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Abstract
In this work, we study the maximin share fairness notion for
allocation of indivisible goods in the subadditive and frac-
tionally subadditive settings. While previous work refutes the
possibility of obtaining an allocation which is better than
1/2-MMS, the only positive result for the subadditive setting
states that when the number of items is equal to m, there al-
ways exists an Ω(1/ logm)-MMS allocation. Since the num-
ber of items may be larger than the number of agents (n), such
a bound can only imply a weak bound of Ω( 1

n logn
)-MMS al-

location in general.
In this work, we improve this gap exponentially to an
Ω( 1

logn log log n
)-MMS guarantee. In addition to this, we

prove that when the valuation functions are fractionally sub-
additive, a 1/4.6-MMS allocation is guaranteed to exist. This
also improves upon the previous bound of 1/5-MMS guaran-
tee for the fractionally subadditive setting.

Introduction
Fair division is a fundamental problem which has received
significant attention in economics, political science, math-
ematics, and more recently in computer science (Brams
and Taylor 1995; Budish 2011; Dubins and Spanier 1961;
Bezáková and Dani 2005; Kurokawa, Procaccia, and Wang
2018; Lipton et al. 2004). In this problem the goal is to di-
vide a resource among a set of agents in a fair manner. Both
divisible and indivisible settings have been subject to several
studies (Brams and Taylor 1995, 1996; Dubins and Spanier
1961; Lipton et al. 2004; Kurokawa, Procaccia, and Wang
2018; Aziz et al. 2017; Barman, Krishnamurthy, and Vaish
2018) though recent years have seen a plethora of develop-
ments in the indivisible setting (Kurokawa, Procaccia, and
Wang 2018; Plaut and Roughgarden 2020; Caragiannis et al.
2016; Caragiannis, Gravin, and Huang 2019; Chaudhury,
Garg, and Mehlhorn 2020; Chaudhury et al. 2020; Ghodsi
et al. 2018; Garg and Taki 2020; Garg, McGlaughlin, and
Taki 2019; Aziz, Chan, and Li 2019; Gourvès and Monnot
2019; Amanatidis et al. 2017; Barman and Krishna Murthy
2017) which is the focus of this work.

Unfortunately, most of the guarantees that hold in the di-
visible setting do not carry over to the indivisible setting. For
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example, well-known fairness criteria such as envy-freeness1

and proportionality2 that are known to exist in the divisible
setting may be violated in the indivisible setting. This led the
community to develop more relaxed fairness notions that are
better suited for the indivisible setting.

In this paper, we investigate the maximin-share (MMS)
notion which is one of the central measures of fairness in
the indivisible setting. This notion is introduced by Budish
(Budish 2011) as a relaxation of proportionality for the case
of indivisible goods. Let N be a set of size n that contains
the agents. For a setM of m indivisible goods and an agent
ai, MMSni (M) is defined as

MMSni (M) = max
π1,π2,...,πn∈Π

min
j
Ui(πj),

where Π is the set of all partitionings of M into n bun-
dles and Ui(πj) is the valuation of agent ai for a bundle πj .
In other words, among all n partitionings of the items, the
one that maximizes the minimum value of the partitions for
agent ai gives the MMS value of that agent. When the goal is
to allocate the items to n agents, maximin-share of agent ai
is defined to be equal to MMSni (M). For brevity, we denote
this value by MMSi. An allocation is then said to be MMS,
if it guarantees each agent ai a bundle with utility at least
MMSi to agent ai.

MMS-allocations have received significant attention both
in the additive and non-additive settings. While it may seem
that in the additive setting, an MMS-allocation always ex-
ists, it is shown that some additive instances admit no MMS
allocation (Kurokawa, Procaccia, and Wang 2018). On the
positive side, it has been shown that a 2/3-MMS allocation
(an allocation that guarantees each agent ai a bundle with
utility at least 2MMSi/3) always exists (Kurokawa, Procac-
cia, and Wang 2018). This bound is improved by Ghodsi et
al. (2018) to a 3/4-MMS guarantee.

The importance of fair allocation problems goes well be-
yond the additive setting. For instance, it is quite natural to
expect that an agent prefers to receive two items of value
400, rather than receiving 1000 items of value 1. Such a con-
straint cannot be imposed in the additive setting. However,

1An allocation is called envy-free, if no agent prefers to ex-
change her bundle with another agent.

2An allocation is called proportional, if each agent receives a
bundle which is worth at least 1/n of the entire resource to her.
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subadditive and fractionally subadditive functions are strong
tools for modelling such constraints. Previous work have al-
ready made some progress in generalizing the Maxmin fair
allocation problem to non-additive settings. Barman and Kr-
ishna Murthy (2017) prove that when the valuation func-
tions are submodular, a 1/10-MMS allocation can be guar-
anteed for the fair allocation problem. The bound was later
improved by Ghodsi et al. (2018) to a 1/3-MMS guaran-
tee for submodular functions. They also prove a 1/5-MMS
guarantee for the fractionally subadditive setting and an
Ω(1/ logm)-MMS guarantee for the subadditive setting.

In this paper, we improve the previous results on subaddi-
tive and fractionally subadditive settings. Our proof gives an
improved guarantee of Ω( 1

logn log log n )-MMS in the subad-
ditive setting which exponentially improves the prior work
of Ghodsi et al. (2018). In addition to this, we also improve
the 1/5-MMS guarantee of Ghodsi et al. (2018) for the frac-
tionally subadditive setting to 1/4.6-MMS.

Related Work
Maximin-share has been initially studied for the additive set-
ting (Budish 2011; Kurokawa, Procaccia, and Wang 2018;
Ghodsi et al. 2018; Kurokawa, Procaccia, and Wang 2016;
Amanatidis et al. 2017). The MMS notion is first introduced
by Budish (2011), and later used in computer science by the
work of Kurokawa et al. (2018). In their paper, Kurokawa
et al. show that for some instances, no MMS allocation can
be guaranteed even in the additive setting. They also show
that there always exists an allocation that guarantees a 2/3
fraction of the MMS value of each agent for her. This ra-
tio is improved in subsequent works to 3/4 by Ghodsi et al.
(2018) and 3/4 + o(1) by Garg and Taki (2020).

In contrast to other famous notions such as social welfare,
or egalitarian welfare, MMS has received less attention in
non-additive settings. For the submodular setting, Barman
and Krishna Murthy (2017) prove the existence of a 1/10-
MMS allocation. This factor was later improved by Ghodsi
et al. (2018) to 1/3. They also prove an upper-bound of 2/3
for the submodular setting.

For subadditive and fractionally subadditive settings,
which are the focus of this paper, the best known approx-
imation results are 1/5-MMS for fractionally subadditive
and Ω(1/ logm) for subaddtive settings. For a special case
of fractionally subadditive settings where the items form a
hereditary set system, Li and Vetta (2018) prove a 0.3667-
MMS guarantee.

It is worth mentioning that subadditive and fractionally
subadditive settings have been studied for various allocation
scenarios and objectives, including maximizing social wel-
fare (Feige 2009), maximizing Nash social welfare (Barman
and Sundaram 2021; Barman et al. 2020; Chaudhury, Garg,
and Mehta 2021), combinatorial auctions (Dobzinski, Nisan,
and Schapira 2010; Bhawalkar and Roughgarden 2011), and
envy-freeness up to any item (Plaut and Roughgarden 2020).

Preliminaries
Throughout this paper, we assume the set of agents is de-
noted by N and the set of items is referred to by M. Let

|N | = n and |M| = m. We refer to the i’th agent by ai
and to the i’th item by bi, i.e., N = {a1, a2, . . . , an} and
M = {b1, b2, . . . , bm}. We denote the valuation of an agent
ai for a set S of items by Ui(S). Our interest is in valu-
ation functions that are monotone and non-negative. More
precisely, we assume Ui(S) ≥ 0 for every agent ai and set
S ⊆ M, and for every two sets S1 and S2 and every agent
ai we have Ui(S1 ∪ S2) ≥ max{Ui(S1), Ui(S2)}.

We restrict our attention to two classes of set functions:

• Fractionally subadditive (XOS): A fractionally subad-
ditive set function V (·) can be shown via a finite set
of additive functions {V1, V2, . . . , Vα} where V (S) =
maxαi=1 Vi(S) for any subset S of the ground set.
• Subadditive: A set function V (·) is subadditive if
V (S1) + V (S2) ≥ V (S1 ∪ S2) for every two subsets
S1, S2 of the ground set.

Let Πr be the set of all partitionings ofM into r disjoint
subsets. For every r-partitioning P ∗ ∈ Πr, we denote the
partitions by P ∗1 , P

∗
2 , . . . , P

∗
r . For a set function V (·), we

define MMSrV (M) as follows:

MMSrV (M) = max
P∗∈Πr

min
1≤j≤r

V (P ∗j ).

For brevity we refer to MMSnUi
(M) by MMSi. Since scal-

ing the valuation functions does not affect the optimality
of an allocation, we assume without loss of generality that
MMSi = 1 holds for all agents.

An allocation of items to the agents is a vector A =
〈A1, A2, . . . , An〉 where

⋃
Ai = M and Ai ∩ Aj = ∅ for

every two agents ai 6= aj ∈ N . An allocation A is α-MMS,
if every agent ai receives a subset of the items whose value
to that agent is at least α times MMSi. More precisely, A is
α-MMS if and only if Ui(Ai) ≥ αMMSi for every ai ∈ N .

We may sometimes give an item to several agents in
which case we call it a multiallocation. A multiallocation
of items to the agents is 〈MMS, k〉 if each agent receives a
bundle which is worth at least her MMS value and each item
is allocated to at most k agents. Similarly, a multiallocation
is 〈α-MMS, k〉 if each agent receives an α fraction of her
MMS value and no item is allocated to more than k agents.

A well-known technique in finding approximate MMS al-
locations is reducibility (Ghodsi et al. 2018; Kurokawa, Pro-
caccia, and Wang 2018; Amanatidis et al. 2017). Here we
bring a consequence of this technique, stated in Lemma 1.

Lemma 1 ( (Amanatidis et al. 2017)). Given that an α-MMS
allocation exists under the assumption that the value of each
item for each agent is bounded by α, the same guarantee
carries over to the general setting without any bounds on
the valuations.

For a threshold 0 < t ≤ 1 and a set function V , Ghodsi et
al. (2018) define the bounded welfare function V t as:

∀S ⊆M V t(S) = min{t, V (S)}. (1)

At a high-level, bounded welfare valuations can in fact be
seen as a trade-off between efficiency and fairness. Ghodsi
et al. (2018) prove that V t is structurally similar to V . More
precisely, they prove Proposition 1:
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setting previous guarantee our improvement
fractionally 1/5 1/4.6
subadditive (2018) Theorem 4
subadditive Ω( 1

n logn ) Ω( 1
logn log log n )

(2018) Theorem 1

Table 1: A summary of the results of this paper.

Proposition 1 (Ghodsi et al. (2018)). For a valuation func-
tion V and any 0 < t < 1,

• If V is submodular, then so is V t.
• If V is fractionally subadditive, then so is V t.
• If V is subadditive, then so is V t.

We use the notion of bounded welfare functions in both
subadditive and fractionally subadditive settings.

Our Contribution
Our main contribution is an improved MMS guarantee for the
fair allocation problem under subadditive valuations. The
previous work of Ghodsi et al. (2018) provides a guarantee
of Ω(1/ logm) which we improve in this work.

We would like to compare our result to previous work be-
fore proceeding to the techniques and results. First, m de-
notes the number of items and can be exponentially large in
terms of the number of agents. Thus, the Ω(1/ logm) guar-
antee of Ghodsi et al. (2018) does not explicitly give any
bound in terms of the number of agents n. We show in the
full version that any guarantee that holds for m = nn items
also carries over to m > nn items. Unfortunately, this only
gives us a weak bound of Ω(1/(n log n))-MMS when plug-
ging the reduction into the bound of Ghodsi et al. (2018).

We improve this bound exponentially and obtain an
Ω( 1

logn log log n )-MMS guarantee in the subadditive setting.
In addition, we improve the analysis of Ghodsi et al. (2018)
for fractionally subadditive valuations, yielding a 1/4.6-
MMS guarantee for the fractionally subadditive setting.

Subadditive Setting
Let us first point out to the main difficulty of the subadditive
setting. Unlike the previously studied settings such as addi-
tive, submodular, and fractionally subadditive settings, the
subadditive setting seems to be particularly challenging to
tackle when it comes to randomized and probabilistic meth-
ods. Let us show this with an example: Let V be a monotone
subadditive set function and S be a subset of the ground el-
ements. It follows from the subadditivity of V that if we
put each element of S in a set S′ uniformly at random with
probability α then E[V (S′)] ≥ αE[V (S)] holds (in expecta-
tion). This is a strong bound that has been used in previous
studies (Feige 2009) when the goal is to bound the expected
value of the outcome. For our problem, the goal is to bound
the MMS guarantee in the worst case and therefore instead
of a bound on the expected utilities of the agents, we need a
bound on the utilities of the agents in the worst case. Thus,
a question that becomes relevant to our analysis is how well
is the value of V (S′) concentrated around its expectation?

While the answer to the above question is positive for ad-
ditive, submodular, and fractionally subadditive functions,
there are several counter-examples that show the value of
V (S′) may well deviate from its expectation. That is, with
a considerable probability, V (S′) may be smaller than (1−
ε)E[V (S′)] which is a highly undesirable situation in our
analysis. Moreover, lower tail bounds on subadditive func-
tions of i.i.d chosen sets are not well-understood. Indeed, the
authors are not aware of any bound that guarantees for some
constant values c1, c2 > 1, Pr[V (S′) ≥ E[V (S′)]

c1
] ≥ 1/c2.

For reasons that will become clear later in the section, our
analysis needs such a bound in the subadditive setting. As
part of our analysis, we show a weaker lower tail bound for
subadditive functions which is of independent interest.
Lemma 3. Let V be a monotone subadditive function with
non-negative values such that for a set S we have V (S) = 1.
In addition, assume that for some value 0 < t < 1, for every
element ei ∈ S we have V ({ei}) ≤ t

log 1/t . Let S′ be a set
made randomly from S such that each element of S appears
in S′ independently with probability at least t. Then we have
Pr[V (S′) ≤ t/3] ≤ 0.77.

Notice that Lemma 3 gives us a tail-bound on the valu-
ation of a randomly chosen subset of items but this bound
only holds with constant probability. Therefore, another
challenge that we have in our analysis is to improve the guar-
antee of the bound down to 1 − 1/n − ε such that by tak-
ing the union bound on the undesirable possibilities we can
prove that a desired scenario exists for all agents at once. In
what follows, we show how we prove such a guarantee.

Our algorithm consists of two steps. In the first step, we
find a multiallocation of the items to the agents such that
each item is given to at most O(log n) agents and moreover,
each agent can divide her items into Ω(log n) bundles such
that each bundle is worth at least 1/8 to her (recall that we
assume all the MMS values are equal to 1). In the second
step, we make an allocation out of our multiallocation by
giving each item to one of the agents that receives the item
in the multiallocation uniformly at random. The bound of
Lemma 3 then implies that the bundle given to each agent
is worth at least Ω(1/ log n) to her with probability more
than 1 − 1/n. Intuitively, this follows since in a bad event,
each of the independent Ω(log n) high-value bundles of an
agent in the multiallocation should provide a small utility to
that agent and thus the probability that none of the bundles
provides such a utility decreases exponentially.

Therefore, the main algorithmic difficulty is to show that
there exists a multiallocation of items to the agents with the
desired properties. To this end, we leverage two techniques:
First we define a modified utility function for each agent in
a way that for an integer c ≥ 1, the value of a set S is at
least c if and only if items of S can be divided into Ω(c) dis-
joint subsets each having a large value for the correspond-
ing agent. We then write a configuration LP that fraction-
ally allocates the items to the agents in a way that meets our
conditions. We then leverage the proof of Feige (2009) that
shows the integrality gap of the LP is bounded by 2. This
implies that there is an integer solution for the LP in which
for a considerable portion of the agents, the allocated bundle
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maintains our property. Finally, we show that by repeating
the same procedure O(log n) times we can obtain the de-
sired multiallocation.

Theorem 1. Any maximin fair allocation problem with sub-
additive agents admits an Ω( 1

logn log log n )-MMS allocation.

The additional log log n term in the denominator of the
guarantee in Theorem 1 comes from the reducibility argu-
ment. Since the bound of Lemma 3 holds only if each item
is worth no more than O( 1

logn log log n ) to each agent, then
we lose an additional log log n factor in the guarantee.

Fractionally Subadditive Setting
Fractionally subadditive functions are special cases of sub-
additive functions. Ghodsi et al. (2018) show that when the
valuation functions are fractionally subadditive, there al-
ways exists a 1/5-MMS allocation. We improve this result
to 0.2192235-MMS. Our method is based on the notion of
bounded welfare, introduced by Ghodsi et al. (2018).

The structure of our proof is similar to that of (Ghodsi
et al. 2018): we assume without loss of generality that the
MMS values of the agents are equal to 1. For a certain
threshold 0 < t, we prove that an allocation A that max-
imizes

∑
i U

t
i (Ai) is t/2-MMS. Ghodsi et al.(2018) prove

this claim for t = 2/5 and thus imply that a 1/5-MMS allo-
cation always exists. Via a more in-depth analysis, we prove
that this holds for a slightly larger t > 2/5 but the analysis
involves a more intricate process and a deeper analysis of
the valuation functions.

Theorem 2. For any instance of the fair allocation problem
with fractionally subadditive agents a 0.219225-MMS allo-
cation always exists.

Subadditive Valuations
In this section, we prove that an Ω( 1

logn log log n )-MMS allo-
cation is guaranteed to exist when the valuations are subad-
ditive. The high-level ideas of our algorithms is explained
earlier. Here we discuss the proof in detail. Recall that we
assume without loss of generality that the MMS value for
each agent is equal to 1. From a technical point of view,
our proof relies on two combinatorial and probabilistic tech-
niques which we bring in the following.

At a high-level, the first observation implies that no matter
what the MMS values are, we can always allocate the items
to the agents in a way that a constant fraction of the agents
receive a bundle whose value to them is at least a constant
fraction of their MMS values.

Lemma 2. For any instance of the fair allocation problem
with subadditive valuations there always exists an allocation
that guarantees 1/4-MMS to at least 1/3 of the agents.

We use Lemma 2 in an indirect way. The first step of our
algorithm is to find a multiallocation in a way that each item
is given to at most O(log n) agents and that each agent can
divide her items into Ω(log n) bundles such that the value of
each bundle to her is at least a constant fraction of her MMS
value. In order to prove such a multiallocation exists, we first
introduce a modified valuation function U ′i for each agent ai

such that (i) for each subset of size O(n/ log n) of agents,
the MMS values of the agents with respect to the modfied
valuation functions areO(log n) times larger than their orig-
inal MMS values. (ii) if an agent receives a bundle of items
whose value to her is a constant fraction of her new MMS
value, then she can divide her bundle into O(log n) parts
such that her original valuation for each part is at least some
constant value. Via using Lemma 2 in an iterative manner,
we prove that such a multiallocation exists. We then lever-
age Lemma 3 to turn our multiallocation into a desired allo-
cation.

Lemma 3. Let V be a monotone subadditive function with
non-negative values such that for a set S we have V (S) = 1.
In addition, assume that for some value 0 < t < 1, for every
element ei ∈ S we have V ({ei}) ≤ t

log 1/t . Let S′ be a set
made randomly from S such that each element of S appears
in S′ independently with probability at least t. Then we have
Pr[V (S′) ≤ t/3] ≤ 0.77.

You can find the proof of Lemma 3 in the full version
of the paper. Our allocation algorithm consists of two parts.
In the first part, based on Lemma 2, we find a multiallo-
cation with desired properties and in the second part based
on Lemma 3 we use a randomized procedure to convert this
multiallocation into an Ω( 1

logn log log n )-MMS allocation.

Constructing the Multiallocation
In the first part of our algorithm, we construct a multialloca-
tion A with the following properties:

• Each agent ai can partition her items into 6 log n bundles
each with value at least 1/8 to her.
• No item is allocated to more than 168 log n agents.

Let us begin our discussion in this section with a corollary
of Lemma 2. Let r < n be a parameter, and let N ′ be an
arbitrary subset ofN with size n/r. For each agent ai ∈ N ′,
let Pi,1, Pi,2, . . . , Pi,n be the optimal MMS-partitioning of
agent ai, that is Ui(Pi,j) ≥ 1 for all 1 ≤ j ≤ n . We define
a new valuation function U ′i for agent ai as follows: for each
subset S of goods,

U ′i(S) = max
0≤j<n/r

( ∑
1≤l≤r

Ui(S ∩ Pi,jr+l)
)
.

See the full version for a graphical representation of U ′i . We
show in Lemma 4 that the new valuation is subadditive.

Lemma 4. For each agent ai ∈ N ′, U ′i is subadditive.

Now, consider an instance of the fair allocation problem
with agents in N ′, valuation U ′i for each agent ai, and all
the items. Also, let MMS′i be the maximin-share value of
agent ai in this instance. By the way we define the valuations
for this instance, we know that for each agent ai, we have
MMS′i ≥ r. By Lemma 2, we can allocate to |N ′|/3 of the
agents in N ′, a subset of items with value at least r/4 to
them. Let ai be one of these agents. For agent ai, define set
Qi as set of bundles in the original MMS partitioning of ai,
that contribute a subset with value at least 1/8 to Ai, that is
Qi = {Pi,j |Ui(Pi,j ∩Ai) ≥ 1/8}. We claim |Qi| ≥ r/7.
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Algorithm 1: Finding a multiallocation.
Procedure Allocate(N : set of remaining agents,M : set
of goods):

if N = ∅ then
return

end
N ′ = a subset of size min(n/r, |N |) of N
foreach ai ∈ N ′ do

Construct U ′i .
end
A = Allocation defined in Corollary 1
N ′′ = agents that receive a bundle in A.
foreach ai ∈ N ′′ do

Allocate Ai to ai
Remove ai from N

end
Allocate (N ,M );

Algorithm 2: Random Allocation Algorithm.
Input: A multiallocation A obtained in the first part.
Output: An Ω(log n)-MMS allocation.
foreach b ∈M do

Let S = {ai|b ∈ Ai} Allocate b to one of the agents in
S uniformly at random.

end

Lemma 5. Let ai ∈ N ′ be an agent that has received a
bundle Ai with U ′i(Ai) ≥ r/4. We have |Qi| ≥ r/7.

Corollary 1 (Lemmas 2 and 5). Given a set of n agents with
subadditive valuations. For any arbitrary subset N ′ of the
agents with size at most n/r, it is possible to select a subset
of at least |N

′|
3 of the agents in N ′, and allocate each agent

ai a bundle Ai of the items such that |Qi| ≥ r/7.
Based on Corollary 2, we perform the first stage of our al-

location algorithm by choosing r = 42 log n and iteratively
running the following steps until no agent remains:

• Select a set N ′ of the remaining agents with size n/r. If
the total number of the remaining agents is less than n/r,
select all the remaining agents.
• Using Corollary 1, find a subset of size at least |N ′|/3

of the agents in N ′ and allocate to each agent ai in this
subset a bundle Ai of items such that |Qi| ≥ r/7.
• Remove the agents that receive a bundle in the previous

step and repeat these steps for the remaining agents and
all the items. Note that, the goal is to find a multialloca-
tion, so an item might be allocated in multiple rounds.

Algorithm 1 shows a pseudocode of our method for this
step.

Lemma 6. At the end of Algorithm 1, the following proper-
ties hold:

• Each agent ai can partition her items into 6 log n bundles
each with value at least 1/8 to her.
• Each item is allocated to at most 168 log n agents.

From Multiallocation to Allocation
Recall that in a multiallocation, we might allocate a good
to multiple agents. Let A be the multiallocation obtained in
the previous section. We know by Lemma 6 that in A, each
item belongs to at most 168 log n agents. In this step, we
convertA into an allocation via a simple procedure: for each
item that is allocated to multiple agents, we select one of
them independently and uniformly at random and allocate
the item to her. Algorithm 2 shows a pseudocode for this
procedure.

In Lemma 7 we prove that assuming that the items are
small enough, with a non-zero probability, this process
guarantees for each agent a bundle with a value at least
Ω(1/ log n) to her.
Lemma 7. Let A be the multiallocation of Algorithm 1, and
let A′ be the allocation obtained by running Algorithm 2
on A and let t = 1

1344 log n . Then, assuming that the value
of each item for each agent is less than t

‘ log 1
t

, in A′ with
probability more than 1− 1/n each agent receives a bundle
with a value of 1

4032 log n to her.

Proof. Consider an arbitrary agent ai. By Corollary 1 we
know that ai can partition her share into k ≥ 6 log n bun-
dles, each with value at least 1/8 to her. Let B1, B2, . . . , Bk
be these bundles. By definition, for every Bj we have
Ui(Bj) ≥ 1/8. Let B′j be the items in Bj that remain for
agent ai after running Algorithm 2. Since each good belongs
to at most 168 log n agents, each item remains for ai with
probability at least 1/(168 log n) and therefore,

∀j E[Ui(B
′
j)] ≥

Ui(Bj)

168 log n
≥ 1

1344 log n
.

By Lemma 5, assuming that the value of each item to each
agent is smaller than 1

1344 log n log(1344 log n) , for every 1 ≤
j ≤ k we have Pr

[
Ui(B

′
j) ≤ 1

4032 log n

]
≤ 0.77. Therefore,

with probability at least 1− (0.77)k, for at least one bundle
1 ≤ j ≤ k we have

Ui(A
′
i) ≥ Ui(B′j) ≥

1

4032 log n
. (2)

Since k ≥ 6 log n and,

1− 0.77k ≥ 1− 0.776 log n

≥ 1− 0.772 log0.77(1/2) log n ≥ 1− 1

n2
,

using union bound we conclude that with probability at least
1 − n(1/n2) = 1 − 1/n, Inequality (2) holds for all the
agents. This in turn implies that with non-zero probability,
our allocation is 1

4032 log n -MMS. Therefore, such an alloca-
tion always exists.

Finally, note that in order for Lemma 7 to hold, we need
the value of each item for each agent to be upper bounded
by 1

1344 log n log(1344 log n) . To resolve this, we choose the
objective to find a 1

1344 log n log(1344 log n) -MMS allocation.
By Lemma 1, for this objective we can assume that the
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value of each item for each agent is upper bounded by
1

1344 log n log(1344 log n) , and hence, the condition of Lemma
7 is satisfied. This reduces the final approximation factor to
Ω(1/(log n log log n)).

Theorem 1. Any maximin fair allocation problem with sub-
additive agents admits an Ω( 1

logn log log n )-MMS allocation.

Satisfying a Fraction of Agents
In this section, we prove Lemma 2. This Lemma states that
for an instance of the fair allocation problem with subaddi-
tive valuations, there always exists an allocation that allo-
cates to at least a fraction 1/3 of the agents a bundle with
value at least 1/4. Here we bring the statement of Lemma 2.

Lemma 2. For any instance of the fair allocation problem
with subadditive valuations there always exists an allocation
that guarantees 1/4-MMS to at least 1/3 of the agents.

In our proof, we use the method of Feige (2009) for maxi-
mizing welfare when the valuations are subadditive. Assume
that the agents’ valuations are subadditive and the objective
is to maximize social welfare. This problem can be formu-
lated as the following integer program:

max
∑
i,S

xi,S · Ui(S)

s.t.
∑

i,S|bj∈S

xi,S ≤ 1, ∀bj∑
S⊆M

xi,S ≤ 1, ∀ai

xi,S ∈ {0, 1}, ∀ai and S ⊆M

(3)

Roughly speaking, Program (3) allocates the items to the
agents in a way that each item is allocated to at most one
agent (first set of constraints) and each agent receives at most
one subset (second set of constraints). The linear relaxation
of Program (3) is a famous linear program, especially in al-
location problems. This LP is known as configuration LP.

max
∑
i,s

xi,S · Ui(S)

s.t.
∑

i,S|bj∈S

xi,S ≤ 1, ∀bj∑
S⊆M

xi,S ≤ 1, ∀ai

xi,S ≥ 0, ∀ai and S ⊆M

(4)

Note that, despite the exponential number of constraints,
assuming demand queries can be answered in polynomial
time, it is possible to find a solution to LP (4) in polyno-
mial time. In (Feige 2009) Feige proposes a randomized
rounding technique to produce a feasible integer allocation
with expected welfare at least half of the value of LP (4). In
other words, Feige (2009) proves that the integrality gap of
the configuration LP is at most 2 for subadditive valuations.
Here, we use this fact to prove that there always exists an
allocation that satisfies the conditions of Lemma 2.

Recall the definition of bounded welfare. In Proposition
1, we state a very useful property of these valuations: for a

monotone and subadditive set function V , V t is also subad-
ditive. According to this fact, consider the following LP:

max
∑
i,s

xi,S · U1
i (S)

s.t.
∑

i,S|j∈S

xi,S ≤ 1, ∀bj∑
S∈P (M)

xi,S ≤ 1, ∀ai

xi,S ≥ 0, ∀ai and S ⊆M

(5)

Note that LP (5) is similar to LP (4), except that Ui is re-
placed by U1

i . Since for any subset S of items, we know that
U1
i (S) ≤ 1, the objective of LP (5) is upper bounded by n.

Also, consider the following fractional solution: for every set
S and agent ai, if S is one of the bundles in the optimal MMS
partitioning of agent ai, set xi,S = 1/n and set xi,S = 0 oth-
erwise. One can easily verify that this is a feasible solution
to LP (5), with an expected welfare of n. Therefore, the an-
swer of LP (5) is exactly n. Since the integrality gap of the
configuration LP is bounded by 2, there exists an integral
solution (an allocation) that obtains an objective of at least
n/2. Denote such an allocation by A = 〈A1, A2, . . . , An〉.
We know that the bounded social welfare of this allocation
is at least n/2, that is

∑
1≤i≤n U

1
i (Ai) ≥ n/2.

Based on the above observation, we prove that allocation
A satisfies the conditions of Lemma 2.

Proof of Lemma 2. Let S be the set of agents that receive
a bundle with value at least 1/4 to them, and assume for
contradiction that |S| < n/3 . The contribution of these
agents to the bounded social welfare is at most |S|. Also,
the contribution of the rest of the agents to the social wel-
fare is less than (n − |S|)/4. Therefore, the social welfare
is upper bounded by (n − |S|)/4 + |S| = n/4 + 3|S|/4 <
n/4 + n/4 = n/2. But we already know that the bounded
social welfare of A is at least n/2, which is a contradic-
tion.

Fractionally Subadditive Valuations
We improve the result of Ghodsi et al. (2018) for fraction-
ally subadditive valuations and show that a 0.2192235-MMS
allocation always exists. Our method is based on the notion
of bounded welfare, introduced by Ghodsi et al. (2018).

The structure of our proof is similar to that of (Ghodsi
et al. 2018): we assume without loss of generality that the
MMS values of the agents are equal to 1. For a certain thresh-
old 2/5 < t < 1/2, we prove that an allocation A that max-
imizes

∑
i U

t
i (Ai) is t/2-MMS. Ghodsi et al. (2018) prove

this claim for t = 2/5 and thus imply that a 1/5-MMS allo-
cation always exists. Via a more in-depth analysis, we prove
that this holds for a slightly larger t > 2/5 but the analysis
involves a more intricate process and a deeper analysis of
the valuation functions.

Recall that for a subadditive function V , V t(S) is defined
as min(V (S), t). Fix a constant t (we later determine the
exact value of t) and let A be an allocation that maximizes
the bounded social welfare, that is, w =

∑
j U

t
j (Aj). Since

for every agent ai, the value of U ti (S) for any set S of goods
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is upper bounded by t, a trivial upper bound on the value
of w is nt. We show that for a properly chosen threshold
2/5 < t < 1/2, we can guarantee that every agent receives
a bundle in A whose value for the agent is at least t/2. We
first define the contribution of the items to w.

Definition 3. For every agent aj let {U tj,1, U tj,2, . . . , U tj,αj
}

be the set of additive functions such that for every subset S
of items, U tj = max1≤l≤αj U

t
j,l(S). Then, for every S ⊆M ,

we define the contribution of S to w, denoted by C(S) as

C(S) =
∑

1≤j≤n

U tj,lj (S ∩Aj),

where lj = arg max1≤l≤αj
U tj,l(Aj).

One can easily observe that function C(·) is additive.
Also, since for every agent aj , U tj is fractionally subaddi-
tive, we have

∀S ⊆ Aj U tj (Aj \ S) ≥ U tj (Aj)− C(S). (6)

Now, assume that there exists an agent ai such that
U ti (Ai) < t/2. Since MMSi = 1, agent ai can partition the
goods into n sets with value at least 1 to her. Sincew < nt, 3

the contribution of at least one of these bundles to the value
of w is less than t. Let S = {b1, b2, . . . , bk} be the set of
goods in this bundle. We assume without loss of generality
that the goods in S are sorted according to their value per
contribution that is,

Ui({b1})
C({b1})

≥ Ui({b2})
C({b2})

≥ . . . ≥ Ui({bk})
C({bk})

(7)

For a set T ⊆ S, we define ∆(T ) := U ti (T ) − C(T ).
Since allocation A maximizes the bounded social welfare,
there is no way to increases w by modifying A. This yields
Observation 1.

Observation 1. For every subset T ⊆ S, ∆(T ) < t/2.

A simple corollary of Observation 1 is that agent ai can-
not divide her goods into two subsets T1 and T2 (T1 ∩ T2 =
∅), such that Ui(T1), Ui(T2) ≥ t. Otherwise, for at least one
of these subsets, say T , we have ∆(T ) ≥ t/2.

Corollary 2 (Observation 1). There are no subsets T1, T2 ⊆
S such that T1 ∩ T2 = ∅, U ti (T1) ≥ t, and U ti (T2) ≥ t.

Let l be the smallest index such that
U ti ({b1, b2, . . . , bl}) = t. By Corollary 2, we know
that U ti ({bl+1, bl+2, . . . , bk}) < t. Let

γ = t− U ti ({b1, . . . , bl−1}), γ′ = t− U ti ({bl+1, . . . , bk}).
(8)

Notice that both γ and γ′ are larger than 0. Since the value
of S to agent ai is at least 1, U ti ({bl}) ≥ 1− 2t+ γ + γ′.

Observation 2. We have C({b1, . . . , bl−1}) < t/2 and
C({bl+1, . . . , bk}) < t/2.

3Note that, at least one agent has received a bundle with value
strictly less than t.

Based on Observation 2 define δ, δ′ > 0 such that

δ = t/2−C({b1, . . . , bl−1}), δ′ = t/2−C({bl+1, . . . , bk}).
(9)

Note that by Observation 1, δ < γ and δ′ < γ′. Also, since
C(S) < t, C({bj}) ≤ δ+δ′, and by Inequality (7), we have

t− γ
t/2− δ

≥ U ti ({bl})
C({bl})

≥ t− γ′

t/2− δ′
. (10)

Finally, assuming that the goal is to find a t/2-MMS alloca-
tion, by Lemma 1, we can restrict our attention to the cases
that the value of each good to each agent is less than t/2.
Therefore,

1− 2t+ γ + γ′ < t/2, δ + δ′ < t/2. (11)

To conclude, if for every subset T of goods ∆(T ) < t/2
holds, the following inequalities must be satisfied:

t− γ
t/2− δ

≥ U ti ({bl})
C({bl})

, Inequality (10)

U ti ({bl})
C({bl})

≥ t− γ′

t/2− δ′
Inequality (10)

1− 2t+ γ + γ′ ≤ U ti ({bl})
C({bl}) ≤ δ + δ′

C({bl}) ≥ δ, δ′ Observation 1
U ti ({bl}), C({bl}) < t/2 Inequality (11)
t > γ, t > γ′

γ > δ, γ′ > δ′ Observation 1
γ, γ′, t, δ, δ′ > 0

We show in the full version that in order for all the above
inequalities to hold, the value of t cannot be arbitrarily small.
Indeed, we show that the answer of the following program
is at least t ' 0.438447.

min t
t− γ
t/2− δ

≥ U ti ({bl})
C({bl})

,

U ti ({bl})
C({bl})

≥ t− γ′

t/2− δ′
1− 2t+ γ + γ′ ≤ U ti ({bl})
C({bl}) ≤ δ + δ′

C({bl}) ≥ δ, δ′
U ti ({bl}), C({bl}) < t/2
t > γ, t > γ′

γ > δ, γ′ > δ′

γ, γ′, t, δ, δ′ > 0

(12)

This means that for any threshold t less than 0.438447, the
set of inequalities in Optimization Program (12) cannot be
simultaneously met and therefore, there is a subset T with
∆(T ) ≥ t/2. This contradicts Observation 1. Thus, Lemma
8 holds for t = 0.438447.
Lemma 8. Let t ≤ 0.438447, and let A be an allocation
that maximizes

∑
i U

t
i (Ai). Then, every agent i in A re-

ceives a bundle with value at least t/2 to her.
Lemma 8 states that for any t ≤ 0.438447, there exists a

t/2-MMS allocation. Therefore, Theorem 4 holds.
Theorem 4. For any instance of the fair allocation problem
with fractionally subadditive agents a 0.219225-MMS allo-
cation always exists.
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