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Abstract

When aggregating logically interconnected judgements from
n agents, the result might be logically inconsistent. This phe-
nomenon is known as the doctrinal paradox, which plays a
central role in the field of judgement aggregation. Previous
work has mostly focused on the worst-case analysis of the
doctrinal paradox, leading to many impossibility results. Lit-
tle is known about its likelihood of occurrence in practical set-
tings, except for the study under certain distributions by List
in 2005. In this paper, we characterize the likelihood of the
doctrinal paradox under a general and realistic model called
semi-random social choice framework (proposed by Xia in
2020). In the framework, agents’ ground truth judgements
can be arbitrarily correlated, while the noises are indepen-
dent. Our main theorem states that under mild conditions, the
semi-random likelihood of the doctrinal paradox is either 0,
exp(-Θ(n)),Θ(nˆ (-0.5)) orΘ(1). This not only answers open
questions by List in 2005, but also draws clear lines between
situations with frequent paradoxes and with vanishing para-
doxes.

Introduction
The field of judgement aggregation studies the aggregation
of agents’ judgements (yes/no votes) on multiple logically
interconnected propositions in a consistent way. For exam-
ple, suppose a defendant is involved in a traffic accident
where a victim is injured. A jury of n agents (jurors) are
asked to make collective decisions on the following three
propositions:

Proposition ω1: The injury is caused by the defendant.
Proposition ω2: The injury is serious enough.
Proposition ω3: The defendant is guilty.

Each agent is asked to provide a yes/no judgement to each
proposition in a logically consistent way, i.e., her answer to
ω3 is Y if and only if her answers to both ω1 and ω2 are
Y, or equivalently, ω3↔ω1 ∧ ω2 must hold. Then, agents’
judgements, called a profile, are aggregated by a rule r.

One classical rule for judgement aggregation is
proposition-wise majority, which performs majority
voting on each proposition separately. Unfortunately,
the output of proposition-wise majority can be logically
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inconsistent. This phenomenon is known as the doctrinal
paradox, as shown in the following example.
Example 1 (Doctrinal paradox). Suppose there are three
three agents (n = 3), whose judgements on ω1, ω2, and ω3

are shown in Table 1. Notice that while every agent’s judge-
ments are consistent with the logic relationship ω3↔ω1∧ω2,
the output of proposition-wise majority is inconsistent with
the logic.

Propositions ω1 ω2 ω3 ω3
?↔ ω1 ∧ ω2

Agent 1 Y N N True
Agent 2 N Y N True
Agent 3 Y Y Y True

Aggregation Y Y N False

Table 1: Doctrinal paradox.
In general, the doctrinal paradox can happen for p ≥ 1

premises (logically independent propositions), plus one con-
clusion, whose value is determined by the values of the
premises. The doctrinal paradox “originated the whole field
of judgement aggregation” (Grossi and Pigozzi 2014), and
continued to play a central role since then (List 2012; Grossi
and Pigozzi 2014; Brandt et al. 2016). A large body of liter-
ature has shown the negative effects of the doctrinal paradox
in law (Kornhauser and Sager 1986; Hanna 2009; Chilton
and Tingley 2012), economics (Mongin 2019), computa-
tional social choice (Bonnefon 2010; Brandt et al. 2016),
philosophy (Sorensen 2003; Mongin 2012) and psychol-
ogy (Bonnefon 2011), etc. Unfortunately, the paradox is un-
avoidable under mild assumptions (List and Pettit 2002),
and there is a large body of literature on impossibility theo-
rems as well as ways for escaping from them (List and Polak
2010; Grossi and Pigozzi 2014; Endriss 2016).

Despite the mathematical impossibilities, it is unclear
how frequently doctrinal paradoxes happens in reality.
Empirical studies have been limited by the lack of datasets,
as many classical applications of judgement aggregations
are in high-stakes, low frequent, privacy-sensitive do-
mains, such as judicial systems. To embrace AI-powered
e-democracy, we believe that it is now the right time to
theoretically study the likelihood of the paradox under
realistic models. A low likelihood is desirable, because it
suggests that, despite the fact that the paradox exists in the
worst case, it is likelihood not be a big concern in practice.
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While this approach is highly popular in voting (Nurmi
1999; Gehrlein and Lepelley 2011; Diss and Merlin 2021),
it has not received due attention in judgement aggregation.
The only known exception is the paper by List (2005), who
provided sufficient conditions for the likelihood of doctrinal
paradox to converge to 1 and to 0, respectively, under
some distributions for two or three premises. Therefore, the
following research question remains largely open:

How likely does the doctrinal paradox
occur under realistic models?

Successfully addressing this question faces two chal-
lenges. The first challenge is modeling, i.e., it is unclear what
probabilistic models are realistic. A large body of literature
in social choice focused on the i.i.d. uniform distribution,
known as Impartial Culture (IC), which has been widely
criticized of being unrealistic (Nehama 2011, 2013; Nurmi
1999; Brandl, Brandt, and Seedig 2016; Van Deemen 2014;
Lehtinen and Kuorikoski 2007). The second challenge is the
technical hardness in mathematically analyzing the likeli-
hood. In fact, even characterizing the likelihood of doctrinal
paradox under i.i.d. distributions is already highly challeng-
ing, and List’s 2005 work (List 2005) left many i.i.d. distri-
butions as open questions, including IC.
Our Model. We adopt the semi-random social choice frame-
work (Xia 2020, 2021b; Xia and Zheng 2021) to address
the modeling challenge. The framework was inspired by the
celebrated semi-random complexity analysis (Spielman and
Teng 2009; Blum and Spencer 1995), and is more realistic
and general than i.i.d. distributions, especially IC. We con-
sider the setting with p ≥ 1 premises and one conclusion
determined by the logical connection function f , where ev-
ery agent’s vote is a random variable whose distribution is in
a set Π over all 2p judgements on premises (See the Prelimi-
naries Section for the formal definitions of distributions over
votes). Then, given the aggregation rule r, a max-adversary
aims at maxing the likelihood of doctrinal paradox by setting
agents’ distributions from Π. This leads to the definition of
the max-semi-random likelihood of doctrinal paradox as fol-
lows.

D̃P
max

Π,r,f (n) ≜ supπ⃗∈Πn PrP∼π⃗ (P is a doctrinal paradox) ,

where π⃗ = (π1, · · · , πn) ∈ Πn is the collection of the dis-
tributions of n agents chosen by the adversary, and profile P
is the collection of n agents’ votes generated from π⃗. Sim-
ilarly, the min-semi-random likelihood of doctrinal paradox
is defined as follows.

D̃P
min

Π,r,f (n) ≜ inf π⃗∈Πn PrP∼π⃗ (P is a doctrinal paradox) .

Notice that in both definitions, agents’ “ground truth”
preferences, represented by π⃗, are arbitrarily correlated (the
noises are still independent). The max-(respectively, min-)
semi-random likelihood corresponds to the worst-case
(best-case) analysis. A low max-semi-random likelihood is
positive news, because it states that the paradox is unlikely
to happen regardless of the adversary’s choice. A high
min-semi-random likelihood is strongly negative news,
because it states that the paradox is likely to happen with

non-negligible probability, regardless of agents’ ground
truth preferences.

Our Contributions. In this paper, we prove the following
general characterization of the semi-random likelihood of
doctrinal paradox.
Theorem 1. (Semi-random Likelihood of Doctrinal Para-
dox, Informal.) Under mild assumptions, for any n ∈
N, any quota rule r, and any logical connection f ,
D̃P

max

Π,r,f (n) is either 0, exp(−Θ(n)), Θ(n−1/2) or Θ(1),

and D̃P
min

Π,r,f (n) is either 0, exp(−Θ(n)), Θ(n−1/2) or
Θ(1).

The formal statement of the theorem also characterizes
the condition for each case to happen. As commented
above, the first three cases (0, exp(−Θ(n)), and Θ(n−1/2))
of D̃P

max

Π,r,f (n) are positive news, because they state that the
doctrinal paradox vanishes as n → ∞, see e.g., Example 7.

The last case (Θ(1)) of D̃P
min

Π,r,f (n) is negative news.
Notably, a direct corollary of Theorem 1 (Corollary 2)
characterizes the likelihood of doctrinal paradox under
i.i.d. distributions that are not covered by List (2005),
in particular the uniform distribution which naturally
corresponds to IC in social choice. Experiments on syn-
thetic data in the next Section confirm our theoretical results.

Proof techniques. The proof of Theorem 1 addresses
technical hardness in (List 2005) by first converting the
semi-random doctrinal paradox to a union of polyhedra, and
then applying (Xia 2021a, Theorem 2). Such applications
can be highly non-trivial as commented in (Xia 2021a),
which we believe to be the case of this paper and are our
main technical contribution.

Related Work and Discussions. Our work extends the re-
sults by List (2005) on i.i.d. distributions in three dimen-
sions. First, we characterize the semi-random likelihood of
doctrinal paradox, which is more general and realistic than
i.i.d. distributions. Second, our theorem works for arbitrary
number of premises and arbitrary logic connection func-
tion, while List (2005)’s results only work for two or three
premises and conjunctive and disjunctive functions. Third,
our theorem works for arbitrary quota rules, which extends
the proposition-wise majority rule in (List 2005). As dis-
cussed above, as our theorem is a full characterization, a
straightforward corollary of our theorem addresses the like-
lihood of doctrinal paradox under all i.i.d. cases that are left
open in (List 2005).

The modern formulation of doctrinal paradox was due
to Kornhauser and Sager (1986), though a similar para-
dox was described by Poisson in 1937 (Poisson 1837) and
by Vacca in 1921 (Vacca 1921), see (Grossi and Pigozzi
2014). The paradox is closely related to the more general
discursive dilemma (Pettit 2001), where agents also “vote”
on the logic relationship as in the last column in Table 1.
Doctrinal paradox is also a special case of responsibility
voids, where no individual in the committee can morally be
responsible voting outcome (Braham and VanHees 2011).
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List and Pettit (2002) proved the first impossible theo-
rem about doctrinal paradox, which has lead to many fol-
lowup impossibility theorems (Pauly and Hees 2006; Mon-
gin 2008; Dietrich and List 2008; Awad et al. 2017; Mon-
gin 2019; Baharad, Neeman, and Rubinchik 2020; Marcoci
and Nguyen 2020). Methods to escape from the paradox
have been explored (Nehring and Pivato 2021; Rahwan and
Tohmé 2010; Nehring and Puppe 2008; Lyon and Pacuit
2013). The connection between judgement aggregation and
belief merging was established (Everaere, Konieczny, and
Marquis 2017). Computational and machine learning as-
pects of judgement aggregation have also been explored,
see, e.g., (Endriss, Grandi, and Porello 2012; Zhang and
Conitzer 2019; Endriss et al. 2019; Baumeister et al. 2020).

Preliminaries
Basics of Judgement Aggregation. Let [n] ≜ {1, · · · , n}
denote the set of n agents. Let p denote the number of
premises. The binary judgement of agent j on the i-th
premise is denoted by ωj,i ∈ {0, 1}, where ωj,i = 1 means
“Yes” and ωj,i = 0 means “No”. The conclusion is often de-
noted by ϕ, and sometimes by ωp+1 for simplicity. Because
all premises are binary, there are m = 2p different combi-
nations of judgements on the premises. To better present the
results, instead of asking the agents to submit their judge-
ments ω⃗j = (ωj,1, · · · , ωj,p), equivalently, we ask each
agent to submit an m-dimensional vector v⃗j , called her vote,
whose ω⃗j-th component is 1 and all other components are
0’s. Let V ≜ {v⃗ ∈ {0, 1}m : m = 2p and ||v⃗||1 = 1} de-
note the set of all votes. For example, in the setting of Ex-
ample 1, we have p = 2, m = 4, and the four judgements
are ((0, 0), (0, 1), (1, 0), (1, 1)). Agent 1’s judgements are
(1, 0), which means that her vote is (0, 0, 1, 0), where the
third component corresponds to the weight on judgements
(1, 0).

A probability distribution over the 2p judge-
ments is also called a fractional vote. Let Vfrc ≜
{v⃗ ∈ [0, 1]m : ||v⃗||1 = 1} denote the set of all frac-
tional votes. Clearly, V ⊆ Vfrc. For any fractional vote
v⃗ and any judgement ω⃗, we let v⃗(ω⃗) denote the weight
(probability) on ω⃗. For example, agent 2’s vote in Table 2
below is a fractional vote with 0.5 weight on each of (1, 0)
and (1, 1).

Let f : {0, 1}p → {0, 1} denote the logical connection
between the premises and the conclusion. That is, for any
judgements ω⃗ ∈ {0, 1}p, f(ω⃗) is the conclusion that is con-
sistent with the logic. The domain of f can be naturally ex-
tended to (non-fractional) votes V . That is,

∀ j ∈ [n], ϕj = f(v⃗j) = f(ω⃗), where v⃗j(ω⃗) = 1.

For example, in the setting of Example 1, the conclusion is
1 if and only if both premises are 1. Therefore,

f(v⃗) =

{
1 if v⃗ = (0, 0, 0, 1)
0 otherwise

For any 1 ≤ i ≤ p+ 1, let Ωi denote the set of all judge-
ments whose i-th proposition is 1. That is,

Ωi ≜

{ {
ω⃗ ∈ {0, 1}p : ω⃗(i) = 1

}
∀i ∈ [p]{

ω⃗ ∈ {0, 1}p : f(ω⃗) = 1
}

if i = p+ 1
.

For example, in the setting of Example 1, Ω1 =
{(1, 0), (1, 1)}, Ω2 = {(0, 1), (1, 1)}, and Ω3 = {(1, 1)}.

For any n ∈ N, let P = (v⃗1, · · · , v⃗n) ∈ (Vfrc)
n denote a

(fractional) profile of n agents. A (judgement) aggregation
rule is a function r : (Vfrc)

n → {0, 1}p+1, which takes a
profile as input and outputs binary values for all premises
and the conclusion. For any (fractional) profile P ∈ (Vfrc)

n,
we define Hist(P ) ≜

∑
j∈[n] v⃗j to be the histogram of P ,

which represents the total weight of each combination of
judgements in P . We define fractional votes and fractional
profiles to present conditions in the theorem. Notice that
agents’ votes are in V , which means that they are non-
fractional.

Quota Rules. A quota rule is a natural and well-
studied generalization of proposition-wise majority rule
with different thresholds. Formally, given any vector of
acceptance thresholds (threshold in short), denoted by
q⃗ = (q1, · · · , qp+1) ∈ [0, 1]p+1 and any vector of tie-
breaking criteria (breaking in short), denoted by d⃗ =
(d1, · · · , dp+1) ∈ {0, 1}p+1, we define the quota rule
rq⃗,d⃗(P ) as follows. For any profile P ∈ (Vfrc)

n and any
i ∈ [p+1], we let ni =

∑
ω⃗∈Ωi

Hist(P )(ω⃗) denote the total
weight of agents whose i-th judgement is 1, then apply the
quota rule with threshold qi and breaking di. That is,

∀ i ∈ [p+1], rq⃗,d⃗(P )(i) ≜

{
1 if ni > qi · n
di if ni = qi · n
0 otherwise

, (1)

where rq⃗,d⃗(P )(i) is the i-th component of rq⃗,d⃗(P ). We say
that a profile P is tied in ωi if ni = qi · n.
Doctrinal Paradox. A profile P is said to be a doctrinal
paradox under r, if r(P ) is inconsistent with f . Formally,
we have the following definition.
Definition 1 (Doctrinal paradox). Given any n ∈ N, any
logical connection function f , and any quota rule r, a pro-
file P ∈ Vn

frc is a doctrinal paradox, if r(P )(p + 1) ̸=
f
(
r(P )(1), · · · , r(P )(p)

)
.

The following example illustrates a fractional profile, a
quota rule, and the aggregated judgements.
Example 2. A (fractional) profile P of three votes, a quota
rule r (which uses the majority rule with the breaking
in favor of 1 on both premises and in favor of 0 on
the conclusion), and the aggregation is shown in Table 2.

weight ω1 ω2 ϕ v⃗
Agent 1 1 1 0 0 (0, 0, 1, 0)
Agent 2 1 0 1 0 (0, 1, 0, 0)

Agent 3 0.5 1 0 0 (0, 0, 0.5, 0.5)0.5 1 1 1
Hist(P ) (0, 1, 1.5, 0.5)

ni 2 1.5 0.5
Breaking d⃗ 1 1 0
Threshold q⃗ 0.5 0.5 0.5

q⃗ · n 1.5 1.5 1.5
rq⃗,d⃗(P ) 1 1 0

Table 2: The profile, rule, and aggregation result for Exam-
ple 2.
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It can be seen from the table that r(P ) = (1, 1, 0), which
is inconsistent w.r.t. f . Therefore, P is a doctrinal paradox.

Characterization of Semi-random Likelihood
of Doctrinal Paradox

Intuition. Before formally present the theorem, we first
take a high-level and intuitive approach to introduce the idea
behind the characterization and highlight the challenges.
Take the max part D̃P

max

Π,r,f (n) for example. Suppose the
(max-)adversary has chosen π⃗ = (π1, . . . , πn) ∈ Πn.
Let π̊ =

∑n
j=1 πj/n denote the center of π⃗. Intuitively,

various multivariate central limit theorems imply that the
histogram of the profile P generated from π⃗ falls in an
Θ(n−0.5) neighborhood of nπ̊, denoted by Nnπ̊ , with high
probability. As an approximation and relation, for now we
allow the max-adversary to choose any π̊ in the convex
hull of Π (denoted by CH(Π)). Then, we can focus on the
likelihood of doctrinal paradox in Nnπ̊ , which leads to the
following four cases.

Case 1. If no profile of n votes is a doctrinal paradox, then
D̃P

max

Π,r,f (n) = 0 by definition.
Case 2. Otherwise, if for all π̊ ∈ CH(Π), Nnπ̊ does not con-
tain a doctrinal paradox, then D̃P

max

Π,r,f (n) is small. Notice

that D̃P
max

Π,r,f (n) is not zero, because there is a small (expo-
nential) probability that Hist(P ) is not in Nnπ̊ .
Case 3. Otherwise, if the adversary can only choose π̊ ∈
CH(Π) that corresponds to a “non-robust” instance of doc-
trinal paradox, in the sense that Nnπ̊ includes some but not
too many doctrinal paradoxes. Then, D̃P

max

Π,r,f (n) should be
larger than that in the previous case. This is the most chal-
lenging case, because it is unclear how to characterize condi-
tions for it to happen, and how large the likelihood is. While
standard techniques may lead to an O(n−0.5) upper bound,
it is unclear if D̃P

max

Π,r,f (n) can be lower.
Case 4. Otherwise, the adversary can choose π̊ ∈ CH(Π)
that corresponds to a “robust” instance of doctrinal paradox,
such that Nnπ̊ contains many paradoxes. In this case,
D̃P

max

Π,r,f (n) is large.

Case 1 is trivial. It turns out that Case 2 and Case 3 can
be characterized by properties of distributions in the convex
hull of Π. We first define effective refinements of distribu-
tions to reason about aggregated judgements in Nnπ̊ .
Definition 2 ((Effective) Refinements). For any distribu-
tion π over V , any n ∈ N, and any quota rule r, we say that
a vector α⃗ = (α1, · · · , αp+1) ∈ {0, 1}p+1 is an effective
refinement of π (at n), if the following two conditions hold:

(1) ∀ i ∈ [p+ 1] such that π is not tied in ωi, αi = r(π)(i)

(2) ∃P ∈ Vn such that r(P ) = α⃗.

If condition (1) holds, then we call α⃗ a refinement of π. Let
Eπ denote the set of all effective refinements of π.

In words, condition (1) requires α⃗ to match the aggregated
judgements on all non-tied propositions. Condition (2) re-

quires the existence of a profile of n votes, whose outcome
under r is α⃗.
Example 3. In the setting of Example 2, π =
(0.3, 0.2, 0, 0.5) is tied in the first premise (ω1) and the con-
clusion. There are four refinements of π: (0, 1, 0), (0, 1, 1)
(1, 1, 0) and (1, 1, 1). (0, 1, 1) is not effective, because no
profile can make conclusion ϕ = 1 while keeping ω1 to be
0. The other three refinements are effective when n ≥ 3. For
example, (1, 1, 1) is effective because it is the aggregation
of the profile where all agents have 1 judgements on both
premises.

Recall that CH(Π) denotes the convex hull of Π. Next,
we define four conditions (κ1 to κ4) to present Theorem 1.
While their formal definitions may appear technical, we be-
lieve that they have intuitive explanations as discussed right
afterward. In fact, κ1, κ2, and κ4 correspond to case 1,2,3
discussed in the beginning of this section, respectively. κ3 is
defined for min-semi-random likelihood.
Definition 3 (Conditions κ1 to κ4). Given p premises, a
logical connection function f , n ∈ N, and a quota rule rq⃗,d⃗,
we define the following conditions.
κ1: ∀P ∈ Vn, P is not a doctrinal paradox.
κ2: ∀π ∈ CH(Π), ∀ α⃗ ∈ Eπ , α⃗ is consistent (under f ).
κ3: ∃π ∈ CH(Π) such that ∀α⃗ ∈ Eπ , α⃗ is consistent (under
f ).
κ4: ∃ i ∈ [m] such that “ωp+1 ↔ ωi and qp+1 = qi” or
“ωp+1 ↔ ¬ωi and qp+1 = 1− qi”.

Intuitively, κ1 requires that no profile of n votes is a doc-
trinal paradox. κ2 requires that the output of rq⃗,d⃗ of every
distribution π in CH(Π) is “far away” from any inconsistent
judgements, in the sense that all judgements in Eπ are con-
sistent. κ3 is weaker than κ2, because κ3 only requires that
the condition in κ2 holds for some π ∈ CH(Π). κ4 says that
the conclusion only relies on one premise and the thresholds
are consistent with the relationship between the conclusion
and the premise.
Example 4 (Conditions κ1-κ4). Let f and r be the same as
in Example 2. Let Π = {π1 = (0.25, 0.25, 0.25, 0.25), π2 =
(0.04, 0.32, 0.32, 0.32)}. When n = 1, the paradox does not
hold by definition. In the rest of this example, we assume
n ≥ 2.
κ1 is false. When n = 2, P = (1, 0, 0, 1) is the only doc-
trinal paradox. When n ≥ 3, P = (n + 1 − 2⌊n/3⌋ −
⌈n/3⌉, ⌊n/3⌋, ⌊n/3⌋, ⌈n/3⌉ − 1) is a doctrinal paradox.
κ2 is false. CH(Π) = {π = a·π1+(1−a)·π2 : a ∈ [0, 1]}.
When a ̸= 0, π is a doctrinal paradox and contains no ties.
When a = 0, we have π = π1, and it is tied in conclusion
and both premises. Its effective refinement α⃗ = (1, 1, 0) is a
doctrinal paradox.
κ3 is false. π2 is a doctrinal paradox and contains no ties.
κ4 is false according to the definitions of f and r.

We say that a distribution π is strictly positive, if there ex-
ists ϵ > 0 such that for every ω⃗ ∈ {0, 1}p, π(ω⃗) ≥ ϵ. A set of
distributions Π is strictly positive, if there exists ϵ > 0 such
that every π ∈ Π is strictly positive (by ϵ). Being strictly
positive is a mild requirement for voting systems (c.f. the ar-
gument for voting (Xia 2020)). We also note that specifying
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the likelihood of doctrinal paradox is already highly chal-
lenging under IC, which is a much stronger assumption than
strictly positive. Π is closed if it is a closed set in Rm. We
now present the main theorem of this paper.

Theorem 1 (Semi-random Likelihood of Doctrinal Para-
dox). Given any closed and strictly positive set Π of distri-
butions over V , any logical connection function f : V →
{0, 1}, and any quota rule r. For any n ∈ N,

D̃P
max

Π,r,f (n) =


0 if κ1 is true
exp(−Θ(n)) otherwise, if κ2 is true
Θ(n−1/2) otherwise, if κ4 is true
Θ(1) otherwise

D̃P
min

Π,r,f (n) =


0 if κ1 is true
exp(−Θ(n)) otherwise, if κ3 is true
Θ(n−1/2) otherwise, if κ4 is true
Θ(1) otherwise

.

Notice that both max and min semi-random likelihood of
doctrinal paradox have four cases: the 0 case, the exponen-
tial case, the polynomial case, and the constant case. The
first three cases are good news, particularly in the max part,
which states that the doctrinal paradox vanishes when the
number of agents is large. The last case is bad news, in par-
ticular for the min part, which states that the doctrinal para-
dox does not vanish.
We believe that Theorem 1 is quite general as exemplified
in the next subsection, because it works for any p ≥ 1,
any logical connection function, any quote rule, and only
makes mild assumptions on Π. We believe that asymptotic
studies as done in Theorem 1 is important, because first, n
is large in some classical applications such as combinato-
rial voting (Lang and Xia 2016). Second, even though n is
typically small in some classical applications such as jury
systems, we believe that modern technology will revolution-
ize such applications in the near future and promote them to
the larger scale and broader applications. In this case, The-
orem 1 allows us to analyze the practical relevance of the
paradox, and provides a mathematical basis for choosing the
best (quote) rule to minimize the likelihood of the paradox.

Applications of Theorem 1
In this subsection, we present a few examples of applications
of Theorem 1. The first example illustrates the Θ(1) case.

Example 5 (Θ(1) case). Recall that in the set-
ting of Example 4, we have: (κ1, κ2, κ3, κ4) ={

(true, false, false, false) if n = 1
(false, false, false, false) if n ≥ 2
According to Theorem 1, the max and min semi-random

likelihood of doctrinal paradox are Θ(1), as shown in Ta-
ble 3. A numerical verification can be found in Figure 2(a)
in the next section.

The second example illustrates the exponential case,
which is positive news.

Example 6 (Exponentially small case). Let us con-
sider the same quota rule and the same logical con-
nection as in Example 2 and 4. Let Π = {π1 =

n = 1 n ≥ 2 (Ex. 5) n ≥ 2 (Ex. 6)
D̃P

max

Π,r
q⃗,d⃗

,f (n) 0 Θ(1) exp(−Θ(n))

D̃P
min

Π,r
q⃗,d⃗

,f (n) 0 Θ(1) exp(−Θ(n))

Table 3: Semi-random likelihood of DP in Example 5 and 6.

(0.12, 0.12, 0.12, 0.64), π2 = (0.1, 0.1, 0.1, 0.7)}. Follow-
ing a similar reasoning as in Example 4, we have:

(κ1, κ2, κ3, κ4) =

{
(true, false, false, false) if n = 1
(false, true, true, false) if n ≥ 2

According to Theorem 1, the max and min semi-random like-
lihood of doctrinal paradox are exp(−Θ(n)), as shown in
Table 3. See Figure 2(b) for a numerical verification.

The following example is also positive news because the
doctrinal paradox vanishes as n → ∞, though not as fast as
in Example 6 w.r.t. the max-adversary. Notice that the max
and min semi-random likelihood of doctrinal paradox are
asymptotically different.

Example 7 (Θ(n−1/2), exp(−Θ(n)) and 0 cases).
Let the logical connection be ϕ ↔ ω1, Π = {π1 =
(0.9, 0.1), π2 = (0.3, 0.7)}1 and quota rule rq⃗,d⃗ where q1 =

q3 = 0.5, d1 = 1, and d3 = 0. We have: (κ1, κ2, κ3, κ4) ={
(true, false, false, true) if n is odd
(false, false, true, true) if n is even .

According to Theorem 1, the max and min semi-random
likelihood are presented in Table 4. Also see Figure 2(c) the
next Section for a numerical verification.

Semi-random likelihood n is odd n is even
D̃P

max

Π,r
q⃗,d⃗

,f (n) 0 Θ(n−1/2)

DPmin
Π,r

q⃗,d⃗
,f (n) 0 exp(−Θ(n))

Table 4: Semi-random likelihood of DP in Example 7.

The following corollary of Theorem 1 with Π = {π} ad-
dress the open questions in (List 2005) about the probabil-
ities of doctrinal paradox under all i.i.d. distributions, all q,
all quota rules, and all logical connection funcations.

Corollary 2 (Likelihood of doctrinal paradox under i.i.d.
distributions as in (List 2005)). Given any strictly positive
distribution π over V , any logical connection function f :
V → {0, 1}, and any quota rule r. For any n ∈ N,

PrP∼(π)n (P is a doctrinal paradox) =
0 if κ1 is true
exp(−Θ(n)) otherwise, if all α⃗ ∈ Eπ are consistent,
Θ(n−1/2) otherwise, if κ4 is true
Θ(1) otherwise

,

1Because the doctrinal paradox only depends on the votes to
premise ωj (or conclusion ϕ), we use the marginal distribution on
ωi to simplify notations. Here, π = (pr, 1− pr) mean ωi = 0 with
probability pr while ωi = 1 with probability 1− pr.
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In particular, when π is the uniform distribution over V
and the aggregation rule is the majority, the likelihood of
doctrinal paradox is either Θ(1) or 0 depending on the logi-
cal connection function f .

Proof Sketch of Theorem 1
The proof proceeds in three steps. In Step 1, we model doc-
trinal paradox as unions of polyhedra. In Step 2, we ap-
ply (Xia 2021a, Theorem 2) to obtain a characterization. In
Step 3, we close the gap between Step 2 and Theorem 1 by
translating conditions and degree of polynomial in Step 2 to
their counterparts in Theorem 1.
Step 1: Polyhedra Presentation. We show that the region
of doctrinal paradox can be presented by a set of polyhedra,
each of which is in the m-dimensional Euclidean space with
the form H =

{
x⃗ : A · x⃗ ≤ b⃗

}
. For any i ∈ [p+1], we first

define vector c⃗i ∈ {qi − 1, qi}m as follows:

c⃗i(ω⃗) ≜

{
qi − 1 if ω⃗ ∈ Ωi

qi otherwise . (2)

For any profile P , it is not hard to verify that the sign of
c⃗i · Hist(P ) is closely related to the aggregation result by
the quota rule. We define sign function sign(·) and 1 (·) as
follows,

sign(x) ≜
{

1 if x > 0
−1 otherwise and

1 (κ) ≜

{
1 if κ is true
0 otherwise .

Then, we define Aα⃗ ≜

 sign(α1) · c⃗T1
...

sign(αp+1) · c⃗Tp+1

 and b⃗α⃗ ≜

 sign(α1) · d1 − 1 (α1 = 1)
...

sign(αp+1) · dp+1 − 1 (αp+1 = 1)

 . Let Hα⃗ = {x⃗ :

Aα⃗ x⃗ ≤ b⃗α⃗} denote the polyhedra and let Hα⃗, ≤0 = {x⃗ :

Aα⃗ x⃗ ≤ 0⃗} denote its characteristic cone. Let C = {Hα⃗ :
α⃗ ∈ {0, 1}p+1 is inconsistent} denote the set of all polyhe-
dra corresponding to doctrinal paradox. The following ex-
ample visualizes a polyhedron and its characteristic cone for
doctrinal paradox.

Example 8 (Polyhedra representation of doctrinal para-
dox). We consider a system with one premise ω1. The log-
ical connection between conclusion ϕ and premise ω1 is
ϕ ↔ ω1. The parameters for quota rule are (q1, q2) =
(0.25, 0.65) and (d1, d2) = (1, 1).

According to Equation (2), we have c⃗1 = (q1, q1 − 1)T

and c⃗2 = (q2, q2 − 1)T. Then, the aggregation results of
α⃗ = (1, 0) and α⃗ = (0, 1) are both inconsistent. Thus, C ={
H(1,0),H(0,1)

}
. H(1,0) is represented by A(1,0) and b⃗(1,0)

defined as follows.

A(1,0) =

(
q1 q1 − 1
−q2 1− q2

)
and b⃗(1,0) =

(
0
−1

)

𝒏𝟏

𝜶 = (𝟎, 𝟎)
not a doctrinal paradox

𝓗(𝟏,𝟎)

𝒏-𝒏𝟏

𝓗 𝟏,𝟎 ,≤𝟎

Figure 1: H(1,0) in Example 8. The characteristic cone
H(1,0),≤0 is the combination of H(1,0) and the region be-
tween n1 = q2 · n− 1 and n1 = q2 · n.

It is not hard to verify that for any profile P of n agents,
A(1,0) · Hist(P ) ≤ b⃗(1,0) if and only if

n1 ≥ q1 · n and n1 ≤ q2 · n− 1,

where n1 represents the number of votes for ω1 = 1 in P .
Figure 1 illustrates the regions corresponding to H(1,0) and
its characteristic cone.

Consequently, the semi-random likelihood of doctrinal
paradox is equivalent to the semi-random probability for
the histogram of the randomly generated profile (which is a
Poisson multivariate variable (PMV)) to be in C. Therefore,
in Step 2 we apply (Xia 2021a, Theorem 2) to obtain a char-
acterization for the PMV-in-C problem. However, the results
are too technical and generic to be informative in judgement
aggregation context (see Lemma 5 in Appendix B). Step
3 aims at obtaining the characterization as stated in Theo-
rem 1 based on Lemma 5, which involves non-trivial calcu-
lations and simplifications. The full proof can be found in
Appendix B. □

Computational Verification of Conditions in
Theorem 1
In practice, κ1-κ4 may not be easy to verify by hand. In this
subsection, we briefly discuss algorithms for checking κ1-κ4

under any quota rule rq⃗,d⃗ with rational threshold q⃗ w.r.t. any
Π with finitely many vertices on its convex hull and the prob-
abilities of all vertices are rational numbers. The runtime of
these algorithms is polynomial in m (as well as log n for
κ1). While m = 2p may seem exponentially large, notice
that the input size (e.g., Π and the truth-table representation
of f ) can also be large, i.e., Θ(m).

Suppose Π = {π1, . . . , πℓ} ⊆ Qm.2 κ1-κ4 can be ver-
ified as follow, by combining the results of multiple (I)LP

2Throughout this section, we slightly abuse the notations and
use Π to represent the set of all vertices in CH(Π).
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Figure 2: A numerical verification of Theorem 1. Note that the plot for Example 6 is in log-scale.

whose variables are y⃗ = (y1, . . . , yℓ) that represent the mul-
tiplicity of πℓ.

κ1 holds for any given n if and only if there exists an
inconsistent α⃗ ∈ {0, 1}p+1 such that the following ILP is
feasible.Aα⃗ · ((π1)T, . . . , (πℓ)T)

1⃗

−1⃗

 · (y⃗) ≤

 b⃗α⃗
n

−n

 , (3)

where y⃗ are integers. Following Lenstra’s theorem (Lenstra
1983), when ℓ is viewed as a constant (and q and n are vari-
ables), the runtime of each ILP is polynomial in q and log n.
Therefore, the overall complexity of checking κ1 is polyno-
mial in m (= 2p) and log n. Let An ⊆ {0, 1}p+1 denote
the set of all inconsistent α such that (3) has a feasible (non-
negative integer) solution, which will be used later.

κ2 and κ3 can be verified by similar algorithms. Notice
that Eπ only depends on whether each component of r(π) is
positive, 0, or negative. Therefore, we can naturally define
Eβ⃗ for every β⃗ ∈ {+, 0,−}p+1. Let Bn denote the set of

all β⃗, for each of which there exists α ∈ An that refines it.
Then, for every β⃗ ∈ Bn, we define LPβ⃗ , whose variables

are y⃗ ≥ 0⃗ that do not need to be integers, to verify whether
there exists π ∈ CH(Π) such that rq⃗,d⃗(π) = β⃗. More
precisely, for every j ≤ p+ 1,

1◦ if βj = +, then LPβ⃗ contains a linear constraint c⃗Tj ·
(
∑ℓ

j=1 yj(π⃗
j)T) ≤ −1;

2◦ if βj = −, then LPβ⃗ contains a linear constraint −c⃗Tj ·
(
∑ℓ

j=1 yj(π⃗
j)T) ≤ −1;

3◦ if βj = 0, then LPβ⃗ contains two linear constraints c⃗Tj ·
(
∑ℓ

j=1 yj(π⃗
j)T) ≤ 0 and −c⃗Tj · (

∑ℓ
j=1 yj(π⃗

j)T) ≤ 0.

Therefore, κ2 is true if for every β⃗ ∈ Bn, LPβ⃗ is not

feasible. κ3 is true, if there exists β⃗ /∈ Bn such that LPβ⃗ is
feasible. Notice that ℓ is viewed as a constant, which means
that LPβ⃗ can be solved in time that is polynomial in m.

κ4 can be verified by enumerating all inputs of f , which
takes time that is polynomial in m.

Experiments
We conduct numerical experiments to verify the results in
Theorem 1. The first three experiments (Figure 2) follows
the same setting as Example 5, 6, 7 respectively. In Fig-
ure 2, DPmax

Π and DPmin
Π (the blue circles and red stars)

represent the estimated max-semi-random likelihood and the
min-semi-random likelihood of doctrinal paradoxes. The dot
curves illustrate the fittings of the estimated semi-random
probabilities. The expressions and fitness of all fitting curves
are presented in Appendix C. Recalling the notations used
in our definition of D̃P

max

Π,r,f (n), we say π⃗ ∈ Πn is one kind
of distribution assignment. We run one million (106) inde-
pendent trials to estimate the probability of doctrinal para-
doxes under each distribution assignment. Then, DPmax

Π (or
DPmin

Π ) takes the maximum (or the minimum) probability of
doctrinal paradoxes among all distribution assignments.

It is easy to see that the results are consistent with Theo-
rem 1. For example, Figure 2(a) shows that both the max-
semi-random likelihood and the min-semi-random likeli-
hood of doctrinal paradoxes are Θ(1), which matches the
result in Table 3. Two additional sets of experiments, whose
results are presented in Figure 3(b) in Appendix C, study a
more complex setting of three premises.

Conclusions and Future Work
We made a first step towards understanding the likelihood
of doctrinal paradox in the semi-random analysis frame-
work. There are many immediate open questions. For exam-
ple, can we characterize the semi-random likelihood of the
paradox for general, more complicated propositions (some-
times called agendas)? Can we remove the strict positive-
ness assumption on Π? Can we prove semi-random impos-
sibility theorems that extend the quantitative impossibility
theorems under i.i.d. uniform distributions (Nehama 2013;
Filmus et al. 2020)? Can we generalize the framework to
discursive dilemmas or other kinds of responsibility voids?
More generally, we believe that building a comprehensive
picture of the semi-random properties of aggregation rules
in judgement aggregation is a promising (yet challenging)
direction in theory and in practice.
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