highlighted
words are effective in reducing model confidence. In Fig-
ure 2, we plot the fraction of edits on highlighted words and
their contribution in reducing model confidence. We com-
pute their contribution by aggregating the fractional reduc-
tion in model confidence caused due to that edit. We inspect
if these edits are more effective than those performed on the
remaining words. We find that the edits on highlighted words
are more effective, however, their effectiveness varies with
different explanation types. Edits on words highlighted us-
ing integrated gradients and feature coefficients of the stu-
dent model have larger contribution towards reducing model
confidence than edits on the words highlighted via LIME.
This result corroborates our previous findings suggesting
that integrated gradients and feature coefficients from a stu-
dent model are statistically significantly more helpful in re-
ducing model confidence during the training phase

Do People Use Global Cues?
For the treatment group wherein we present participants fea-
ture coefficients and 40 global cue words from a linear stu-
dent model as explanations for the BERT classifier, we de-
termine the extent to which participants use the global cues.
We report that around one in five edits utilizes global cues
both during the training and the testing phase. The fraction
of insertions that contain global cue words are 17.1% and
18.2% for training and testing respectively. Further, the per-
centage of deletions that contain these cue words are 21.2%
in training and 23.7% in the testing phase. These results re-
veal that participants indeed incorporate global cue words
while editing, and as shown in Tables 2 and 3, the edits per-
formed when these cues are present are effective in lowering
the model confidence and flipping predictions.

Conclusion
A common argument for providing explanations is that they
(ought to) improve human’s understanding about a model;
however, many prior studies note that they do not improve
their ability to simulate the model (which is primarily used
as a proxy for model understanding). In this work, we ex-
tend the prior evaluation paradigm by instead asking partic-
ipants to edit the input examples with an objective to reduce
model confidence towards the predicted class. This exercise
allows us to compute detailed metrics, namely, the average
confidence reduced and the percentage of examples flipped.
We evaluate several explanation techniques for both a lin-
ear model and BERT-based classifier. Similar to past find-
ings, we first note that for both these models, none of the
considered explanations improve model simulatability. We
also find that participants with access to feature coefficients
during training can force a larger drop in the model confi-
dence during testing, when attributions are unavailable. In-
terestingly, for BERT-based classifier, global cue words and
feature coefficients, obtained using a linear student model
trained to mimic its predictions, prove to be effective. These
results reveal that associations from a linear student model
could provide insights for a BERT-based model, and impor-
tantly, the editing paradigm could be used to differentiate the
relative utility of explanations. We recommend future stud-
ies on evaluating interpretations to consider similar metrics.
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