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Abstract

We consider the problem of reforming an envy-free matching
when each agent is assigned a single item. Given an envy-free
matching, we consider an operation to exchange the item of
an agent with an unassigned item preferred by the agent that
results in another envy-free matching. We repeat this opera-
tion as long as we can. We prove that the resulting envy-free
matching is uniquely determined up to the choice of an initial
envy-free matching, and can be found in polynomial time. We
call the resulting matching a reformist envy-free matching,
and then we study a shortest sequence to obtain the reformist
envy-free matching from an initial envy-free matching. We
prove that a shortest sequence is computationally hard to ob-
tain even when each agent accepts at most four items and each
item is accepted by at most three agents. On the other hand,
we give polynomial-time algorithms when each agent accepts
at most three items or each item is accepted by at most two
agents. Inapproximability and fixed-parameter (in)tractability
are also discussed.

1 Introduction
Matching under preferences constitutes an important and
well investigated subarea of economics and game theory,
and its computational aspects are intensively studied in al-
gorithmic game theory and computational social choice (see,
e.g., (Klaus, Manlove, and Rossi 2016; Manlove 2013)). In
a lot of situations, we are interested in allocating indivisible
items, namely, items that cannot be subdivided into several
parts. Examples include job allocation, college admission,
school choice, kidney exchange, and junior doctor allocation
to hospital posts. Especially, this paper is concerned with the
situation where each agent is assigned a single item. This
situation is often called the house allocation problem. A set
of agents faces a set of items, and each agent has a prefer-
ence over her acceptable items (i.e., her preference list can
be incomplete). In this situation, there may be many pos-
sible matchings. However, some of those matchings suffer
from “instability.”
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Stability is often studied in terms of envy of agents in the
house allocation problem. Given a matching, an agent i has
a (justified) envy for another agent j if the agent i prefers
the item assigned to j to the item assigned to i. If there is no
agent with envy, the matching is said to be envy-free. Even
with envy-freeness, there may be many possible matchings,
and we want to look for a good envy-free matching. This
motivates the following simple procedure that can be imple-
mented in a decentralized way. Agents start with any envy-
free matching. There are many unassigned items on the ta-
ble. Then an agent i can exchange the item x assigned to her
with an item y on the table if i prefers y to x and the ex-
change does not break the envy-freeness. This “reforming”
process can continue until no agent has an incentive for ex-
change. Then every agent will be assigned an item that is at
least as good as the item that was initially assigned, and the
resulting matching is still envy-free.

Our problem arises in the following situation. First, items
are assigned to agents by an envy-free matching. The match-
ing is given a priori, and agents are satisfied by the items
assigned to them. Then the agents face the arrival of extra
items. This may happen, for example, when some new items
are brought into the market, or when some of the agents
leave the market and release their items. Since the new items
could improve agents’ utilities, the agents might not be sat-
isfied with the items currently assigned to them any longer.
Hence, we want to reassign items by incorporating the exis-
tence of new items. One way to redistribute items is to com-
pute a new envy-free matching from scratch. However, this
requires the agents first to release their items, which will re-
sults in the decrease of their utilities. Our proposal here is to
exchange items one by one so that the intermediate match-
ings are all envy-free and no agent decreases her utility at
any moment during the procedure.

In this paper, we call a matching obtained by the process
above a reformist envy-free matching. A reformist envy-free
matching can depend on the choice of an initial envy-free
matching and the sequence of exchanges. Our first result
states that the exchange sequence does not affect the result-
ing reformist envy-free matching. Namely, a reformist envy-
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free matching uniquely exists up to the choice of an initial
envy-free matching (Theorem 1).

The definition of a reformist envy-free matching was mo-
tivated by a decentralized algorithm. However, the number
of steps in this process is not discussed yet. With a decen-
tralized algorithm, we may end up with an extremely long
sequence of envy-free matchings until we obtain a reformist
envy-free matching. On the other hand, if there is coordina-
tion among the agents, they may quickly obtain a reformist
envy-free matching. Coordination is modeled as a central-
ized algorithm in which a central authority declares who
should exchange an item next, and agents obey the dec-
larations of the central authority. Since a reformist envy-
free matching is unique (Theorem 1), there is no reason for
agents to deviate from the orders of the central authority.

To formalize the discussion, we consider the following
type of algorithms. Until a reformist envy-free matching is
obtained, an agent is nominated at each step. Let i be the
nominated agent. Then i exchanges the currently assigned
item with an unassigned item on the table that is most pre-
ferred by i such that the matching after the exchange is still
envy-free. The choice of nominated agents can change the
number of steps. In the decentralized setting the choice will
be done arbitrarily while in the centralized setting the choice
is supposed to be done cleverly to minimize the number of
steps. Thus, we examine the minimum number of steps to
obtain a reformist envy-free matching with respect to a given
initial envy-free matching.

In what follows, we call a sequence of exchanges to obtain
the reformist envy-free matching a reformist sequence, and
we call the problem of finding a shortest reformist sequence
the shortest reformist sequence problem. We define the de-
cision version of the shortest reformist sequence problem as
the problem where we are given an envy-free matching µ
and a positive integer `, and we determine whether there is a
reformist sequence of length at most `with respect to the ini-
tial envy-free matching µ. To justify the study of the shortest
reformist sequence problem, we first show that coordination
sometimes makes sense by giving an example in which the
maximum number of steps can be arbitrarily larger than the
minimum number of steps (Theorem 2). Then, we prove that
the decision version of the shortest reformist sequence prob-
lem is NP-complete even if each agent accepts at most four
items (i.e., the preference list of each agent contains at most
four items) and each item appears in the preference lists of at
most three agents (Theorem 3). On the other hand, the short-
est reformist sequence problem can be solved in polynomial
time if each agent accepts at most three items (Theorem 4)
or each item appears in the preference lists of at most two
agents (Theorem 5).

With the NP-completeness result, we consider two estab-
lished approaches to cope with NP-completeness, namely
approximation and fixed-parameter tractability. For approxi-
mation, we indeed prove that the shortest reformist sequence
problem is hard to approximate within the factor of c lnn
for some constant c, where n is the number of agents (The-
orem 7). For fixed-parameter tractability, we have several
choices of parameters. When the length ` of a reformist se-
quence is chosen as a parameter, (the decision version of)

the shortest reformist sequence problem is fixed-parameter
tractable (Theorem 8). On the other hand, When `−n is cho-
sen as a parameter, the problem is W[1]-hard (Theorem 9),
where n is the number of agents. The choice of the param-
eter comes from the property that the length of a reformist
sequence is at least n after preprocessing and thus the pa-
rameter is considered the number of redundant steps in the
reformist sequence. On the other hand, when the number of
“intermediate” items is chosen as a parameter, the problem
is fixed-parameter tractable (Theorem 10). Here, “intermedi-
ate” items are items that are not assigned in the initial envy-
free matching or in the reformist envy-free matching.

1.1 Related Work
The concept of envy-freeness is often used in the literature
of social choice theory. For example, Gan, Suksompong, and
Voudouris (Gan, Suksompong, and Voudouris 2019) consid-
ered the problem of checking the existence of an envy-free
item matching in the situation where any agent accepts all
the items and the preferences may contain ties. They proved
that we can determine whether there is an envy-free item
matching in polynomial time. Beynier et al. (Beynier et al.
2019) considered envy-freeness on an envy relationship net-
work. Envy-freeness is also studied in the literature on fair
division of divisible goods such as cake cutting (e.g. (Pro-
caccia 2016; Aziz and Mackenzie 2020; Goldberg, Hollen-
der, and Suksompong 2020)), on fair division of indivisi-
ble goods with numerical valuations (e.g. (Bouveret, Cheva-
leyre, and Maudet 2016; Chaudhury, Garg, and Mehlhorn
2020)), and in two-sided markets such as the hospitals/resi-
dents problem (e.g. (Wu and Roth 2018; Yokoi 2020; Krish-
naa et al. 2020)).

Problems of improving a given item allocation via some
operations have been considered in the study of item allo-
cations. Gourvès, Lesca, and Wilczynski (Gourvès, Lesca,
and Wilczynski 2017) considered the problem of determin-
ing whether a target item allocation can be reached via ra-
tional swaps on a social network. Furthermore, they consid-
ered that the problem of determining whether some speci-
fied agent can get a target item via rational swaps (see also
(Brandt and Wilczynski 2019; Huang and Xiao 2020)).

Our problems are closely related to the study of combina-
torial reconfiguration. In combinatorial reconfiguration, we
consider problems where we are given an initial configura-
tion and a target configuration of some combinatorial ob-
jects, and the goal is to check the reachability between these
two configurations via some specified operations. The study
of algorithmic aspects of combinatorial reconfiguration was
initiated in (Ito et al. 2011). See, e.g., (Nishimura 2018) for
a survey of combinatorial reconfiguration.

2 Preliminaries
Throughout this paper, a finite set of n agents is denoted by
N , and a finite set of m items is denoted by M . Each agent
i ∈ N is associated with a subset Mi ⊆M and a strict total
order �i on Mi: Mi represents the set of acceptable items
for i, and�i represents the preference of i overMi. For each
agent i ∈ N , we define mi := |Mi|. For each agent i ∈ N ,
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if Mi = {x1, x2, . . . , xmi} and x1 �i x2 �i · · · �i xmi ,
then we describe�i by�i : x1, x2, . . . , xmi . For each agent
i ∈ N and each pair x, y ∈ M of items, we write x �i y
if x �i y or x = y. Note that �i satisfies transitivity, i.e., if
x �i y and y �i z, then x �i z.

An injective mapping µ : N → M is called a matching if
µ(i) ∈ Mi for every agent i ∈ N . For each matching µ, an
item x ∈ M is assigned if there exists an agent i ∈ N such
that µ(i) = x; otherwise x is unassigned. A matching µ is
envy-free if there exists no pair i, j ∈ N of distinct agents
such that µ(j) �i µ(i). For each matching µ, we denote the
set of unassigned items for µ by Mµ.

Let µ, σ be envy-free matchings. We write µ; σ if there
exists an agent i ∈ N with the following two conditions: (i)
σ(i) �i µ(i); (ii) µ(j) = σ(j) for every agent j ∈ N \ {i}.
Intuitively, if items are assigned to the agents according to
µ and µ ; σ, then σ(i) ∈ Mµ and i has an incentive to
exchange her item µ(i) with σ(i) and the resulting matching
is still envy-free. This way, the operation “;” unilaterally
improves the current envy-free matching µ to a new envy-
free matching σ.

Let µ, σ be envy-free matchings. If there exist envy-free
matchings µ0, µ1, . . . , µ` such that (1) µ0 = µ, µ` = σ, (2)
µt ; µt+1 for every integer t ∈ {0, 1, . . . , ` − 1}, and (3)
there exists no envy-free matching µ′ such that µ` ; µ′,
then σ is called a reformist envy-free matching with respect
to µ. Intuitively, a reformist envy-free matching with respect
to µ is an envy-free matching that is obtained from µ as an
outcome of the iterative improvement.

We conclude this section with a small example.

Example Consider 2 agentsN = {1, 2} and 5 itemsM =
{x, y, p, q, r} with preferences

�1: p, r, q, x and �2: q, p, y.

Let µ be a matching satisfying µ(1) = x and µ(2) = y.
Then it is confirmed to be envy-free. However, in the match-
ing µ, agent 1 has an incentive to exchange her current item
x with r, and such exchange does not arouse envy in agent
2. Thus we can improve µ to µ1, where (µ1(1), µ1(2)) =
(r, y), which we denote by µ ; µ1. Similarly, we have
µ1 ; µ2 ; µ3, where (µ2(1), µ2(2)) = (r, q) and
(µ3(1), µ3(2)) = (p, q). Since p and q are the most preferred
items for the agents, µ3 is a reformist envy-free matching.

3 Uniqueness
We first observe that a reformist envy-free matching with
respect to an envy-free matching can be obtained in poly-
nomial time. In fact, since one exchange strictly improves
the current matching, the number of exchanges to obtain a
reformist envy-free matching is at most |M | · |N |.

We prove that the obtained reformist envy-free matching
is unique up to the choice of an initial envy-free matching.
Theorem 1. Let µ be an envy-free matching. Then a re-
formist envy-free matching with respect to µ uniquely exists.

Proof. The existence is immediate from the definition. We
prove the uniqueness. Suppose to the contrary that there ex-
ist reformist envy-free matchings σ and τ with respect to µ

such that σ 6= τ . Without loss of generality, we can assume
that there exists an agent i ∈ N such that σ(i) �i τ(i). Sup-
pose that for envy-free matchings σ0, σ1, . . . , σ`, we have
µ = σ0 ; σ1 ; · · · ; σ` = σ. Since τ is a reformist
envy-free matching with respect to µ, τ(j) �j σ0(j) holds
for every agent j ∈ N . Let t be the minimum integer in
{1, 2, . . . , `} such that σt(i) �i τ(i) for some agent i ∈ N .
Then τ(j) �j σt(j) holds for every agent j ∈ N \ {i}.

If there is an agent j ∈ N \ {i} such that τ(j) = σt(i),
then τ(j) �i τ(i), which contradicts the assumption that τ
is envy-free. This implies that τ(j) 6= σt(i) holds for every
agent j ∈ N \ {i}, which means σt(i) ∈Mτ . Hence, under
the matching τ , the agent i can exchange τ(i) with σt(i)
to obtain another matching τ ′. Since τ is a reformist envy-
free matching, the resulting matching τ ′ is not envy-free.
That is, there is an agent j ∈ N \ {i} such that τ ′(i) �j
τ ′(j) = τ(j). For such an agent j ∈ N \ {i}, we have
σt(i) = τ ′(i) �j τ(j) �j σt(j). However, this means that
the agent j has envy for i on σt, which contradicts the fact
that σt is envy-free. This completes the proof.

Theorem 1 has a consequence for the following reconfigu-
ration question. Namely, we are given two envy-free match-
ings µ and τ , and asked to determine whether τ is obtained
from µ by the iterative improvement. The proof is omitted.
Corollary 1. For two envy-free matchings µ, τ , we can de-
termine in polynomial time whether there exists a sequence
of envy-free matchings µ = µ0, µ1, . . . , µ` = τ such that
µt ; µt+1 for every integer t ∈ {0, 1, . . . , `− 1}.

4 Shortest Reformist Sequence: Hardness
To justify the study of the shortest reformist sequence prob-
lem, we first give an example in which the maximum length
of a reformist sequence can be arbitrarily larger than the
minimum length. The proof is omitted.
Theorem 2. For any positive integer p, there is an instance
of the shortest reformist sequence problem with three agents
and 2p + 3 items such that there is a reformist sequence
of length 2p − 1 while the shortest reformist sequence has
length at most four.

As it turns out, (the decision version of) the shortest re-
formist sequence problem is NP-complete.
Theorem 3. The decision version of the shortest reformist
sequence problem is NP-complete even when mi ≤ 4 for
every agent i ∈ N and |{i ∈ N | x ∈ Mi}| ≤ 3 for every
item x ∈M .

Proof. We first observe that the problem is in NP. This is
because one exchange strictly improves the current match-
ing, and hence the maximum number of exchanges in the
reformist sequence is at most |M | · |N |.

We reduce the vertex cover problem in 3-regular graphs
to the decision version of the shortest reformist sequence
problem. In the vertex cover problem, we are given an undi-
rected graphG = (V,E) and a positive integer k, and we are
asked to determine whether G has a subset S ⊆ V such that
|S| ≤ k and every edge e ∈ E has one of its endvertices in
S (i.e., S ∩ e 6= ∅). Such a vertex subset S is called a vertex
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cover. It is known (Karp 1972) that the vertex cover prob-
lem is NP-complete even when a given graph is 3-regular.
Let G = (V,E) be a 3-regular graph as an instance of the
vertex cover problem.

We construct an instance of the decision version of the
shortest reformist sequence problem as follows. For each
edge e ∈ E, we prepare four agents e1, e2, e3, e4, and for
each vertex v ∈ V , we prepare eight agents v1, v2, . . . , v8.
Thus, there are 4|E|+ 8|V | agents:

N := {e` | e ∈ E, ` ∈ {1, 2, 3, 4}}
∪ {v` | v ∈ V, ` ∈ {1, 2, . . . , 8}}.

We set
M := {ri, si | i ∈ N} ∪ {ye,u, ye,v | e = {u, v} ∈ E}

∪ {tv | v ∈ V } ∪ {xv,e | v ∈ V, e ∈ δ(v)},

where δ(v) denotes the set of edges incident to v. Note that
|δ(v)| = 3 for every vertex v ∈ V since G is 3-regular.

For each edge e = {u, v} ∈ E, the agents e1, e2, e3, e4
have the following preferences:

�e1 : re1 , ye,v, re2 , se1 , �e2 : re2 , re3 , xv,e, se2 ,
�e3 : re3 , ye,u, re4 , se3 , �e4 : re4 , re1 , xu,e, se4 .

For each vertex v ∈ V with δ(v) = {e, f, g}, we define the
preferences of the associated 8 agents as follows:

�v1 : rv1 , tv, rv2 , sv1 , �v2 : rv2 , rv3 , rv4 , sv2 ,
�v3 : rv3 , ye,v, yf,v, sv3 , �v4 : rv4 , yg,v, sv4 ,
�v5 : rv5 , rv1 , sv5 ,
�v6 : rv6 , rv1 , sv6 , where rv6 = xv,e,

�v7 : rv7 , rv5 , sv7 , where rv7 = xv,f ,

�v8 : rv8 , rv5 , sv8 , where rv8 = xv,g.

The initial matching µ is defined to be µ(i) = si for each
agent i ∈ N . Then by Claim 1 below, a reformist envy-free
matching σ with respect to µ is σ(i) = ri for each agent
i ∈ N . We observe that each agent i ∈ N has a set Mi of
size at most four, and each item appears in Mi for at most
three agents i ∈ N .

Claim 1. If G has a vertex cover of size k, then there exists
a reformist sequence of length |N |+ |E|+ k.

Proof. Let S be a vertex cover of size k in G. Consider the
following reformist sequence.

1. For each vertex v ∈ S, the agents v1, v2, v3, v4 are nomi-
nated one by one as follows. The agent v1 exchanges sv1
with tv . Then v2 exchanges sv2 with rv2 , and v3 and v4
exchange sv3 and sv4 with rv3 and rv4 , respectively. This
takes 4 steps for each vertex v ∈ S.

2. For each edge e = {u, v} ∈ E, the agents e1, e2, e3, e4
are nominated one by one. Since S is a vertex cover, u
or v belongs to S. By symmetry, suppose that v ∈ S.
The agent e1 exchanges se1 with ye,v , which can be done
because ye,v has no envy from v3 or v4 due to Step 1.
Then the agent e` exchanges se` with re` in the order of
` = 2, 3, 4. Finally, the agent e1 exchanges ye,v with re1 .
This takes 5 steps for each edge e ∈ E.

3. For each vertex v ∈ V and each integer ` ∈ {6, 7, 8},
v` exchanges sv` with rv` , and then v5 exchanges sv5
with rv5 . This can be done since rv` has no envy from
the other agents for each integer ` ∈ {6, 7, 8} due to Step
2. This takes 4 steps for each vertex v ∈ V .

4. For each vertex v ∈ S, v1 exchanges tv with rv1 . This
takes 1 step for each vertex v ∈ S.

5. For each vertex v ∈ V \ S, the four agents v` exchange
sv` with rv` in the order of ` = 1, 2, 3, 4. This takes 4
steps for each vertex v ∈ V \ S.

The total number of steps in the reformist sequence is 4k +
5|E| + 4|V | + k + 4(|V | − k) = 8|V | + 5|E| + k. Since
|N | = 8|V |+ 4|E|, this is equal to |N |+ |E|+ k.

Claim 2. If there exists a reformist sequence of length |N |+
|E|+ k, then G has a vertex cover of size k.

Proof. Consider a reformist sequence with minimum length.
We first observe the following because of the minimality.

• For each vertex v ∈ V , the agents v2, . . . , v8 exchange
sv` with rv` in the reformist sequence, since moving to
an intermediate item is redundant, i.e., moving to an in-
termediate item does not improve the situation of the
other agents. We note that the agent v1 may use tv . Thus,
for each vertex v ∈ V , we spend eight or nine steps.

• For each edge e = {u, v} ∈ E, the agent e2 (e4, resp.,)
exchanges se2 with re2 (se4 with re4 , resp.,) in the se-
quence. Moreover, only one of ye,u or ye,v must be used
in the sequence. Thus, for each edge e ∈ E, we spend
exactly 5 steps.

Define S as the set of v ∈ V such that the agent v1 possesses
tv at some point. Then the number of steps is 8|V | + |S| +
5|E|. By the assumption with |N | = 8|V |+4|E|, it follows
that |S| ≤ k.

We will claim that S is a vertex cover of G. Indeed, sup-
pose to the contrary that S is not a vertex cover. Then there is
some edge e = {u, v} ∈ E such that u 6∈ S and v 6∈ S. That
is, neither tu nor tv is used in the sequence. This means that,
in the sequence, ye,u and ye,v always have envy from one of
u`’s and v`’s, respectively, and hence neither the agents e1
nor e3 can exchange items, which is a contradiction.

By Claims 1 and 2, the vertex cover problem in 3-regular
graphs is reduced to the decision version of the shortest re-
formist sequence problem, which completes the proof.

5 Shortest Reformist Sequence: Algorithms
5.1 Preprocessing
Here we present some basic observations for the shortest
reformist sequence problem. Suppose that µ is an initial
envy-free matching. Then, as mentioned in Section 3, the re-
formist matching σ with respect to µ can be found in polyno-
mial time. If µ(i) �i x for some i ∈ N and x ∈Mi, then we
can remove x from Mi because i never envies an agent hav-
ing x. If x �i σ(i) for some i ∈ N and x ∈Mi, then we can
remove x from the instance because i always envies an agent
having x. Hence, we may assume that σ(i) �i x �i µ(i) for
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every item x ∈ Mi. We may also assume that σ(i) �i µ(i)
for every agent i ∈ N , as we can simply remove agents i
with σ(i) = µ(i). This implies that the length of every re-
formist sequence must be at least n.

We denote S = {µ(i) | i ∈ N} and R = {σ(i) | i ∈ N}.
Then S ∩ R = ∅ holds. In fact, suppose that there exist two
agents i, j such that µ(i) = σ(j). Then, µ(i) �j µ(j) since
σ(j) �j µ(j) and µ(i) 6= µ(j). However, this contradicts
the envy-freeness of µ.

Those assumptions can be ensured in polynomial time,
and thus in the following we assume that given instances
satisfy those properties.

5.2 Preferences of Length Three
While Theorem 3 says the shortest reformist sequence prob-
lem is NP-hard when each agent has at most four acceptable
items, we show that, if each agent has at most three accept-
able items, then the shortest reformist sequence problem is
polynomial-time solvable.

Theorem 4. If mi ≤ 3 for every agent i ∈ N , then a short-
est reformist sequence can be found in polynomial time.

Proof. We prove that there is a reformist sequence of length
n = |N |, and such a sequence can be found in polynomial
time. Since n is a lower bound on the length of a reformist
sequence (see Section 5.1), the obtained sequence is opti-
mal. Let µ and σ be an initial envy-free matching and the
reformist envy-free matching with respect to µ, respectively.

As mentioned in Section 5.1, we may assume that {σ(i) |
i ∈ N} and {µ(i) | i ∈ N} are disjoint. Thus, we may as-
sume that each agent i ∈ N has preferences σ(i) �i b(i) �i
µ(i) by appending a dummy item b(i) if mi < 3.

We claim that there exists an agent i ∈ N such that i can
exchange µ(i) with σ(i) keeping envy-freeness. If this claim
is true, by repeatedly finding such an agent and removing
her, we can find a reformist sequence of length n, which
completes the proof.

To find such an agent, we construct an auxiliary directed
graph D = (N,A) where, for each pair i, j ∈ N , an arc
(i, j) ∈ A exists if and only if σ(i) = b(j). The existence
of the arc (i, j) means that i cannot exchange to σ(i) before
j gets σ(j). Since σ is a reformist envy-free matching with
respect to µ, there does not exist a directed cycle in D, that
is, D is acyclic. Hence D has a sink i ∈ N . Since σ(i) 6=
b(j) for every agent j ∈ N , the agent i can exchange µ(i)
with σ(i). Thus the claim follows.

5.3 Items Are Acceptable to at Most Two Agents
By Theorem 3, the shortest reformist sequence problem
is NP-hard when each item is acceptable to at most three
agents. Here, we show that, if every item is acceptable to at
most two agents, then the shortest reformist sequence prob-
lem is polynomial-time solvable.

Theorem 5. If |{i ∈ N | x ∈ Mi}| ≤ 2 for every item
x ∈M , then we can obtain a shortest reformist sequence in
polynomial time.

To this end, we introduce a slightly generalized version of
the original problem. Let µ be an initial envy-free matching

and σ the reformist envy-free matching with respect to µ.
For each agent i ∈ N , we are given an item xi ∈ Mi, and
define Li := {x ∈ Mi | x �i xi} as the target set of i.
Note that Li consists of the best |Li| items with respect to
�i. Denote L := {Li | i ∈ N}. In addition, we are given a
partition N := {N1, N2, . . . , Nk} of N .

We generalize the concept of envy according to the target
sets L and the partitionN as follows. Suppose that an agent
i is in Na and an agent j is in Nb. For a matching µ′, we say
that i has (L,N )-envy for j on µ′ if{

µ′(j) �i µ′(i) if a = b,

µ′(j) �i µ′(i) and µ′(i′) /∈ Li′ (∀i′ ∈ Na) if a 6= b.

The definition says that an agent i has envy for j if the agent
i prefers µ′(j) to µ′(i), except in the case when i and j are
in different groups and some agent i′ in the same group as
i has an item in Li. In other words, if some agent i′ is as-
signed an item in her target set Li′ , then agents in the same
group as i′ have no envy for agents in the other groups. A
matching µ′ is said to be (L,N )-envy-free if every agent
i ∈ N has no (L,N )-envy for any agent j ∈ N \ {i} on
µ′. An (L,N )-envy-free matching µ′ is said to be satisfac-
tory if, for each index a ∈ {1, 2, . . . , k}, there is an agent
i ∈ Na such that µ′(i) ∈ Li. Since an envy-free matching
is (L,N )-envy-free and the reformist envy-free matching is
satisfactory, there always exists a sequence µ ; · · · ; σ′

of (L,N )-envy-free matchings from µ to some satisfactory
matching σ′. In what follows, we consider the problem of
finding such a sequence with minimum length.

The following theorem shows that the problem defined
above can be solved in polynomial time if every item is ac-
ceptable by at most two agents.
Theorem 6. If |{i ∈ N | x ∈ Mi}| ≤ 2 for every item x ∈
M , then a shortest sequence of (L,N )-envy-free matchings
to some satisfactory matching can be found in polynomial
time.

We remark that, if |Na| = 1 for every a ∈ {1, 2, . . . , k}
and |Li| = 1 for every agent i ∈ N , the above problem is
equivalent to the shortest reformist sequence problem. Thus,
Theorem 5 immediately follows from Theorem 6.

Proof of Theorem 6. We denote by ` (L,N ) the length of a
shortest sequence from an initial matching µ to some satis-
factory matching. If the value

∑
i∈N |Mi \ Li| is zero, then

µ is satisfactory, which implies ` (L,N ) = 0.
We assume

∑
i∈N |Mi \ Li| > 0. In the following, we

construct in polynomial time a new instance (L∗,N ∗) with
the set N∗ of agents, where N ∗ is a partition of N∗ and
L∗ := {L∗i | i ∈ N∗} is the set of the target sets L∗i , satisfy-
ing the following two conditions.

C1.
∑
i∈N∗ |Mi \ L∗i |+ |N∗| <

∑
i∈N |Mi \ Li|+ |N |.

C2. ` (L∗,N ∗) = ` (L,N ) − c, where the value c can be
computed in polynomial time from the original instance
(L,N ).

If such an instance can be constructed, then we can obtain
` (L,N ) in polynomial time by recursive computation: the
condition C1 implies that the number of recursive calls is
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bounded by
∑
i∈N |Mi|+ |N |; the condition C2 verifies that

each recursive call can be preformed in polynomial time and
that we can compute ` (L,N ) from ` (L∗,N ∗).

We first consider a simple case where there exist an index
a ∈ {1, 2, . . . , k} and an agent i ∈ Na such that µ(i) ∈
Li. Then we define N∗ := N \ Na, N ∗ := N \ {Na},
and L∗i := Li for each agent i ∈ N∗. Moreover, we set
an initial envy-free matching as the restriction of µ to N∗.
Then the new instance satisfies the conditions C1 and C2
since |N∗| < |N | and ` (L∗,N ∗) = ` (L,N ).

A similar argument can be applied to the case when there
exist an index a ∈ {1, 2, . . . , k} and an agent i ∈ Na such
that µ(i) /∈ Li but a matching µ′ obtained from µ by ex-
changing µ(i) with some x ∈ Li is (L,N )-envy-free. In
this case, we define N∗ := N \Na, N ∗ := N \ {Na}, and
L∗i := Li for each agent i ∈ N∗. We set an initial envy-free
matching as the restriction of µ′ to N∗. Then the new in-
stance satisfies the conditions C1 and C2 since |N∗| < |N |
and ` (L∗,N ∗) = ` (L,N )− 1.

Therefore, we may assume the following.
(∗) For any agent i, µ(i) 6∈ Li and any item x ∈ Li receives
(L,N )-envy from some agent on µ(i). Since each item is
acceptable to at most two agents, there exists exactly one
agent that has (L,N )-envy for an item x ∈ Li.

We construct a new instance (L∗,N ∗) as follows. Let
N∗ := N . We define the directed graph D = (V,A) by

V := {1, 2, . . . , k},
A := {(a, b) ∈ V × V | a 6= b,

∃i ∈ Na, ∃j ∈ Nb, Mi ∩ Lj 6= ∅}.

Roughly, Mi ∩ Lj 6= ∅ means that j cannot receive some
item inLj because of (L,N )-envy from i. We decomposeD
into strongly connected components. Let S ⊆ V be a source
component of the decomposition (i.e., no arc in A enters S).
We define the partitionN ∗ of N∗ by merging {Na | a ∈ S}
into one part, i.e., N ∗ :=

(
N \ {Na | a ∈ S}

)
∪ {NS},

where we defineNS :=
⋃
a∈S Na. LetX :=

⋃
i∈NS

Li. For
each agent i ∈ NS , we denote by x∗i be the item in X ∩Mi

that is minimum with respect to �i. We define L∗ = {L∗i |
i ∈ N∗} by

L∗i :=

{
{x ∈Mi | x �i x∗i } if i ∈ NS ,
Li if i ∈ N \NS .

We set µ as the initial matching in the resulting instance.
Note that µ is an (L∗,N ∗)-envy-free matching.

Claims 3 and 4 below show that the resulting instance sat-
isfies the conditions C1 and C2, respectively.

Claim 3.
∑
i∈N |Mi \ L∗i | <

∑
i∈N |Mi \ Li|.

Proof. By definition,L∗i ⊇ Li holds for every agent i ∈ NS .
Hence, it suffices to show L∗i ) Li for some agent i ∈ NS .

Suppose, to the contrary, that L∗i = Li for every agent
i ∈ NS . Take an arbitrary sequence of (L,N )-envy-free
matchings from µ to some satisfactory matching. Let µ′ de-
note the first (L,N )-envy-free matching in the sequence
with µ′(i) ∈ Li for some agent i ∈ NS . Recall here that
µ′(i) belongs to the sets of acceptable items of two agents;

one is i and the other is denoted by j. Since S is a source
component of D, the group Nb having j belongs to NS .
Since µ′(i) ∈ X , we see that µ′(i) ∈ L∗j . Since L∗j = Lj by
assumption, µ′(i) particularly belongs to Lj , which implies
that j has (L,N )-envy for i. This is a contradiction to the
(L,N )-envy-freeness of µ′.

Claim 4. ` (L∗,N ∗) = ` (L,N )− |S|.

Proof. Let ` := ` (L,N ) and `∗ := ` (L∗,N ∗).
We first show `∗ ≤ `− |S|. Consider a shortest sequence

µ =: µ0 ; µ1 ; · · ·; µ` of (L,N )-envy-free matchings
from µ to some satisfactory (L,N )-envy-free matching µ`.
For each a ∈ S, we denote by pa the minimum index such
that µpa(i) ∈ Li for some agent i ∈ Na. Let b ∈ S be the in-
dex that satisfies pb = min{pa | a ∈ S}, and ib ∈ Nb be the
agent such that µpb(ib) ∈ Lib . Then, by assumption (∗), the
item µpb(ib) is acceptable to another agent j in some group
Na, meaning that either a = b or D has an arc (a, b). Since
S is a source component, we see a ∈ S. By the definition of
pb, we observe that µpb−1(j) �j µpb(ib), which implies that
µpb−1(j) ∈ L∗j \Lj as µpb(ib) ∈ X . Thus, in the (pb−1)-st
step, the agent j ∈ NS has an item in the new target set L∗j .

We construct a sequence of (L∗,N ∗)-envy-free match-
ings as follows. For p with pb ≤ p ≤ `, define a matching
µ′p to be µ′p(i) = µpb−1(i) if i ∈ NS and µ′p(i) = µp(i) oth-
erwise. Then the sequence (µ0, µ1, . . . , µpb−1, µ

′
pb
, . . . , µ′`)

forms that of (L∗,N ∗)-envy-free matchings from µ to
some satisfactory (L∗,N ∗)-envy-free matching. Further-
more, since µ′pa = µ′pa−1 holds for all a ∈ S, we can re-
move µ′pa ’s from the sequence. This implies that there exists
a sequence of (L∗,N ∗)-envy-free matchings whose length
is `− |S|. Thus `∗ ≤ `− |S| holds.

We next show `∗ ≥ ` − |S|. Consider a shortest se-
quence µ =: µ0 ; µ1 ; · · · ; µ`∗ of (L∗,N ∗)-envy-
free matchings from µ to some satisfactory (L∗,N ∗)-envy-
free matching µ`∗ . Let p be the minimum index such that
µp(i0) ∈ L∗i0 for some a0 ∈ S and i0 ∈ Na0 . We observe
that µp(i0) particularly belongs to L∗i0 \ Li0 . In fact, sup-
pose that µp(i0) ∈ Li0 . Then the item µp(i0) is acceptable
to another agent by assumption (∗). Since S is a source com-
ponent, there exist an index b ∈ S and j ∈ Nb such that
µp(i0) ∈ Mj . Since µp(i0) ∈ L∗j and µp−1(j) �j µp(i0),
we have µp−1(j) ∈ L∗j . This contradicts the definition of p.

Let x1 := x∗i0 . Then there exist a1 ∈ S and i1 ∈ Na1
such that x1 ∈ Li1 . Moreover, since µp(i0) 6= x1 as µp is
(L∗,N ∗)-envy-free, it follows that µp(i0) �i0 x1. Hence,
the matching σ1 obtained from µp by assigning x1 to i1 is
(L,N )-envy-free. By this change,Na1 has the agent i1 with
an item in her target set, and hence any agent in Na1 has no
(L,N )-envy for agents in the other groups on σ1.

Suppose that there exists some a2 ∈ S with (a1, a2) ∈ A.
Then there exist i′ ∈ Na1 and i2 ∈ Na2 such that Mi′ ∩ Li2
contains an item, say x2. Since the agent i′ has no (L,N )-
envy for agents inNa2 on σ1, the matching σ2 obtained from
σ1 by assigning x2 to i2 is (L,N )-envy-free. This change
makes Na2 have the agent i2 with an item in her target set.
We repeat the above procedure; for j = 2, 3, . . . , we find
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an index aj ∈ S \ {a1, . . . , aj−1} such that there exists an
arc to aj from {a1, . . . , aj−1}, and obtain an (L,N )-envy-
free matching by exchanging an item for some agent inNaj .
Since D[S] forms a strongly connected component of D,
the repetition can be performed until, for all a ∈ S, some
agent in Na has an item in her target set. Thus we obtain a
sequence µp ; σ1 ; σ2 ; · · · ; σ|S| of (L,N )-envy-
free matchings in which for each a ∈ S there is an agent
i ∈ Na with σ|S|(i) ∈ Li.

For q with p + 1 ≤ q ≤ `∗, we define a matching µ′q
to be µ′q(i) = σ|S|(i) if i ∈ NS and µ′q(i) = µq(i) oth-
erwise. Then µ0 ; · · · ; µp ; σ1 ; · · · ; σ|S| ;
µ′p+1 ; · · · ; µ′`∗ forms a sequence of (L,N )-envy-free
matchings from µ to a satisfactory (L,N )-envy-free match-
ing µ′`∗ . This implies ` ≤ `∗ + |S|.

It follows from the above claims that we can recur-
sively compute `(L,N ) in polynomial time. Since the above
proofs are constructive, we can find a shortest sequence as
well in polynomial time. This completes the proof.

6 Coping with NP-Hardness
To cope with NP-hardness of the shortest reformist sequence
problem, we need to compromise either obtaining exact so-
lutions or computing in polynomial time. All the proofs in
this section are omitted.

The compromise of exact solutions leads us to the pos-
sibility of approximation algorithms. A polynomial-time al-
gorithm for the shortest reformist sequence problem approx-
imates within a factor of α ≥ 1 if for all instances, the length
of the reformist sequence that is obtained as the output of the
algorithm is at most as long as α times the shortest length of
a reformist sequence. The smaller value of α means a better
approximation guarantee.

It turns out that even an approximation is hard to obtain.
The following theorem gives a precise statement of the sen-
tence above.

Theorem 7. The shortest reformist sequence problem is in-
approximable in polynomial time within a factor of c lnn for
some constant c > 0, unless P = NP.

The proof reduces the set cover problem to the shortest
reformist sequence problem. It is known (Dinur and Steurer
2014) that the set cover problem is inapproximable within a
factor of (1− ε) lnn for every ε > 0 unless P = NP.

On the other hand, the compromise of polynomial-time
computability leads us to fixed-parameter tractability. In
fixed-parameter tractability, we extract a certain value k
from the instance as a parameter, and allow the running time
of the form O(f(k)p(m,n)), where f is an arbitrary (but
usually computable) function and p is a polynomial. An al-
gorithm with such a running time is called a fixed-parameter
algorithm, and the problem with a fixed-parameter algo-
rithm is called fixed-parameter tractable.

For the shortest reformist sequence problem, we have sev-
eral choices of natural parameters. First, we study the short-
est length ` of a reformist sequence as a parameter. With this
choice, the problem is fixed-parameter tractable.

Theorem 8. The decision version of the shortest reformist
sequence problem parameterized by the length ` of a se-
quence is fixed-parameter tractable.

As the second choice, we study the shortest length ` of
a reformist sequence minus the number n of agents as a
parameter. Since the shortest length is at least n (see Sec-
tion 5.1), this parameter can be seen as the number of extra
steps needed to obtain the reformist envy-free matching.

The next theorem shows that it is unlikely to obtain a
fixed-parameter algorithm with this parameter. Here, W[1]-
hardness is a counterpart of NP-hardness in fixed-parameter
tractability. The proof reduces the multi-colored clique prob-
lem, which is known to be W[1]-hard when the number of
parts is a parameter (Fellows et al. 2009; Pietrzak 2003).
Theorem 9. It is W[1]-hard to decide whether there exists
a reformist sequence of length at most n + k when k is a
parameter.

Third, we study the problem parameterized by the num-
ber of intermediate items. Let K denote the set of all the
intermediate items from the initial envy-free matching µ to
the reformist envy-free matching σ, namely, K := M \
{µ(i), σ(i) | i ∈ N}. Note that the preprosessing in sec-
tion 5.1 does not increase |K|, and |K| = m − 2n holds
after the preprocessing. We prove that the shortest reformist
sequence problem parameterized by |K| is fixed-parameter
tractable.
Theorem 10. The shortest reformist sequence problem pa-
rameterized by |K| is fixed-parameter tractable.

The proof designs a fixed-parameter algorithm by prepro-
cessing and branching. The running time is O(2|K|p(m,n))
for some polynomial p.

7 Conclusion
We studied a process of iterative improvement of envy-free
matchings in the house allocation problem, and defined a re-
formist envy-free matching as an outcome of the process.
We proved that a reformist envy-free matching is unique
up to the choice of an initial envy-free matching. Then, we
studied the shortest reformist sequence problem and showed
a contrast between NP-hardness and polynomial-time solv-
ability with respect to the lengths of preference lists of
agents and the number of occurrences of each item in the
preference lists.

Several questions remain unsolved. As for approximation,
we proved the inapproximability of factor c lnn for some
constant c. On the other hand, we do not know any approx-
imation algorithm. As for fixed-parameter tractability, we
showed an fixed-parameter algorithm when the length of a
reformist sequence or the number of intermediate items is
a parameter. On the other hand, we do not know this is also
the case when n is a parameter. Another direction of research
may look at the case where preferences may contain a tie or
a pair of incomparable items.
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