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Abstract
We formalize a voting model for plurality elections that com-
bines Iterative Voting and Calculus of Voting. Each iteration,
autonomous agents simultaneously maximize the utility they
expect from candidates. Agents are aware of neither other in-
dividuals’ preferences or choices, nor of the distribution of
preferences. They know only of candidates’ latest vote shares
and with that calculate expected rewards from each candidate,
considering the probability that voting for each would alter
the election. We define the general form of those pivotal prob-
abilities, then derive efficient exact and approximated calcu-
lations. Lastly, we prove formally the model converges with
asymptotically large electorates and show via simulations that
it nearly always converges even with very few agents.

Introduction
In many multi-agent systems, agents with diverse prefer-
ences have to settle on a single choice or course of action - a
challenge often solved by voting. Yet, it is known from the
Gibbard-Satterthwaite theorem that if there are more than
two alternatives and no one can dictate the result, intelligent
agents’ best response may differ from their sincere prefer-
ence (Gibbard 1973; Satterthwaite 1975).

While, traditionally, the Computational Social Choice
literature has treated such a misrepresentation of prefer-
ences as a ‘manipulation’ to be prevented or diminished
(see Bartholdi, Tovey, and Trick 1989; Conitzer, Sandholdm,
and Lang 2007), in the last decade a new view has emerged.
Desmedt and Elkind (2010) deemed such a strategic voting
“an unavoidable attribute of an electoral system with rational
voters” (p.347). Crucially, Meir et. al.’s (2010) Iterative Vot-
ing (IV) allowed agents with ordinal preferences to sequen-
tially and deterministically re-evaluate their choices over it-
erations, after learning the most current election score.

Conversely, analytical Game-Theory has embraced strate-
gic voting for decades, but with works focusing on the ex-
act opposite. They usually investigate solution concepts of
non-atomic games where players know the distribution of
voter types and decide their optimal vote simultaneously in
a single one-shot iteration (for a review, see Meir 2018). In
its most renowned approach, the ‘Calculus of Voting’ (CV)
model inaugurated by Riker and Ordeshook (1968), each
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agent maximizes its expected reward via weighting candi-
dates’ cardinal utility differences by the probability that vot-
ing for a candidate would be pivotal to determine the elec-
tion result (see Palfrey 1988; Myerson and Weber 1993).

Here we formally derive the Iterative Calculus of Voting
(ICV), a voting model that joins main aspects of IV and CV.
Agents re-evaluate their choices over multiple iterations, like
in IV, but each time doing a simultaneous expected reward
optimization, like in CV. This is naturally akin to growing
applications based on simulating CV in discrete-time (e.g.
Clough 2007; Tsang and Larson 2016; Fairstein et al. 2019).
ICV encompasses those and aims at offering a rigorously
formalized and more general framework. Additionally, ICV
deals with how to transition CV assumptions to an iterated
setting, it is defined for both small and large electorates and
it jointly addresses limitations of both CV and IV.

More specifically, ICV can be described as follows. In
each iteration, agents learn only candidates’ latest vote
shares and use those to estimate the probability that currently
voting for each candidate would alter the election outcome.
Agents use those pivotal probabilities to weight the util-
ity differences they see between candidates and then update
their choices. Therefore, similarly to IV and CV, agents are
unaware of each other’s preferences or individual choices.
However, like in IV and differently from most CV, agents
are even unaware of the distribution of preferences. Also,
like in CV but differently from most IV, agents update si-
multaneously in electorates that can be reasonably small or
arbitrarily large. Finally, ICV agents require low information
and are boundedly rational in the strategic sense.1

After deriving several generalizations and novel pivotal
probability calculations - exact and heuristics - convergence
properties of ICV under plurality are studied in two ways.
In non-atomic ICV games of standard characteristics and
pivotal probabilities, we prove that convergence always re-
sults, as well as the bounds on convergence rates. Also, we
show that similarly to CV, under weak assumptions ICV usu-
ally converges to only two candidates receiving positive vote
counts, which is known as Duvergerian equilibria (Palfrey
1988; Meir 2018). In atomic ICV games, while the exis-

1Like in CV, they must be computationally sophisticated
enough to estimate their probabilities of being pivotal. As will be
discussed, conceptually principled heuristics can be developed.
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tence of cycles cannot be theoretically excluded, we argue
why, under reasonable specifications, they will be rare. We
also show through simulations that empirically, convergence
is nearly always achieved even with small electorates.2

Related Work
Meir et. al.’s (2010) inaugural IV analyzes convergence to
a Nash Equilibrium under plurality voting when agents are
allowed to iteratively re-evaluate their choices in light of
the current election outcome. Working with ordinal candi-
date utilities, they show that convergence is only guaranteed
if agents update sequentially and under linear ordered tie-
breaking rules. Similar convergence properties were shown
to apply to veto rule (Lev and Rosenschein 2012), but no
convergence is guaranteed under any other scoring rule (Lev
and Rosenschein 2016), nor under Single-Transferable Vote
(Koolyk et al. 2017). On the other hand, it was shown that
convergence under plurality holds even if IV agents operate
under uncertainty (Meir, Lev, and Rosenschein 2014) and
are boundedly rationally using heuristics (Meir 2015).

Furthermore, nearly all work on IV focus on atomic
games. Meir et.al. (2010) already pointed that their origi-
nal model was particularly suited for small electorates and
that “an analysis in the spirit of Myerson and Weber (1993)”
- i.e. of the CV - “would be more suitable when the number
of voters increases” (p.828). As a consequence, the subse-
quent IV literature also focused mostly on sequential agent
updates, since it is rarely possible to guarantee that atomic
games with simultaneous updating will be free of cycles
(Fabrikant, Jaggard, and Schapira 2013). An exception is
Meir (2015), where a deterministic model is proposed that
allows simultaneous updates in large electorates. Meir says
his model is like Myerson and Weber’s (1993) plurality CV,
without probabilities (and requiring ordinal utilities) - yet it
could not be immediately generalized beyond plurality.

CV has been extensively generalized and is defined for
non-atomic electorates of cardinal utilities. In fact, due to
its one-shot nature, its equilibrium conditions actually rely
entirely on asymptotically large electorates and on agents
knowing the distribution of preference orderings. While
agents are unaware of other individuals’ preferences or
choices just like in IV, Palfrey (1988) showed it is because
they know the distribution of voter types that, simultane-
ously and at once, they choose an optimal strategic vote un-
der plurality that leads to Duvergerian equilibria. Or, more
generally, always to an equilibrium - under plurality, ap-
proval or Borda (Myerson and Weber 1993), SNTV (Cox
1994), PR (Cox and Shugart 1996) or Runoff (Bouton 2013).
Of course, that information requirement is as unrealistic in
human elections (Myatt 2007) as it is limiting in practical
AI applications. But without it, Meir (2018, p.86)’s asser-
tion about CV becomes irreproachable: “it is not clear how
[agents] are supposed to reach [equilibrium] in a game that
is only played once without some means for coordination”.

Despite not satisfying those assumptions, applications im-
plementing CV as computational simulations exist. Clough

2Online Appendix and all code necessary to replicate the paper
can be found at https://github.com/vasselai/aaai22-icv-plurality.

(2007) uses a simplified simulation of CV to study the ef-
fects of information uncertainty on voter’s strategic choices,
while Tsang and Larson (2016) expand that to agents con-
nected through networks. Fairstein et al. (2019) also employ
a similar CV simulation, alongside others, to predict vot-
ing behavior observed in human online voting experiments.
Being discrete-time simulations, they are allowed to have
multiple time iterations, which approximates them to ICV.
However, largely non-formalized, those applications do not
explore the iterative aspect of vote re-evaluation and do not
engage in much of the theoretical details required to bridge
IV and CV. Moreover, they consider only the pivotal proba-
bility of breaking ties (not the probability of making ties) for
first and disregard the possibility of multi-way ties - both ap-
proaches that only make sense with asymptotic electorates.

ICV rigorously formalizes a general iterative CV model,
thus encompassing those applications, and with a definition
that includes all probabilities and considers multi-way ties3

- such that any electorate size is covered (McKelvey and Or-
deshook 1972; Hoffman 1982). Besides, ICV is defined such
that the only information agents access each iteration are
candidates’ latest vote shares (from past iteration), like in
IV. For simplicity, those are assumed to be public informa-
tion.4 Hence, differently from CV, in ICV eventual conver-
gence is constructed by strategic choices made over multiple
iterations. It neither relies on distributional assumptions nor
requires agents aware of the distribution of preferences.

Meir, Lev, and Rosenschein (2014) claim that another is-
sue with CV models - one that would be inherited by ICV -
lays in assuming agents capable of optimizing complex ex-
pected utility functions. We do not see that as a problem
for general AI applications, where human-realism is not al-
ways the goal. Nonetheless, boundedly rational agents in the
computational sense may be desired for computational effi-
ciency (Zilberstein 2008) or for purely theoretical reasons
(Conlisk 1996). As we will show, in ICV the comparison of
utilities by agents amounts to a simple sum of weighted sub-
tractions; all challenge is in calculating pivotal probabilities.
This is why, since Black (1978), many heuristics have been
proposed for CV pivotal probabilities of breaking two-way
ties (Hoffman 1982; Cranor 1996; Myerson 1998; Smith,
de Mesquita, and LaGatta 2016). Recently, Tsang, Salehi-
Abari, and Larson (2018) proposed sampling simplifications
to Palfrey (1988)’s Multinomial pivotal probabilities.

We first define ICV pivotal probabilities under plu-
rality generically. Next, we derive exact calculations for
when electorate size is known (generalizing Palfrey 1988)
or unknown - generalizing Myerson (1998) to multi-
candidate plurality through the novel Poisson pivotal proba-
bilities. Then, we prove the Skellam pivotal probability ap-
proximation (generalizing a path explored e.g. by Smith,
de Mesquita, and LaGatta 2016; Tsang, Salehi-Abari, and
Larson 2018). With general framework and key pivotal prob-
abilities defined for ICV, as well as conditions for conver-
gence all laid out, our idea is to offer a benchmark through
which other proper heuristics may be proposed and tested.

3For an exploration of the likelihood of ties, see Xia (2021).
4But could be defined as coming from polls, like in Fey (1997).
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Model Definition
Recapitulating, in each iteration of ICV, agents simultane-
ously maximize the rewards they expect from the election,
with respect to their current vote choice. Knowing only of
candidates’ latest vote shares, agents ponder the probability
that voting for each candidate would alter the election out-
come and use those probabilities as weights to calculate the
expected rewards. In this section we formalize that.

For consistency, whenever possible we follow the notation
from the game theoretical CV literature. Like in IV, how-
ever, ICV games have multiple iterations, here indexed by
δ ∈ N≥0, where δ = 0 is the initial condition. Let i be
the focal agent (hereafter, elector) on whom all derivations
will focus, without loss of generality, and N ∈ N>1 be the
number of electors. Their voting choices (hereafter, candi-
dates) are represented by the set J , s.t. m = |J | ∈ N≥3

is the number of candidates. Then, let vector n∗,δ ∈ Nm≥0

hold actual candidates’ vote counts in iteration δ and vector
ni,δ ∈ Nm≥0 hold candidates’ expected vote counts in δ in
the eyes of elector i (hence random variables) not including
i’s vote - we discuss, later, how those are estimated. Finally,
vector ui ∈ Qm[0,1] holds normalized cardinal utilities that i
would accrue in case each candidate won.5 The final reward
i gets from the election is represented by uiw, where w is the
election winner - with ties resolved randomly:

Assumption 1. w is equiprobably randomly chosen from
W⊆J , nonempty set of candidates that end tied for first.

Not knowing future W , elector i cannot know final re-
ward uiw. Instead, i can only estimate which uiw to currently
expect in iteration δ, given i’s current electoral choice in δ.
Formally, this can be written as E[uiw|πi,δ], where πi,δ rep-
resents the electoral choice of i in δ. In general, the choice
electors are faced with is to either abstain or to choose one
of the candidates in J . Note, however, that like in CV mod-
els, rationality imposes that electors never vote for their sin-
cerely least preferred candidate, since that can only lead to
i’s maximum regret (see Myerson and Weber 1993; Cox
1994). Therefore, if abstention is loosely represented by ∅,
then πi,δ∈∅ ∪ J \ argmin h∈J (uih).

In other words, E[uiw|πi,δ = j] and E[uiw|πi,δ = ∅] are
the utility elector i sees in whoever she currently thinks
will win if, respectively, she were to vote for j or if she
were to abstain. Hence, every iteration δ, i chooses the elec-
toral choice πi,δ that maximizes E[uiw|πi,δ]. Importantly,
while here we will work with full turnout only,6 consid-
ering abstention in the definition is important not only for
generality, but because as we will discuss, calculating the fi-
nal formula for E[uiw|πi,δ=j] − E[uiw|πi,δ=∅] turns out
to be much easier than the one for E[uiw|πi,δ]. The rea-
son those are, in the end, equivalent, is that i abstains iff

5We follow the usual game-theoretical assumption of strict pref-
erences, so uij 6= uih,∀j, h ∈ J : j 6= h.

6Given the bounds on utilities chosen and assuming it never
happens that all electors prefer a same single candidate, the condi-
tion for abstaining in Definition 1 is never achieved unless a cost
to voting is introduced. For simplicity, here it is not, but elsewhere
we explore a variation of this model where voting is costly.

E[uiw|πi,δ=∅] ≥ E[uiw|πi,δ=j], ∀j ∈ J . In summary, the
electoral choice of elector i in iteration δ is defined as:
Definition 1. Let J i = J \ argmin h∈J (uih).

πi,δ =

∅ if Ei,δj −E
i,δ
∅ ≤ 0, ∀j ∈ J i

argmax
j∈J i

(Ei,δj −E
i,δ
∅ ) otherwise

where Ei,δj :=E[uiw|πi,δ = j] and Ei,δ∅ :=E[uiw|πi,δ = ∅]

Now, to find the formula forEi,δj −E
i,δ
∅ we start from par-

titioningE[uiw|πi,δ] into three exhaustive election scenarios.
The first two correspond to when i believes it will be pivotal,
i.e. when i voting for j instead of abstaining would make a
difference to the election. The third is their complement. Un-
der plurality, the two pivotal scenarios happen in the events
when i’s vote either creates or breaks a tie for first. Formally,
Ai,δj,T is the event that, in δ, in i’s perception, candidates in
the set T ∈

⋃m−1
r=1

(J\{j}
r

)
are the only tied for first and j is

in second with one vote less than those in T (so a vote for
j would create a tie for first). Bi,δj,T is the event that, in δ, in
i’s perception, candidates in T and j are tied for first, with
all others behind (so a vote for j would isolate j in first). To
define that in detail, for convenience let K = J \ {j, T } be
the set of remaining trailing candidates. Then:
Definition 2. Ai,δj,T := {ni,δj = ni,δt −1,ni,δt > ni,δk ,ni,δj ≥
ni,δk } and Bi,δj,T :={n

i,δ
j =ni,δt ,ni,δt >ni,δk ,ni,δj >ni,δk }, ∀t ∈

T , ∀k ∈ K where T ∈
⋃m−1
r=1

(J\{j}
r

)
and K = J \ {j, T }.

The probabilities of those events happening, Pr(Ai,δj,T ) and
Pr(Bi,δj,T ), are called pivotal probabilities. Representing them
by αi,δj,T and βi,δj,T to shorten notation, we can finally partition
E[uiw|πi] into the three scenarios. For a fixed T :
Lemma 1. Elector i’s expected reward from choice πi,δ is:
E[uiw|πi,δ]=α

i,δ
j,T E[uiw|πi,δ, A

i,δ
j,T ] + βi,δj,T E[uiw|πi,δ, B

i,δ
j,T ]

+ (1− αi,δj,T − β
i,δ
j,T )E[uiw|(A

i,δ
j,T ∪B

i,δ
j,T )

{]

Proof. From cond. expect. and Definition 2. Note in event
(Ai,δj,T ∪B

i,δ
j,T )

{, uiw is independent from πi,δ ∀i, δ since elec-
tion outcomeW does not change regardless of i’s vote.

Last term in Lemma 1 is hard to calculate because there
is myriad possible non-pivotal scenarios. But since it is the
same regardless of πi,δ , it gets canceled out in Ei,δj −E

i,δ
∅ ,

which is why working with that is easier. Other terms are
easily defined (see McKelvey and Ordeshook 1972). From
Assumption 1 and Definition 2, and considering all possible
T , we get an extension of Merrill’s (1981) linear program:
Proposition 1 (Expected reward in plurality voting).

Ei,δj −E
i,δ
∅ =

∑
T

(
αi,δj,T
|T |

+ βi,δj,T

)(∑
t∈T (u

i
j − uit)

|T |+ 1

)
(1)

Proof. See the regular Appendix at the end.

The only thing left to define is how to calculate the pivotal
probabilities - which are, clearly, also the only that may vary
per iteration δ. Next we discuss how they can be calculated.
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Pivotal Probabilities
Multiple authors have described pivotal probabilities, with
rigorous definitions offered for probability of breaking two-
way ties in special cases (e.g. Hoffman 1982; Palfrey 1988;
Myerson 2000). Here we start by proposing a generic for-
malization required for what comes next. Note that through-
out this section, the iteration superscript δ will be omitted for
readability (except for the next paragraph where it is needed
for definitions):
Proposition 2 (General pivotal probs. in plurality voting).

αij,T =Pr(Aij,T ) := Pr(
⋂
t∈T

nij = nit−1
⋂
k∈K

nij ≥ nik)

βij,T = Pr(Bij,T ) := Pr(
⋂
t∈T

nij = nit
⋂
k∈K

nij > nik)

(2)

Proof. Immediate from Definition 2, noting that in event
Aij,T , because nit = nij + 1, then nij ≥ nik guarantees
nit > nik, ∀t ∈ T , ∀k ∈ K. Hence the latter are not con-
sidered to avoid double-counting. Analogous for Bij,T , but
then j cannot be tied with those inK, by definition of T .

For elector i, to calculate its pivotal probability regarding
candidate j in iteration δ means to estimate the probabil-
ity that the yet unknown current election state (in i’s eyes),
ni,δ , corresponds to an event where i’s vote for j would alter
the election. Still unaware of what the candidate vote shares
will be in δ (since electors update simultaneously), elector
i relies on the latest publicly known7 candidate vote shares
(i.e. resulting from electors’ updates in δ−1)8, represented
by the vector sδ∈Qm[0,1]. How electors use it to estimate piv-
otal probabilities depends on whetherN is known or, if each
elector i has a different guessN i ∈ N>1 aboutN , what they
assume about it.

Known Electorate Size
Consider that vote share is equivalent to the probability

that an elector chosen at random voted for a given candi-
date. Then, following Palfrey (1988), pivotal probabilities
in CV plurality elections can be calculated as functions of
Multinomial distribution PMFs with parameters N −1 and
s - provided that those are known (which here we assume
is true). We generalize this for multi-candidate cases, like in
Cox (1994); Fey (1997); Tsang and Larson (2016), but with
both probabilities of breaking and making multi-way ties.

Let Vα be the set of all possible ni that correspond to
an election state where one more vote for j would create
a tie with candidates in T . Similarly for Vβ in relation to
breaking a tie with candidates in T . Note that Vα and Vβ

do not vary, so we can drop the elector superscript i:
7If latest vote shares come from (unbiased) polls like in Fey

(1997), it is assumed, of course, that elector i treats them as if they
are the population vote shares. For an application with non-unique
vote shares, coming from networks, see Tsang and Larson (2016).

8When δ = 0, sδ can be initialized in many ways. For instance,
it can hold proportions of sincere votes each candidate would get
in the absence of strategic voting (truthful initial condition). Or it
can be simply randomized (random initial condition). While here
we focus on the latter, results qualitatively hold with the former.

Definition 3. Constraining
∑
hnh=N−1, from (2) we have:

Vα=
{

n: nt = nj+1 ∀t∈T ∧ nj ≥ nk ∀k∈K
}

Vβ =
{

n: nt = nj ∀t∈T ∧ nj > nk ∀k∈K
} (3)

Proposition 3 (Multinomial piv. probs. in plurality voting).
∀i, i′,αij,T = αi

′

j,T = αj,T and βij,T = βi
′

j,T = βj,T , s.t.:

αj,T =
∑

n∈Vα

(N − 1)!

n1!n2!...nm!

m∏
h=1

(sh)
nh (4)

and same for βj,T , just summing over all n ∈ Vβ instead.

Proof. Consider any n ∈ Vα . Unaware of others’ votes, in
the eyes of i that election state is a collection of other N−1
stochastic decisions over m possible options whose proba-
bilities are given by s. That experiment follows a Multino-
mial distribution with support n and number of trials N−1.
Then, αj,T is the convolution of the Multinomial PMFs of
every pivotal state n ∈Vα , same for βj,T and n ∈Vβ . Fi-
nally, note that since Vα , Vβ , m, N and s are the same for
all electors, αij,T =α

i′

j,T and βij,T =β
i′

j,T , ∀i, i′.

Clearly, (4) scales poorly - each pair αj,T , βj,T taking
O
(
m(|Vα |+ |Vβ |)

)
(see regular Appendix for the equation

for |Vα | and |Vβ |). That can be ameliorated by memoizing
expensive terms, but another critical computational cost is
that of merely finding Vα and Vβ . The naive approach is to
find the m-fold cartesian product 〈0, 1, . . . , N 〉m and drop
subvectors that do not follow conditions in (3). Algorithm
1 decreases the problem by realizing that for each fictitious
vote of the focal candidate, those tied for first rank can only
have same or one extra vote, which limits the max and total
votes others can have (see Online Appendix for details).

Algorithm 1: Listing pivotal outcomes Vα and Vβ

1: function LISTPIVOTALOUTCOMES(N , J , T )
2: Vα ,Vβ ← ∅
3: for x← 0 to (N − 1)/(|T |+ 1) do
4: A ← 〈0, . . . , x〉N−|T |−1 . cartesian power
5: B ← ∅
6: for all a ∈ A do
7: append a to B if max(a) < x
8: end for
9: y ← 〈x+ 1〉|T | ⊕ 〈x〉 . ⊕: concatenation

10: z ← 〈x〉|T |+1

11: for all n ∈ y ×A do
12: append n to Vα if sum(n) = N − 1
13: end for
14: for all n ∈ z × B do
15: append n to Vβ if sum(n) = N − 1
16: end for
17: end for
18: return Vα ,Vβ

19: end function
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Unknown Electorate Size
Consider now that electors do not know the electorate size,

which happens in many applications, from voting in online
forums to any larger electorate. Then, following Myerson
(1998) it can be assumed that unknown N comes from a
Poisson distribution with mean λ. In which case, Myerson
proved that players’ guesses about total number of players
would be random variables coming from same distribution:9

Lemma 2. ∀i, N i ∼ Pois(λ) iff N ∼ Pois(λ). From envi-
ronmental equivalence, Theorem 2 in Myerson (1998).

Then in any iteration δ, candidates’ expected votes n∗j are
also distributed Poisson with mean equal to λ times the prob-
ability a voter chosen at random votes for that candidate:

Lemma 3. n∗j ∼ Pois(sjλ), ∀j ∈ J . From Poisson decom-
position property (see Myerson 2000).

Furthermore, candidates’ expected votes are then Poisson
random variables independent from each other:

Lemma 4. n∗j ⊥⊥ n∗h, ∀j, h ∈ J : j 6= h. From independent
action property, Theorem 1 in Myerson (1998).

With that, Myerson (2000) showed the pivotal probability
of breaking a tie in two-candidate plurality to be equivalent
to the probability mass function of a Skellam distribution
evaluated at zero (Smith, de Mesquita, and LaGatta 2016).
After all, the subtraction of two Poisson random variables
results in a Skellam: if T = {h} and K = ∅, because n∗j −
n∗h ∼ Skellam(sjλ, shλ), then βij,T = fS(0, sjλ, shλ). Yet,
this does not extend naturally to more general scenarios.

Recent work have suggested approximations to generalize
that Skellam treatment to multi-candidate cases with two-
way ties, based on arbitrary and more-or-less defined simpli-
fying assumptions (Tsang, Salehi-Abari, and Larson 2018;
Mebane, Vasselai, and Baltz 2019). However, properties of
those approximations have not been studied yet, it is unclear
how good they are, what their quality depends on or whether
they are computationally worth it. So instead, we now prove
the exact generalization of Myerson’s pivotal probabilities
- to breaking or making multi-way ties, in multi-candidate
plurality - which we call Poisson pivotal probabilities.

Proposition 4 (Poisson pivotal probs. in plurality voting).
∀i, i′,αij,T = αi

′

j,T = αj,T and βij,T = βi
′

j,T = βj,T , s.t.:

αj,T =
∞∑
d=0

(
fP (d, sjλ)

∏
t∈T

fP (d+1, stλ)
∏
k∈K

FP (d, skλ)
)

βj,T =
∞∑
d=0

(
fP (d, sjλ)

∏
t∈T

fP (d, stλ)
∏
k∈K

FP (d−1, skλ)
) (5)

where fP and FP are Poisson distributions PMF and CDF.

Proof. Since nij is part of all intersecting events in (2), by
Lemma 4 conditioning on nij makes the events independent:

αij,T =
∞∑
d=0

(
Pr(nij=d)

∏
t∈T

Pr(nit=d+1)
∏
k∈K

Pr(nik ≤ d)
)

9Hence λ = N means electors on average guess N correctly.

Algorithm 2: Joint calculation of Poisson pivotal probs.

1: function POISSONPIVOTALPR(j, T , K, s,λ, maxd)
2: ε ∈ Q|s|[0,1]←vector with exp(−shλ) ∀h=1 . . . |s|
3: κ ∈ Q|K|[0,1] ← zero vector of length |K|
4: τ ∈ Q|T |[0,1] ← vector with εt ∀t ∈ T
5: a, b ← εj
6: α, β, α′, β′, d ← 0
7: q← 1
8: while (α 6=α′ orβ 6=β′ ord=0) and d < maxd do
9: a← b

10: b← b · sjλ

(d+1)

11: for all t ∈ T , r = 1 . . . |T | do
12: τr ← τr · stλ

(d+1)

13: end for
14: for all k ∈ K, r = 1 . . . |K| do
15: κr ← κr + εk · (skλ)d

q
16: end for
17: α′ ← α
18: β′ ← β
19: z←

∏
t∈T (τt)

∏
k∈K(κk) if |K| > 0 else 1

20: α← α+ a · z
21: β ← β + b · z
22: d← d + 1
23: q← q · d
24: end while
25: return (α, β)
26: end function

βij,T =
∞∑
d=0

(
Pr(nij=d)

∏
t∈T

Pr(nit=d)
∏
k∈K

Pr(nik < d)
)

Now, by Lemma 2 and noting that nij is a partition of N i

just as n∗j is of N in Lemma 3, then nij ∼ Pois(sjλ), ∀i, ∀j.
Which also implies αij,T =α

i′

j,T and βij,T =β
i′

j,T , ∀i, i′.

Crucially, note that the proof also shows that despite each
elector holding a different guess N i, pivotal probabilities
end being the same for all voters. This is useful to enable
agent simulations in large electorates, since it prevents hav-
ing to otherwise calculate the set of probabilities N times
per iteration. Besides, while the inexistence of a closed form
for the summations in (5), whose theoretical rate of conver-
gence is unknown, may look challenging, in practice they
converge quickly. Furthermore, Algorithm 2 shows how (5)
can be simplified such that αj,T and βj,T are found jointly
and efficiently, with no explicit calculation of fP or FP (see
the regular Appendix at the end for details).

Finally, we specify exactly under which (unrealistic) sim-
plifying assumptions the above can be indeed approximated,
in a principled manner, solely by Skellam PMFs and CDFs.
Then, we derive the proper generalized approximation:

Assumption 2. Knowing whether expected votes of two
candidates are equal, lower or greater than each other does
not give information about any other pair of candidates.
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Proposition 5 (Skellam pivotal probs. in plurality voting).
∀i, i′,αij,T = αi

′

j,T = αj,T and βij,T = βi
′

j,T = βj,T , s.t.:

αj,T ≈
∏
t∈T

fS(−1, sjλ, stλ)
∏
k∈K

1−FS(−1, sjλ, skλ)

βj,T ≈
∏
t∈T

fS(0, sjλ, stλ)
∏
k∈K

1−FS(0, sjλ, skλ)
(6)

where fS and FS are Skellam distributions’ PMF and CDF.

Proof. Given Assumption 2, eq. (2) can be rewritten:
αij,T =

∏
t∈T Pr(nij = nit− 1)

∏
k∈K 1− Pr(nij ≤ nik − 1)

βij,T =
∏
t∈T Pr(nij = nit)

∏
k∈K 1− Pr(nij ≤ nik).

Same as in Proposition 4, nij ∼ Pois(sjλ), ∀i, ∀j. Then, by
the definition of Skellam random variables, regarding αij,T
we have Pr(nij −nit = −1) = fS(−1, sjλ, stλ) and simi-
larly Pr(nij−nik ≤ −1)=FS(−1, sjλ, skλ). Analogous for
βij,T . Calculating those is possible because fS is a convolu-
tion of two Poisson PMFs (Skellam 1946), and while FS has
no closed formula, following Johnson (1959) one can use a
step-wise function of the Non-central Chi-Square distribu-
tion CDF. See regular Appendix at the end for details.

Later, we will explore through simulations the quality
conditions and computational efficiency of this approxima-
tion we call Skellam pivotal probabilities vis-a-vis the Pos-
sion pivotal probabilities in equation (5).

Convergence Properties
Next, we discuss some of the convergence properties of ICV
under plurality, beginning with showing that it converges to
a Pure Nash Equilibrium (PNE) as electorates become large.
It is known that standard plurality CV reaches equilibrium
in one-shot non-atomic games (Palfrey 1988; Myerson and
Weber 1993), including CV with polls (Fey 1997). Formally,
ICV is guaranteed to have converged to stable PNE when-
ever no elector changes their electoral choice any longer:

Definition 4. PNE in ICV under plurality is an iteration
δ∗ > 0 such that: πi,δ

∗
=πi,δ

∗+1= · · ·=πi,δ∗+∞,∀i.
However, it can be shown that if no elector changes their

electoral choice for two subsequent iterations, that already
guarantees none will ever change. Then, even more conve-
niently, it can be also shown that if the latest vote shares
of all candidates remain the same for two subsequent iter-
ations, that already guarantees no elector will change their
electoral choice any longer. This comes from the fact that
the only element of electors’ election reward function that
can vary across iterations are the pivotal probabilities and
those only vary when candidates’ expected vote shares vary.
That is what the next proposition shows:

Proposition 6. sδh = sδ+1
h , ∀h ∈ J iff δ = δ∗ (δ is a PNE).

Proof. Consider what follows ∀i, ∀δ > 0 and ∀h ∈ J . If
sδh = sδ+1

h , since N i is fixed and nih is a function of only
N i and sδh, then also ni,δh = ni,δ+1

h . Thus, given (2), pivotal
probabilities do not change from δ to δ + 1 and because

they are the only that could change in (1), Ei,δj −E
i,δ
∅ =

Ei,δ+1
j −Ei,δ+1

∅ . Which results in πi,δ=πi,δ+1 and then, by
the definition of sδ , also in sδ+1

h = sδ+2
h . The same logic

follows successively, leading to both sδ
∗

h = sδ
∗+1
h = · · · =

sδ
∗+∞
h and πi,δ

∗
=πi,δ

∗+1= · · ·=πi,δ∗+∞.

This is important because, then, proving that ICV results
in PNE with large electorates simplifies to proving that there
will be two subsequent iterations where candidates’ vote
shares will remain the same. But before we proceed to that,
a few details need to be established. Firstly, we will need
to impose the (rather innocuous) assumption that, as the
electorate size approaches infinity, so do electors’ eventual
guesses about that size (and vice-versa):

Assumption 3. N →∞ iff N i →∞, ∀i.
Secondly, we need to formally establish the intuitive fact

that, as a candidate’s vote share approximates zero, events
where it appears tied for 1st become nearly impossible10:

Lemma 5. lim
st→0

αij,T = lim
st→0

βij,T =0, ∀j, ∀t∈T , ∀K 6=∅.

Proof. Rewrite (2) in terms of events nit>nik, ∀t∈T , ∀k∈
K, instead of nij ≥ nik or nij > nik. Then, the lower st, the
less likely that nit > nik, ∀t ∈ T ,∀k ∈ K - until it becomes
impossible when st=0, in which case αij,T =β

i
j,T =0.

Finally, we recall from the CV literature the well known
condition that the ratio between the probability of non-
leading candidates being pivotal and the probability of lead-
ing candidates being pivotal must go to zero as N →∞:

Condition 1. Let 1, · · · , g, · · · ,m be the rank of m candi-
dates’ vote shares, where g ∈ N[2,m−1], s.t. s1 = · · ·= sg−1
and sg+1 ≥ · · · ≥ sm ≥ 0, with either sg−1 > sg ≥ sg+1 or
sg−1≥sg>sg+1. Then, respectively:

lim
N→∞

αih,G/α
i
r,G′ = 0 and lim

N→∞
βih,G/β

i
r,G′ = 0

where r ∈ {1, · · · , g − 1}, h ∈ {g + 1, · · · ,m}, G ⊆
{1, · · · ,m} \ {h, r} and G′ ⊆ {1, · · · , g} \ {r}.

Palfrey (1988) proved the condition holds whenN is con-
stant and Chen and Xia (2011) when it is a random variable,
including a Poisson in a Poisson game. For simplicity, both
proofs focus on β with |G| = |G′| = 1, but the logic is iden-
tical for α and extends mathematically trivially to |G| > 1,
|G′| > 1. Given the condition holds, we can prove both that
δ∗ exists in ICV as N →∞, and also how δ∗ is reached:

Proposition 7 (ICV asymptotic convergence).
lim
N→∞

Pr(∃δ : sδj = sδ+1
j , ∀j) = 1.

The formal proof is in the regular Appendix at the end.
In terms of intuition, it resembles Dhillon and Lockwood
(2004)’s iterative elimination of dominated strategies - in the
sense that deserted voting options due to strategic voting be-
come progressively less appealing up to full abandonment.

10Except in the degenerate circumstance of all candidates having
approximately same vote shares near zero.
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More specifically, there are four cases to consider. In Case
1, all candidates are tied for 1st. Because then all vote shares
are the same, all pivotal probabilities are identical - thus vot-
ers simply vote sincerely. If this leads to same vote shares,
we say a trivial PNE is reached; otherwise it leads to Case
2, 3, or 4. In Case 2, one candidate is in 1st, all else are
tied for 2nd. Again voters will vote sincerely; some because
they genuinely prefer the leader, others because probability
of being pivotal when voting for any runner-up is identical.
This leads to a trivial PNE or to Case 1, 3 or 4.11 In Case
3, two candidates are isolated in the top 2. Condition 1, to-
gether with Assumption 3, make it so that as the electorate
size approaches infinity, only the top 2 candidates are seen as
viable - leading to the abandonment of others. Between the
top 2, voters will of course choose sincerely, which guaran-
tees a PNE. In Case 4, multiple (but not all) candidates are
tied for 1st. Again from Condition 1 and Assumption 3, as
the electorate size approaches infinity trailing candidates are
abandoned. This leads to Case 3 or Case 4 with shrank set
of viable options (and so on up until it becomes Case 3).

Corollary 1. As N → ∞, we have the following conver-
gence bounds. If δ = 0 is Case 1 or 2, 1 ≤ δ∗ ≤ m − 1. If
δ = 0 is Case 3, δ∗ = 1. If δ = 0 is Case 4, 2 ≤ δ∗ ≤ g.

Meir (2018) points out that reproducing the Duverger’s
Law (Duverger 1963) is a key scientific criterion for a plu-
rality voting model. Usually, plurality Duvergerian equilib-
rium is defined as an equilibrium where only two candidates
have positive votes (Palfrey 1988; Cox 1994). We propose
treating that as strong Duvergerian equilibrium:

Definition 5. A Strong Duvergerian Equilibrium (SDE) is a
δ∗ : sδ

∗

1 ≥ sδ
∗

2 > 0 and sδ
∗

h = 0, ∀h ∈ J \ {1, 2}.
Just like standard CV games, as electorate size approaches

infinity, ICV also converges to SDE:12

Corollary 2. Because as N →∞ the prob. of cases 1, 2 or
4 in Proposition 7 happening in δ>0 becomes infinitesimal
(Hoffman 1982), then lim

N→∞
Pr(δ∗is a SDE) = 1.

Nevertheless, a natural question is how large N has to
be for convergence to be guaranteed, since real applications
have finite agents. In theory, because a candidate can become
more pivotal both when it gains or loses votes, depending
on the context - differently from Local-Dominance IV mod-
els (Meir, Lev, and Rosenschein 2014; Meir 2015) - in ICV
voters can move back to past choices and thus cycles are a
possibility. Yet, we will show through simulations that con-
vergence usually results, even with very small electorates.
To see why, recall that in (2), in general the lower sj is, the
less likely nj > nk, ∀k. Then, in practice, voting for j gen-
erally becomes more (less) pivotal as j gains (loses) votes
more rapidly than as j looses (gains) votes. In other words,
once a candidate starts loosing support, it is hard to recover
it - which is intensified the larger the electorate is.

11Note that a cycle between Cases 1 and 2 is not possible. If all
electors vote sincerely, that can lead to only one of those cases.

12Except for the uninteresting case of all electors having a same
sincerely most-preferred candidate - who always gets 100% votes.
Note: we forcefully avoid this (very rare) case in our simulations.

Figure 1: Prop. of simulations converging to Strong (SDE)
or to Weak (WDE) Duvergerian Equilibria for a chosen ε.

But such a wasted vote avoidance does not necessarily
lead to full abandonment of trailing candidates in finite elec-
torates, thus SDE is not guaranteed. Since Duverger’s Law
merely states that votes tend to concentrate in 2 candidates,
we propose also a weaker Duvergerian Equilibrium con-
cept. Let ρ ∈ Q1,m be the effective number13 of candidates
ρ=1/

∑m
h (sh)

2 (Laakso and Taagepera 1979):

Definition 6. A Weak Duvergerian Equilibrium (WDE) is a
δ∗ where ρδ∗ ≤ 3− ε, for a chosen 0 < ε ≤ 1.

Conjecture 1. Let ρδ∗ = 2+x, where x ∈ Q[−1,m−2]. Then
N ↑ =⇒ x→ 0. Therefore, N ↑ =⇒ Pr(δ∗is a WDE) ↑.

While that conjecture cannot be proved easily for finite
electorates, it does make intuitive sense. As candidates lose
significant vote shares to others, by definition ρ becomes
more concentrated. Our simulations confirm the pattern: the
greater the electorate, the less likely ρδ∗ diverges much from
2. Therefore, even with finite agents, δ∗ becomes most often
at least WDE.

Simulations
We implemented ICV in Python 3.7.3. First, 10,000 simu-
lations were performed using Multinomial pivotal probabil-
ities. Then, their pseudo-random seeds were used to repeat
the simulations twice, each time using Poisson or Skellam
probabilities - for a total of 30,000 simulations.

Initialization Values. In those simulations, model hyper-
parameters were specified as: λ ∼ Uniform(2, 100) and
m∼Uniform(3, 6). Electors’ candidate utilities were drawn
from Beta distributions, with varying parameters: ui ∼
Beta(Uniform(0.1, 5.0),Uniform(0.1, 5.0)). The Beta en-
sures diversity: it can approximate the Uniform, the Gaus-
sian, the Gamma, a Power Law or be bimodal. Hence, initial
votes will be diverse across different initial seeds.

Convergence. Convergence to an equilibrium was estab-
lished when no electors altered their chosen candidate for

13This widely used index in Political Science measures concen-
tration. Suppose 3 candidates: the 1st has 50% of votes, the 2nd has
45% and the 3rd has 5%. Then ρ ≈ 2.2 effective candidates.
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Figure 2: Proportion of simulations that, repeated with same
seed using different types of pivotal probabilities, converged
to same election winner (black); at least 0.9 correlation of
final candidate rankings (red) or final vote counts (gray).

two iterations in a row. All runs converged (in at most 15
iterations, 9th percentile of 5 iterations), except for 63 of
10, 000 runs employing Skellam pivotal probabilities, which
resulted in cycles (all < 55 electors, 9th perc. 31 electors).

Duvergerian equilibria. Around 85.7% simulations con-
verged to a SDE. Red lines in Figure 1 show nearly all with
more than 30 agents resulted in SDE. From blue lines, notice
that outcomes not SDE are often at least WDE.14

Outcome similarity. Interestingly, simulations repeated
with same starting pseudo-random number generating seed
and differing only in types of pivotal probabilities used, gen-
erally resulted in same winner and in very similar overall
outcomes, when N > 25 (see Figure 2). In fact, as the
electorate increases, not knowing electorate sizes makes pro-
gressively less of a difference (Poisson or Skellam vs. Multi-
nomial) and the Skellam becomes a very good approxima-
tion of the Poisson pivotal probabilities (which is the more
important the greater the number of candidates).

Runtime. Figure 3 confirms that simulations using Multi-
nomial pivotal probabilities scale much worse, in particular
as m increases. But note that the Skellam approximation is
just a bit faster than the exact Poisson and both scale sim-
ilarly. Therefore, the main practical advantage of the for-
mer is that it seems to lose numerical precision more slowly,
likely because (6) is composed of a few multiplications of in-
finite sums, while (5) has infinite sums of multiplications.15

Discussion
Differently from IV models, ICV works through simultane-
ous optimization updates and is useful with cardinal utilities
and large electorates. Differently from CV models, agents
achieve convergence through repeated iterations, not ab-
stractly, and without knowledge of preference distributions -

14In their application, Tsang and Larson (2016) show via simu-
lations that if electors see different candidate vote shares according
to voter homophily, what we call SDE may be harder to achieve.

15Comparison with recent applications (e.g.Tsang, Salehi-Abari,
and Larson 2018) is hard. They only included prob. of breaking
two-way ties and only loosely approximated the Skellam.

Figure 3: Lowess lines: log. seconds to convergence with
Multinm. (black), Poisson (blue) or Skellam pivotal probs.

knowing only candidates’ latest vote shares. This way, ICV
addresses limitations of most IV and CV models.

We have shown that with pivotal probabilities that con-
form to certain characteristics, convergence in ICV is guar-
anteed for arbitrarily large electorates. Furthermore, in prac-
tice, convergence can usually be achieved even with tiny
electorates under weak assumptions. Besides, unless elec-
torates are tiny, ICV with proper pivotal probabilities mostly
converges to either having only 2 candidates with positive
votes, or at least having votes concentrated in 2 candidates -
thus passing the key Duverger’s Law test (Meir 2018).

ICV can also be efficiently simulated using either Poisson
or Skellam pivotal probabilities. However, a theoretical limi-
tation is that, like the Multinomial pivotal probabilities, they
also require sophisticated voters. Agents must realize that,
under the specified circumstances, their probability of being
pivotal is a function of one of those distributions. This is in
opposition to lesser sophistication requirements in most IV
(see e.g. Meir 2015). Simpler heuristics can and have been
proposed. Our hope is that our thorough treatment may serve
as a theoretical guide to inform principled heuristics, as well
as a benchmark to evaluate them regarding efficiency and
outcome similarity. We also have showed characteristics that
pivotal probabilities require if heuristics were to aim at guar-
anteeing convergence and Duvergerian equilibria.

Other limitations of present ICV are the costlessness of
voting and of strategizing. Exploring ICV with abstention,
lazy-voting (Desmedt and Elkind 2010; Elkind et al. 2015)
and truth-bias (Meir et al. 2010; Obraztsova, Markakis, and
Thompson 2013; Elkind et al. 2015) are logical next steps.
Introducing uncertainty about states is also desirable, which
has been explored through poll uncertainty in CV (Fey 1997)
and in IV (Reijngoud and Endriss 2012; Wilczynski 2019).
Lastly, extending ICV to other rulesets seems promising,
like SNTV (Cox 1994), Approval and Borda (Myerson and
Weber 1993) and Runoff (Bouton and Gratton 2015).

Appendix
Proof of Proposition 1
Proof. Recall Assumption 1. Consider first Ai,δj,T . If i votes
for j, then a tie between j and candidates in T is cre-
ated, so E[uiw|πi,δ = j, Ai,δj,T ] = (uij+

∑
t∈T uit)/(|T |+1). If,

instead, i abstains, not creating a tie between j and those
in T , E[uiw|πi,δ = ∅, Ai,δj,T ] = (

∑
t∈T uit)/|T |. Now, con-

sider Bi,δj,T . If i votes for j, breaking the tie and isolat-
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ing j in first, E[uiw|πi,δ = j, Bi,δj,T ] = uij . If, instead, i
abstains, not breaking the tie, E[uiw|πi,δ = ∅, Bi,δj,T ] =

(uij+
∑
t∈T uit)/(|T |+1). From Lemma 1, Ei,δj − Ei,δ∅ =∑

T

[
αi,δj,T

uij+
∑
t∈T uit

|T |+1 + βi,δj,T uij

]
−
∑
T

[
αi,δj,T

∑
t∈T uit
|T | +

βi,δj,T
uij+

∑
t∈T uit

|T |+1

]
=
∑
T

(
αi,δj,T
|T | +β

i,δ
j,T

)(∑
t∈T (uij−uit)

|T |+1

)
.

Proof of Proposition 5
Proof. To shorten notation, let Λ ∈Qm≥0 s.t. Λj = sjλ, ∀j.
Using Assumption 5, rewrite (2) as:
αij,T =

∏
t∈T Pr(nit = nij + 1)

∏
k∈K Pr(nik ≤ nij)

βij,T =
∏
t∈T Pr(nit = nij)

∏
k∈K 1− Pr(nij ≤ nik)

Same as in Proposition 4, nij ∼ Pois(sjλ), ∀i, ∀j.
So, focusing on αij,T , note that Pr(nit = nij + 1) =∑∞
d=0 fP (d,Λj)fP (d+1,Λt) and Pr(nik ≤ nij) =∑∞
d′=0 fP (d

′,Λj)FP (d
′,Λk). From Skellam (1946) we

know fS(x, µ1, µ2) =
∑∞
d=−∞ fP (d+ x, µ1)fP (d, µ2).

Then:
αij,T =

∏
t∈T

fS(−1,Λj ,Λt)
∏
k∈K

∞∑
d′=0

fP (d
′,Λj)FP (d

′,Λk)

Substitute the well known formulae for fP and FP :

αij,T =
∏
t∈T

fS(−1,Λj ,Λt)
∏
k∈K

∞∑
d=0

e
−ΛjΛj

d

d!
Γ(d+1,Λk)

Γ(d+1)

αij,T =
∏
t∈T

fS(−1,Λj ,Λt)
∏
k∈K

1−Fχ2(2Λk,−2(−1), 2Λj)

Where Fχ2 is the CDF of the Noncentral Chi-Square dis-
tribution. While FS has no closed formula, following John-
son (1959) it can be calculated as a function of Fχ2 :

FS(x, µ1, µ2) =

{
Fχ2(2µ2,−2x, 2µ1) if x < 0

1− Fχ2(2µ1, 2(x+ 1), 2µ2) if x ≥ 0

αij,T =
∏
t∈T

fS(−1,Λj ,Λt)
∏
k∈K

1− FS(−1,Λj ,Λk)

Analogous for βij,T . See Online Appendix for details.

Proof of Proposition 7
Proof. Let 1, · · · , g, · · · ,m represent the rank of m candi-
dates’ latest vote shares, with g ∈ N[2,m−1].

Case 1: (all tied for 1st) Fix sδ1 = · · · = sδm. Then, in δ,
αi1,T = · · ·=αim,T and βi1,T = · · ·=βim,T , ∀i. Hence, given
(1), πi,δ+1 = argmax j∈J (u

i
j), ∀i. If that leads to same

vector s, δ is a trivial PNE; otherwise it is Case 2, 3 or 4.
Case 2: (one in 1st, all else tied for 2nd) Fix sδ1 > sδ2 =

· · ·= sδm. Then, ∀i, if ui1 > ui2 ≥ · · · ≥ uim, Ei1,δ >Ei,δ2 ≥
· · ·≥Ei,δm regardless of pivotal probabilities; otherwise, note
αi2,T = · · ·= αim,T and βi2,T = · · ·= βim,T in δ. So, given
(1), again πi,δ+1 = argmax j∈J (u

i
j), ∀i. Then, if sδ+1 =

sδ , δ is a trivial PNE; if not, it is Case 1, 3 or 4. Note that
a cycle between Cases 1 and 2 is not possible. All electors
voting sincerely can lead to Case 1 or Case 2.

Case 3: (2 candidates in the top 2) Fix min(sδ1, s
δ
2) > sδh,

s.t. 3 ≤ h ≤ m. From Condition 1 and Assumption 3,
it follows that as N → ∞, given (1), min(Ei,δ1 , Ei,δ2 ) >

Ei,δh , ∀i, ∀h, i.e. lim
N→∞

Pr(πi,δ+1 ∈ {1, 2}) = 1, ∀i, hence

lim
N→∞

sδ+1
h =0, ∀h. From Lemma 5, since either ui1−ui2 or

ui2−ui1 is positive, lim
N→∞

Pr(πi,δ+1=argmax 1,2(u
i
1,u

i
2))=

1, ∀i, which does not vary, thus ensuring a PNE in δ+1.
Case 4: (up to g− 1 tied for 1st) fix sδ1 = · · · = sδg−1

and sδg+1 ≥ · · · ≥ sδm ≥ 0, with either sδg−1 > sδg ≥ sδg+1

or sδg−1 ≥ sδg> sδg+1, where g+1 ≤ h ≤ m. Again from
Condition 1 and Assumption 3, as N → ∞ and given (1),
min(Ei,δ1 , · · · , Ei,δg ) > Ei,δh , ∀i, ∀h, i.e. lim

N→∞
Pr(πi,δ+1 ∈

{1, · · · , g})=1, ∀i, hence lim
N→∞

sδ+1
h = 0, ∀h. Then, from

Lemma 5, as N →∞, δ+1 can be: (i) Case 3; (ii) Case 4
again, with up to g−1 candidates tied for 1st and sδ+1

h =0,∀h.
If sδ+2 = sδ+1 a trivial PNE is reached, otherwise δ+2 is
either Case 3 or Case 4 with even less candidates tied for 1st,
and so forth until Case 3 is reached. (iii) Case 4 again, with
sδ+1

1 = · · · = sδ+1
g > 0, sδ+1

h =0,∀h, in which case δ+2 is
either (i), (ii) or a trivial PNE.

Counting Possible Pivotal Outcomes
Proposition 8. Num. of cases in Vα and Vβ are given by:

∑x̂
x=1

∑ŷ
y=0

[
(−1)y

(
|K|
y

)
(
N − x(|T |+ 1 + y) + d+ |K| − 1

|K| − 1

)]
if |T |+ 1 < m

1
(
N + d mod m = 0

)
if |T |+ 1 = m

where d = 0 and x̂ = bN/(|T | + 1)c when calculating
|Vβ |, d = 1 and x̂ = bN/(|T | + 1)e when calculating
|Vα |, with ŷ = min(|K|, b(N − x(|T |+ 1)+ d)/xc) and 1
being the indicator function.

Proof. See Online Appendix.

Details of Algorithm 2
Proposition 9. Poisson pivotal probabilities can be jointly
calculated and with no explicit calculation of fP or FP .

Proof. Re-write βij,T in (5) with infinite summation starting
at −1, so all other terms of αij,T and βij,T are the same:

αij,T =
∞∑
d=0

(
fP (d, sjλ)

∏
t∈T

fP (d+1, stλ)
∏
k∈K

FP (d, skλ)
)

βij,T =
∞∑

d=−1

(
fP (d+ 1, sjλ)

∏
t∈T

fP (d+1, stλ)
∏
k∈K

FP (d, skλ)
)

Let ∀µ ∈ Q≥0. Begin by noting that fP (0, µ) =
FP (0, µ) = e−µ and, by definition, ∀x ∈ N<0, fP (x, µ) =
FP (x, µ) = 0. Hence, the joint calculation of both infinite
summations is initialized by calculating e−shλ, ∀h ∈ J ,
then the infinite summations start at d = −1 and those ex-
ponentials are simply updated, up to joint convergence of
αij,T and βij,T , according to the following: ∀x ∈ N≥0, since

fP (x, µ) = (µxe−µ)
x! , then fP (x+ 1, µ) = (µ(x+1)e−µ)

(x+1)! =

(µxe−µ)
x!

µ
x+1 = fP (x, µ)

µ
x+1 . Similarly, if FP (x, µ) =

e−µ
∑bxc
r=0

µr

r! , then FP (x+ 1, µ) = e−µ
∑bx+1c
r=0

µr

r! =

e−µ
∑bxc
r=0

µr

r! + e−µ µ
(x+1)

(x+1)! = FP (x, µ) + e−µ µ
(x+1)

(x+1)! .
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