
Secretary Matching with Vertex Arrivals and No Rejections

Mohak Goyal
Department of Management Science & Engineering, Stanford University

mohakg@stanford.edu

Abstract

Most prior work on online matching problems has been with
the flexibility of keeping some vertices unmatched. We study
three related online matching problems with the constraint
of matching every vertex, i.e., with no rejections. We adopt
a model in which vertices arrive in a uniformly random or-
der and the non-negative edge-weights are arbitrary. For the
capacitated online bipartite matching problem, in which the
vertices of one side of the graph are offline and those of the
other side arrive online, we give a 4.62-competitive algorithm
when the capacity of each offline vertex is 2. For the online
general (non-bipartite) matching problem, where all vertices
arrive online, we give a 3.34-competitive algorithm. We also
study the online roommate matching problem, in which each
room (offline vertex) holds 2 persons (online vertices). Per-
sons derive non-negative additive utilities from their room as
well as roommate. In this model, with the goal of maximiz-
ing the social welfare, we give a 7.96-competitive algorithm.
This is an improvement over the 24.72 approximation factor
in prior work.

1 Introduction
Online allocation problems study scenarios in which the in-
put information is presented in steps, and the algorithm must
make irreversible decisions at each step. These problems
have applications in various areas such as ride-hailing plat-
forms (Dickerson et al. 2018) and ad auctions (Mehta 2012).
In each of these applications, the future inputs are unknown
and the goal is typically to maximize the revenue over the
entire time horizon. Mathematically, several online alloca-
tion problems can be modeled as the problem of finding
maximum-weight matchings on graphs.

One of the most commonly studied models of online
matching is one with vertex arrivals. In this model, one ver-
tex arrives in each time step and it reveals weights of edges
from itself to the previously arrived and offline vertices. The
algorithm is required to decide whether the current vertex
should be matched and if yes, to which other vertex. This
model is adopted in several seminal papers in online match-
ing theory, for example (Karp, Vazirani, and Vazirani 1990;
Kesselheim et al. 2013; Gamlath et al. 2019). Another well-
studied model is one in which all the vertices are known at

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the outset and edges are revealed in an online fashion. The
decision to include an edge in the matching has to be made
when it is seen, before the next edge is observed. This is re-
ferred to as the edge arrival model (Korula and Pál 2009).
In this paper, we study problems in the vertex arrival model.
Further, we assume that all edge-weights are non-negative.

The models of online matching problems also vary in
the form of stochasticity in the edge weights and in the ar-
rival order of vertices. It is easy to see that if both the edge
weights and the arrival order of vertices are arbitrary then
any online algorithm cannot be competitive against its of-
fline counterpart. Therefore, the commonly studied models
are of one of two forms: secretary matching (Dynkin 1963;
Gnedin 1994) and prophet inequalities (Krengel and Suche-
ston 1977). In the secretary matching model, vertices arrive
in a uniformly random order but the edge-weights are arbi-
trary. Whereas, in the prophet inequalities setting, the edge
weights are drawn independently from a known distribution
but the vertex arrival order is arbitrary. In this paper, we con-
sider the secretary matching model.

The secretary matching model of online matching is in-
spired by the classical secretary problem, in which a known
number of job applicants arrive in a uniformly random or-
der, are interviewed upon arrival, and at most one of them
is hired. The irreversible decision to hire or reject an ap-
plicant is taken before the next applicant arrives. The goal
is to maximize the probability of hiring the best applicant.
The optimal algorithm is e-competitive. The problem was
a folklore before being solved formally by (Dynkin 1963).
See (Ferguson 1989) for historical details. The lower bound
of factor e was given by (Gnedin 1994).

Most known algorithms for problems in the secretary
matching model use an explore-and-exploit approach. No
matches are made in the exploration phase. In the exploita-
tion phase, the current vertex is matched only if it has an
edge with weight above a threshold (Korula and Pál 2009).
Alternatively, as in (Kesselheim et al. 2013), it is matched
only if it is in a locally optimal matching computed over the
vertices observed so far. An edge can be added to a matching
only if it satisfies matching constraints, i.e., none of its end
points have been matched previously by the algorithm.

All such algorithms make good use of the option of reject-
ing (i.e., not matching) several or all of the arriving vertices.
This option may not be available in many resource allocation

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

5051

settings. Examples include the roommate market studied in
(Chan et al. 2016; Huzhang et al. 2017) and mentor-mentee
matching in education programs. In ride-hailing too, reject-
ing customers is a costly option for platforms and may be
chosen only in rare situations. Therefore, in this paper we
study three problems in online matching with the constraint
of not rejecting any vertex.

The first problem is capacitated bipartite matching, in
which vertices on one side of the graph are offline and have
a fixed capacity and those on the other side arrive online and
have capacity 1. We adopt an explore-and-exploit strategy
which is given in detail in Section 3. The second problem
is general (non-bipartite) matching in which all vertices ar-
rive online. A vertex can either be matched on arrival, or
can be kept waiting to be matched with a vertex that arrives
later. It is not allowed to match two waiting vertices. For this
problem, our algorithm runs in three phases: exploration, se-
lective matching, and forced matching. It is inspired by the
two-phase algorithm of (Ezra et al. 2020) for the general
matching problem without the no-rejection condition. De-
tails of our algorithm are given in Section 4. The third prob-
lem is roommate matching in Section 5, in which there are
n/2 offline rooms, each with capacity 2, and n persons that
arrive online must be assigned a room each. Persons derive
utility from their room as well as roommate.

1.1 Related Work
Some extensions of the secretary problem include allowing
multiple choices (Freeman 1983; Preater 1994; Gilbert and
Mosteller 2006; Kleinberg 2005), hiring a senior and a junior
secretary (Preater 1993), and hiring a team of k persons with
submodular valuations over teams (Bateni, Hajiaghayi, and
Zadimoghaddam 2013). The secretary problem was gener-
alized to matroids by (Babaioff, Immorlica, and Kleinberg
2007). It is an open problem to find a constant factor approx-
imation algorithm on general matroids. The current best is
a O(log log rank)-competitive algorithm by (Lachish 2014)
and (Feldman, Svensson, and Zenklusen 2014). Other works
on the matroid secretary problem include (Soto 2013; Im and
Wang 2011; Gharan and Vondrák 2013; Ma, Tang, and Wang
2016; Soto, Turkieltaub, and Verdugo 2021).

Secretary matching on bipartite graphs was introduced
by (Korula and Pál 2009). They gave an 8-competitive al-
gorithm. The problem was resolved by (Kesselheim et al.
2013) who gave an optimal e-competitive algorithm. More
recently, (Reiffenhauser 2019) gave a truthful mechanism
for secretary matching on bipartite graphs that attains the
same competitive factor of e. Secretary matching on general
graphs was solved recently by (Ezra et al. 2020). They gave
an optimal 2.40-competitive algorithm, which is, surpris-
ingly, even better than the best-possible on bipartite graphs.

Another related line of work is on resource sharing. The
offline roommate market was studied in (Chan et al. 2016).
For a 2-persons-per-room model, they showed that maximiz-
ing social welfare is NP-hard and gave constant factor ap-
proximation algorithms for it. The online roommate market
in the secretary setting was studied by (Huzhang et al. 2017)
and they too gave constant factor approximation algorithms
for social welfare maximization. (Bei and Zhang 2018) gave

algorithms for assignment in ride-sharing. (Li and Li 2020)
consider fairness considerations in resource sharing in gen-
eral and for dorm assignment in particular.

1.2 Our Contributions
We have the following main results for secretary matching
problems with no rejection:

1. For online capacitated bipartite matching, we give a 4.62-
competitive algorithm when offline vertices have capac-
ity 2 and a 5.46-competitive analysis of the algorithm of
(Huzhang et al. 2017) when the offline vertices have ca-
pacity 1. They gave a 6.18-competitive factor analysis.

2. We give a 3.34-competitive algorithm for online general
(non-bipartite) matching.

3. For online roommate matching, we give a 7.96-
competitive algorithm. This result is an improvement
over the 24.72 factor given by (Huzhang et al. 2017).

All our algorithms run in polynomial time. The competitive
analysis results hold in expectation, which is taken over the
randomness in the arrival order and in the algorithm.

2 Model and Preliminaries
An online algorithm is said to be c-competitive if its output
has expected weight (or utility) at least OPT

c , where OPT is
the weight (or utility) of the optimal offline solution. Denote
the weights of matching M and edge e by w(M) and w(e)
respectively. The three problems we study in this paper are
described separately in the following subsections.

2.1 No-Rejection Capacitated Bipartite Matching
This problem is defined over bipartite graph G =
(L,R,W), where L is the set of offline vertices, R is the
set of online vertices, and W is the set of edge weights.
The offline vertices are known from the outset and the on-
line vertices arrive in a uniformly random order. Each of-
fline vertex has a fixed known capacity, which is the num-
ber of online vertices it can match with. Denote the capac-
ity of vertex u ∈ L by c(u). We consider the case where∑

u∈L c(u) = n, where n is the number of online vertices.
We assume that G is a complete bipartite graph and that all
edge weights are non-negative.

The objective is to maximize the weight of the matching.
In this paper we study two important special cases of the
capacities of offline vertices. The first case is c(u) = 1 for
all u ∈ L and the second case is c(u) = 2 for all u ∈ L.
We refer to the former as BIPARTITEMATCHING1 and to
the latter as BIPARTITEMATCHING2.

2.2 No-Rejection General Matching
In this problem, all n vertices v ∈ V of graph G = (V,W)
arrive online in a uniformly random order and n is even1. We
consider a complete graph with non-negative edge-weights
given by W. The algorithm can match the current vertex to

1This is required due to the no-rejection condition. However,
our algorithm and its competitive ratio analysis work also if n is
odd and any one vertex is allowed to be kept unmatched.

5052

a waiting vertex, or keep it waiting. However, it is required
to match all vertices by the end of the process. The objective
is to maximize the weight of the constructed matching. We
refer to this problem as GENERALMATCHING.

2.3 No-Rejection Roommate Matching
This problem was defined in (Huzhang et al. 2017) who
studied it as an online version of the offline roommate mar-
ket model proposed by (Chan et al. 2016). In this problem,
there are m rooms modelled as offline vertices and each
room has 2 beds. n = 2m people arrive online in a uni-
formly random order and each person must be assigned a
room upon arrival. Each room is assigned to 2 persons.

Upon arrival, each person reveals her room valuation for
each of the m rooms and mutual utility of being roommates
with each of the persons who arrived before her. The mutual
utility captures the sum of utilities enjoyed by both persons
sharing a room. All room valuations and the mutual utility
for every pair of persons are non-negative. Define a room
allocation as a set of m tuples (ri, vi1, v

i
2) where ri denotes a

room and vi1, v
i
2 denote the persons assigned to room ri. The

utility of tuple (ri, vi1, v
i
2) is the sum of 2 room valuations for

room ri made by vi1 and vi2 and the mutual utility of persons
vi1 and vi2. The total utility of a room allocation is the sum
of utilities of all its m constituent tuples. The objective is to
maximize the utility of the room allocation. We refer to this
problem as ROOMMATEMATCHING.

In the following sections, we give algorithms and techni-
cal results for the three problems described in this section.

3 Online Capacitated Bipartite Matching
In this section we give online algorithms, ALG1 and ALG2,
for problems BIPARTITEMATCHING1 and BIPARTITEM-
ATCHING2 respectively. Both the algorithms run in two-
phases and employ a explore-exploit strategy.

For ease of notation, we number the online vertices from
1 to n in their order of arrival. We use the integer variable
v both as the number of a step and the name of the cur-
rent vertex. Define k to be the stopping point of the explo-
ration phase in both ALG1 and ALG2. For ALG1, we set
k = ⌊0.21n⌋ and for ALG2 we set k = ⌊0.25n⌋. We give
the technical results in the following subsections.

3.1 BIPARTITEMATCHING1
ALG1 for BIPARTITEMATCHING1 is the same as in
(Huzhang et al. 2017) [Section 3.1], but with a different
stopping point for the exploration phase, in which arriving
online vertices are matched to uniformly randomly chosen
unmatched offline vertices. When vertex v arrives in the ex-
ploitation phase, the algorithm computes an optimal match-
ing Mv over all the offline vertices and online vertices from
1 to v. Denote the edge incident on v in Mv by ev and the
neighbor of v in Mv by l(ev). If l(ev) is available, then v
is matched to it, otherwise v is matched to a uniformly ran-
domly chosen available offline vertex.

Lemma 1. For BIPARTITEMATCHING1, let OPT be the of-
fline optimum value. The expected weight of edge ev com-
puted in line 10 of ALG1 is at least OPT

n .

Algorithm 1: ALG1 for BIPARTITEMATCHING1

1: R′ ← ∅ ▷ Set of online vertices seen so far
2: M ← ∅ ▷ Matching
3: for every arriving vertex v do
4: R′ ← R′ ∪ {v}
5: if v < ⌊0.21n⌋ then ▷ Exploration phase
6: Uniformly randomly pick an available v′ ∈ L
7: M ←M ∪ {(v′, v)}
8: else ▷ Exploitation phase
9: Mv ← Optimal bipartite matching on G(L,R′)

10: ev ← Edge incident on v in Mv

11: if M ∪ {ev} is a matching then
12: M ←M ∪ {ev}
13: else
14: Uniformly randomly pick an available v′ ∈ L
15: M ←M ∪ {(v′, v)}
16: end if
17: end if
18: end for
19: return M

Proof. This result follows directly from Lemma 1 of
(Kesselheim et al. 2013). In any step v of the algorithm,
the identity and order of the vertices arrived so far can be
modelled via the following random process: first choose a
set R′ of size v from R. Then determine the arrival order of
these v vertices by iteratively selecting a vertex at random
from R′ without replacement. In step v, the algorithm calcu-
lates a optimal matching Mv on G[L,R′]. Since the current
vertex v can be seen as being selected uniformly at random
from the set R′, the expected weight of the edge ev in Mv

is w(Mv)/v. Also, since R′ can be seen as being uniformly
selected from R with size v we know E[w(Mv)] ≥ v

nOPT.
Together we have, E[w(ev)] ≥ OPT

n .

Lemma 2. For BIPARTITEMATCHING1, probabil-
ity that edge ev computed in line 10 of ALG1 can
be added to the matching M , i.e., the ‘if’ con-
dition of line 11 in ALG1 is ‘true’ is at least
k

v−1
n−v
n

(
1 + k

n log
(

v
k

)
+ k2

2n2 log
2
(

v
k

)
− o(1)

)
.

Proof. Denote the probability that ev can be added to the
matching by P(vsuccess). We start with a weak lower bound
on P(vsuccess). For l(ev) to be available at step v, it must
neither be same as l(eu) for any u < v nor should it have
been picked in a previous random matching step. There are
at most v−1 random matching steps before step v, therefore
the probability of l(ev) being picked in a random matching
is at most v−1

n . We use the randomness of the arrival order to
bound the probability of l(ev) being same as l(eu) for any
u < v. Consider a step u < v. Out of the u participating
online vertices in Mu, the probability that l(ev) is matched
to vertex u in Mu is at most 1

u . This is because of the uni-
formly random order of the u participating vertices. Further,
this is independent of the order of the vertices 1, . . . , u− 1.

Therefore, the event that for some u′ < u, l(eu
′
) = l(ev)

is independent of the event l(eu) = l(ev). Following induc-
tively from steps v − 1 to k + 1, the probability that l(ev)

5053

was not matched to u in matching Mu prior to step v is:
v−1∏

u=k+1

P[l(eu) ̸= l(ev)] ≥
v−1∏

u=k+1

(
1− 1

u

)
=

k

v − 1
. (1)

Together with the bound on the probability of being picked
in a random matching, this implies,

P(vsuccess) ≥
(
1− v − 1

n

)(
k

v − 1

)
≥ k(n− v)

n(v − 1)
. (2)

Now we improve the bound in Equation (2) to get the re-
sult in the Lemma. Equation (2) implies that in any step
u > k, the probability that a random match is done is at
most 1 − k(n−u)

n(u−1) . This is because the algorithm resorts to a
random matching only if l(eu) is unavailable. If there is a
random matching in step u, then the probability that l(ev) is
picked in it is 1

n−(u−1) because there are n−(u−1) vertices
available. Therefore, the probability that l(ev) is not picked
in a random matching is at least:

k∏
u=1

(
1− 1

n− (u− 1)

) v−1∏
u=k+1

1−
1− k(n−u)

n(u−1)

n− (u− 1)

 ,

≥
k∏

u=1

n− u

n− (u− 1)

v−1∏
u=k+1

n− (u− 1)− 1 + k(n−u)
n(u−1)

n− (u− 1)
,

=
k∏

u=1

n− u

n− (u− 1)

v−1∏
u=k+1

(n− u)
[
1 + k

n(u−1)

]
n− (u− 1)

,

=
v−1∏
u=1

n− u

n− (u− 1)

v−1∏
u=k+1

[
1 +

k

n(u− 1)

]
,

≥ n− v

n

[
1 +

v−1∑
u=k+1

k

n(u− 1)
+

1

2

(v−1∑
u=k+1

k

n(u− 1)

)2

− 1

2

(v−1∑
u=k+1

k2

n2(u− 1)2

)]
, (3)

≥ n− v

n

(
1 +

k

n
log

(v
k

)
+

k2

2n2
log2

(v
k

)
− o(1)

)
. (4)

Equation (3) takes only the first 3 terms in the expansion
of the product. Equation (4) follows by considering (3) as a
Riemann sum with intervals of length 1 and choosing appro-
priate lower bound in each interval of the sum. The −o(1)
term captures

∑v−1
u=k+1

−k2

2n2(u−1)2 and also the approxima-
tion of log(v − 1) as log(v). This is possible because v > k
and k is a constant fraction of n. Combining Equations (4)
and (1), we get the desired result.

Theorem 1. ALG1 is 5.46-competitive for BIPARTITEM-
ATCHING1.

Proof. We sum over the expected contributions of edges ev
to the weight of the matching M for all v ∈ {k+1, . . . , n}.

E(w(M))

OPT
≥

n∑
v=k+1

E(w(ev))
OPT

P(vsuccess),

≥
n∑

v=k+1

1

n

k(n− v)

n(v − 1)

(
1 +

k log(vk)

n
+

k2 log2(vk)

2n2
− o(1)

)
,

≥ k

n2

∫ n

k

(
n− v

v − 1
)(1 +

k log(vk)

n
+

k2 log2(vk)

2n2
− o(1))dv,

=
k

n2

[
n log

(n
k

)
+

k

2
log2

(n
k

)
− (n− k) (5)

− k

n

(
n log

(n
k

)
− n+ k

)
+

k2

6n2
log3

(n
k

)
− k2

2n2

(
n log2

(n
k

)
− 2n log

(n
k

)
+ 2n− 2k

)
− o(n)

]
.

The second inequality results from Lemmas 1 and 2. To get
the third inequality, we view the integral

∫ n

k
as a Riemann

sum with subdivisions into intervals of length 1 and use a
simple upper bound on the function in each subdivision. The
expression in Equation (5) is maximized at k = ⌊0.21n⌋ and
attains the value 0.1833 as n→∞ which is > 1

5.46 .

3.2 BIPARTITEMATCHING2
One natural algorithm for BIPARTITEMATCHING2 is to
consider each offline vertex (with capacity 2) as two distinct
vertices, each with capacity 1, and run ALG1. However, us-
ing the proposed ALG2, we utilize the fact that we have 2
chances to match each offline vertex, and we do not need to
do random matchings unless both chances are used. This is
also reflected in the competitive ratio of ALG2, which is at
most 4.62 and is better than what we obtain for ALG1.

ALG2 ensures that no offline vertex is matched twice by
random assignments until all offline vertices are matched at
least once. ALG2 starts with an exploration phase in which
only random matches are made. In the exploitation phase, it
finds a match for arriving vertex v via an optimal matching
Mv, and by a random selection if that match is not feasible.

The technical lemmas on the probability of availability of
l(ev) follow and the competitive ratio is given in Theorem 2.

Lemma 3. For BIPARTITEMATCHING2, let OPT be the of-
fline optimum value. The expected weight of edge ev com-
puted in line 12 of ALG2 is at least OPT

n .

Proof. Notice that the edge ev is computed same as in
ALG1. Make c identical copies of each offline vertex, each
with capacity 1. The problem reduces to BIPARTITEM-
ATCHING1 and this result follows from Lemma 1.

Lemma 4. In ALG2 for BIPARTITEMATCHING2, for ver-
tices index k+1 to ⌊n/2⌋, the probability that edge ev com-
puted in line 12 can be added to matching M , i.e., the ‘if’
condition of line 14 is ‘true’ is at least n−v

2v −
n2

32v2 − o(1).

Lemma 5. In ALG2 for BIPARTITEMATCHING2, for ver-
tices index ⌊n/2⌋+1 to n, the probability that edge ev com-
puted in line 12 can be added to matching M , i.e., the ‘if’
condition of line 14 is ‘true’ is at least 3n(n−v)

16v2 − o(1).

The proofs of Lemmas 4 and 5 are given in Appendix A
in the longer version of this paper (Goyal 2021).

Theorem 2. ALG2 is 4.62-competitive for BIPARTITEM-
ATCHING2.

5054

Algorithm 2: ALG2 for BIPARTITEMATCHING2

1: R′ ← ∅ ▷ Set of online vertices seen so far
2: M ← ∅ ▷ Matching
3: La ← L ▷ Offline vertices available for random matchings
4: for every arriving vertex v do
5: R′ ← R′ ∪ {v}
6: if v < ⌊n/4⌋ then ▷ Exploration phase
7: Uniformly randomly pick a vertex v′ ∈ La

8: M ←M ∪ {(v′, v)}
9: La ← La \ {v′}

10: else ▷ Exploitation phase
11: Mv ← Optimal capacitated matching on G(L,R′)
12: ev ← Edge incident on v in Mv

13: l(ev)← Neighbor of v via ev

14: if M ∪ {ev} is a valid capacitated matching then
15: M ←M ∪ {ev}
16: La ← La \ {l(ev)}
17: else
18: Uniformly randomly pick a vertex v′ ∈ La

19: M ←M ∪ {(v′, v)}
20: La ← La \ {v′}
21: end if
22: end if
23: if La = ∅ then ▷ Reset La

24: La ← {v′ ∈ L|v′ is not matched to full capacity}
25: end if
26: end for
27: return M

Proof. We sum the expected contributions of the edges ev

to the weight of the matching M for all v ∈ {k+1, . . . , n}.
From Lemmas 3, 4, and 5, we get:

E(w(M))

OPT
≥ 1

OPT

n∑
v=⌊n

4 ⌋+1

E(w(ev))P(vsuccess)

≥ 1

n

n/2∑
v=⌊n

4 ⌋+1

(
n− v

2v
− n2

32v2

)
+

1

n

n∑
v=n/2

3n(n− v)

16v2
− o(1)

≥
∫ n

2

n
4

(
n− v

2vn
− n2

32v2n

)
dv +

∫ n

n
2

3(n− v)

16v2
dv − o(1)

We do a change of variables by substituting v with xn,

=

∫ 1/2

1/4

1− x

2x
− 1

32x2
dx+

∫ 1

1/2

3(1− x)

16x2
dx− o(1),

> 0.2166 >
1

4.62
.

The o(1) error term captures the difference between k =
⌊n/4⌋ and n/4 in the limit of the integration; this difference
goes to 0 as n→∞.

4 Online General Matching
For this problem, described in Subsection 2.2, we give
ALG3 which runs in three phases and is inspired by (Ezra
et al. 2020) who have a two-phase algorithm without the no-
rejection condition. We number the vertices from 1 to n in
the order of arrival. We use variable v both as the number of
an iteration and as the name of the current vertex.

Algorithm 3: ALG3 for GENERALMATCHING

1: V ′ ← {1, 2, . . . ⌊6n/17⌋} ▷ Set of observed vertices
2: A← {1, 2, . . . ⌊6n/17⌋} ▷ Set of waiting vertices
3: M ← ∅ ▷ Matching
4: for every arriving vertex v > ⌊6n/17⌋ do
5: V ′ ← V ′ ∪ {v}
6: if v is even then
7: Ṽ = V ′

8: else
9: vr ← randomly chosen from V ′ \ {v}

10: Ṽ = V ′ \ {vr}
11: end if
12: Mv ← Optimal matching on Ṽ
13: ev ← Edge incident on v in Mv

14: l(ev)← Neighbor of v via ev

15: if M ∪ {ev} is a valid matching then
16: M ←M ∪ {ev}
17: A← A \ {l(ev)} ▷ l(ev) is no longer waiting
18: else
19: if |A| < (n+ 1− v) then ▷ Keep v waiting
20: A← A ∪ {v}
21: else ▷ Cannot keep any more vertices waiting
22: Uniformly randomly pick a vertex v′ ∈ A
23: M ←M ∪ {(v′, v)} ▷ Forced matching
24: A← A \ {v′}
25: end if
26: end if
27: end for
28: return M

The first phase is of exploration in which all vertices are
kept waiting and added to set A. Next is the selective match-
ing phase. When vertex v arrives in this phase, if v is even,
the algorithm computes an optimal matching Mv over the
set of vertices V ′ seen so far. If v is odd, the algorithm uni-
formly randomly chooses a vertex vr from V ′ \v , and com-
putes the optimal matching Mv over V ′ \ vr. This ensures
that v has a match in Mv . If the match of v in Mv (denoted
by l(ev)) is a waiting vertex (i.e., it is in A), then they are
matched in M , otherwise v is kept waiting and added to A.
The third phase is called forced matching. In this phase, the
algorithm computes an optimal match Mv just as in the sec-
ond phase. If l(ev) is in A, then v is matched to it, otherwise
v is matched to a randomly chosen waiting vertex v′ ∈ A.

Define ke and ks as the stopping points of the first and
second phases respectively in ALG3. We set ke = ⌊ 6n17 ⌋ and
ks is not fixed. The second phase ends when the number of
waiting vertices, i.e., |A| equals the number of vertices yet
to arrive, i.e., n+ 1− v. In Lemma 9 we show that ks is not
much smaller than its expected value 12n

17 w.h.p. for large n.

Lemma 6. For GENERALMATCHING, let OPT be the of-
fline optimum value. The expected weight of edge ev com-
puted in line 13 of ALG3 is at least 4⌊v/2⌋−2

n(n−1) OPT.

Proof. This result follows from Theorem 3.1 of (Ezra et al.
2020). See that V ′ is a uniformly randomly sampled subset
of V of size v and therefore the expected weight of an edge
with both end-points in V ′ is equal to the average weight

5055

of edges with end-points in V. Further, ev can be seen as
uniformly randomly sampled from the edges in Mv .

Lemma 7. In ALG3 for GENERALMATCHING, for vertices
index ke + 1 to ks, the probability that edge ev computed in
line 13 can be added to the matching, i.e., the ‘if’ condition
of line 15 is ‘true,’ is at least 1

3 (1 +
2(ke−2)3

(v−1)3).

Proof. This result follows directly from Lemma 3.2 of (Ezra
et al. 2020). They do an elaborate accounting of the probabil-
ity that a vertex is matched by the time that vertex v arrives,
conditioned on the set of vertices arrived so far.

Lemma 8. In ALG3 for GENERALMATCHING, for vertices
ks+1 to n, the probability that edge ev computed in line 13
can be added to the matching, i.e., the ‘if’ condition of line
15 is ‘true,’ is at least 1

3 (1 +
2(ke−2)3

(v−1)3)(n−v+1
n−ks

).

Proof. In the forced matching phase, consider two processes
running independently. The first process is that of finding a
vertex l(ev) for v, as computed in lines 11 and 12 of ALG3
and starts at step ke + 1. The second process is selecting
a vertex v′ from the set of waiting vertices A uniformly at
random and starts at step ks +1. Vertex v′ is matched to v if
l(ev) is not available. We are interested in the probability of
l(ev) being available when v arrives. For a lower bound of
this probability, it is sufficient to consider the case that l(ev)
was not picked earlier by either of the two processes. The
probability of it not being picked in the first process (i.e., in
optimal matchings Mu for u < v) is at least 1

3 (1+
2(ke−2)3

(v−1)3)

by Lemma 7. The probability of l(ev) not being picked in the
second process (random selection) is at least (1− v−1−ks

n−ks
),

since there are at most (v − 1 − ks) vertices picked in this
process out of n − ks vertices. This expression simplifies
to n−v+1

n−ks
. The result follows from multiplying these two

probabilities.

Lemma 9. For ALG3, the stopping point of the selective
matching phase, ks, is at least

(
12−δ
17

)
n for any small posi-

tive constant δ w.h.p. as n→∞.

Proof. Denote the set of steps in the selective matching
phase, i.e., {ke + 1, . . . , ks} by VSM. Further, denote the set
of steps {ke+1, . . . , t} where t ≤ ks by V t

SM. Denote the in-
dicator random variable of the event that ALG3 keeps vertex
v ∈ VSM waiting when it arrives by Xv. By Lemma 7,

P(Xv = 1) ≤ 1− 1

3
(1 +

2(ke − 2)3

(v − 1)3
) =

2

3
(1− (ke − 2)3

(v − 1)3
).

Clearly, Xv for v ∈ V t
SM are not independent random vari-

ables and therefore we cannot use a Chernoff bound on their
sum. However, to obtain a useful concentration inequality,
we prove the following property: for any subset S ⊆ VSM,

P
[(∏

u∈S

Xu

)
= 1

]
≤

∏
u∈S

P(Xu = 1). (6)

To prove Equation (6), we analyze how the random vari-
ables Xu and Xu′ depend on each other for any pair of steps

(u, u′). Without loss of generality, let u′ < u. See that Xu′ is
independent of Xu because it is observed before step u. For
dependence of Xu on Xu′ , consider the case that Xu′ = 1.
This event adds vertex u′ to the set of waiting vertices A.
Since this event does not remove any vertex from A, it does
not increase the probability that l(eu) is not in A. That is,
P(Xu = 1|Xu′ = 1) ≤ P(Xu = 1). Extending this argu-
ment to all vertices in S that arrived before u, conditioned
on the event Xu′ = 1 for all {u′ ∈ S|u′ < u}, the prob-
ability that u is kept waiting is at most P(Xu = 1). This
proves Equation (6). Intuitively, the process of keeping ver-
tices waiting is self-correcting such that if too many vertices
are waiting, then the probability of future vertices being kept
waiting does not increase. (Panconesi and Srinivasan 1997)
gave a methodology for obtaining a Chernoff-like bound us-
ing Equation (6). We derive it for our problem below.

Now we define t independent Bernoulli random variables
yu for u ∈ V t

SM such that P(yu = 1) = P(Xu = 1). Denote
X =

∑
u∈V t

SM
Xu and Y =

∑
u∈V t

SM
yu. Notice that X and Y

are functions of t; it is omitted from the notation for clarity.
Clearly E(Y) = E(X). We will prove that for any a > 0,

E[eaX] ≤ [eaY]. (7)

Since eaz can be expanded as
∑+∞

s=0(a
s/s!)zs, for any

z ∈ R, by the linearity of expectation, we have E[eaX] =∑+∞
s=0(a

s/s!)E[Xs] and E[eaY] =
∑+∞

s=0(a
s/s!)E[Y s].

To prove eq. (7), it suffices to show that for every s =
0, 1, . . . ,∞, E[Xs] ≤ E[Y s]. By the definition of X,
we have Xs =

∑
σ

∏s
j=1 Xσ(j) where the summation

is over all permutations σ selecting s items from V t
SM

with replacement. By linearity of expectation, E[Xs] =∑
σ E[

∏s
j=1 Xσ(j)] and E[Y s] =

∑
σ E[

∏s
j=1 Yσ(j)]. To

prove eq. (7), it now suffices to prove that for every permu-
tation σ,

∑
σ E[

∏s
j=1 Xσ(j)] ≤ E[

∏s
j=1 Yσ(j)]. Define Q to

be the image of σ, that is Q is the set of distinct elements q
such that σ(j) = q for some j. We have:

E
[s∏
j=1

Xσ(j)

]
= P[Xu = 1 ∀ u ∈ Q] ≤

∏
u∈Q

P(Xu = 1)

=
∏
u∈Q

P(Yu = 1) = P[Yu = 1 ∀ u ∈ Q] = E
[s∏
j=1

Yσ(j)

]
.

The inequality follows from (6). This proves (7). We apply
Markov’s inequality (Motwani and Raghavan 1995) to the
non-negative random variable eaX for a > 0 and ε > 0:

P[X ≥ (1 + ε)E[X]] = P[eaX ≥ ea(1+ε)E[X]]

≤ E[eaX]/ea(1+ε)E[X] ≤ E[eaY]/ea(1+ε)E[Y]. (8)
The last inequality is due to (7) and the fact that E[X] =
E[Y]. Now we use the standard steps for proving the Cher-
noff bound for Y . We use a = log(1 + ε). Then,

E[eaY]
ea(1+ε)E[Y]

≤ eE[Y](ea−1)

e(1+ε)E[Y]
=

(eε

(1 + ε)1+ε

)E[Y]

≤ e
−E[Y]ε2

3 .

Together with (8), and using E[X] = E[Y], this implies:

P[X ≥ (1 + ε)E[X]] ≤ e
−E[X]ε2

3 . (9)

5056

We now use this concentration bound on X to prove the
result of the Lemma. Denote z as the number of steps in
VSM in which the current vertex is kept waiting. By defi-
nition of ks, the number of vertices waiting after step ks
is equal to the number of vertices yet to arrive. That is:
ke + z − (ks − ke − z) = n − ks =⇒ z = n−2ke

2 = 5n
34 .

This implies that: for ks to be < 12−δ
17 n, we must have

X = 5n/34 for t < 12−δ
17 n. To be able to use Equation (9),

we compute E[X] for t = 12−δ
17 n. This is,

E[X] =
∑
u∈V t

SM

P(vwait) =

12−δ
17 n∑

u=⌊ 6n
17 ⌋+1

[
2

3

(
1− (ke − 2)3

(u− 1)3

)]
.

Upon solving, we get E[X] ≤ (5
34 −

7δ
204)n + o(n). There-

fore, for ε = δ/10, we have (1 + ε)E[X] < 5n/34. This,
together with Equation (9), implies that for any constant
δ > 0, we get ks > 12−δ

17 n w.h.p. as n→∞.

Theorem 3. ALG3 is 3.34-competitive for GENERAL-
MATCHING w.h.p. as n→∞.

Proof. We sum the expected contributions of the edges ev to
the weight of the matching M for all v ∈ {ke + 1, . . . , n}.
From Lemmas 6, 7, and 8, we get:

E(w(M))

OPT
≥

n∑
v=ke+1

E(w(ev))
OPT

P(evis added to matching),

≥ 1

n(n− 1)

[
ks∑

v=ke+1

4⌊v/2⌋ − 2

3

(
1 +

2(ke − 2)3

(v − 1)3

)
+

n∑
v=ks+1

4⌊v/2⌋ − 2

3

(
1 +

2(ke − 2)3

(v − 1)3

)(n− v + 1

n− ks

)]
,

≥ 1

n2

[
ks∑

v=ke+1

2v − 4

3

(
1 +

2(ke − 2)3

(v − 1)3

)
+

n∑
v=ks+1

2v − 4

3

(
1 +

2(ke − 2)3

(v − 1)3

)(n− v + 1

n− ks

)]
,

≥ 1

n2

[∫ ks

ke

2v − 4

3

(
1 +

2(ke − 2)3

(v − 1)3

)
dv

+

∫ n

ks

2v − 4

3

(
1 +

2(ke − 2)3

(v − 1)3

)(n− v + 1

n− ks

)
dv

]
.

Now we substitute the values of the parameters ke and ks.
The value of ke is ⌊ 6n17 ⌋. For any v, the value of the second
integrand is smaller than that of the first integrand. There-
fore, a lower bound of the expression is obtained by setting
ks to its smallest value. We had observed in Lemma 9 that
ks is at least

(
12−δ
17

)
n for any small positive constant δ with

high probability for n → ∞. We omit further calculations
due to space constraints. On solving the integration, we get:

E(w(M))

OPT
≥ 0.30005− 10δ

289
− o(1).

By Lemma 9, the bound on ks holds for any positive con-
stant δ. Using δ = 10−5, we get the factor > 1

3.34 .

Algorithm 4: ALG4 for ROOMMATEMATCHING

1: Draw a random variable r from Uniform[0, 1]
2: if r ≤ 0.58 then
3: Run ALG2 on room valuations
4: else
5: Run ALG3 on mutual utilities
6: end if

5 Online Roommate Matching
Recall the online roommate matching problem given in Sub-
section 2.3. If the mutual utilities of all pairs of persons
are 0, then this problem is the same as BIPARTITEMATCH-
ING2 with rooms as offline vertices, persons as online ver-
tices, and room valuations as edge-weights. Whereas, if all
room valuations are 0, then the problem is the same as GEN-
ERALMATCHING over persons as online vertices and mutual
utilities as edge-weights. With these observations, we give
ALG4 for ROOMMATEMATCHING which considers only the
room valuations with probability p and only the mutual util-
ities with probability 1 − p. The competitive ratio in our
analysis is minimized at p = 0.58.

Theorem 4. ALG4 is 7.96-competitive for ROOMMATEM-
ATCHING w.h.p. as n→∞.

Proof. Let OPT be the social welfare of the optimal of-
fline room allocation. Let OPTRV and OPTMU be the so-
cial welfare of the offline room allocations which maxi-
mize only the sum of room valuations and mutual utilities
respectively. Then we have OPTRV + OPTMU ≥ OPT.
Let U denote the expected social welfare of the room al-
location given by ALG4. By Theorems 2 and 3, we have
U ≥ 0.58 · 1

4.62 · OPTRV + 0.42 · 1
3.34 · OPTMU ≥

0.1257 · (OPTRV +OPTMU) ≥ 0.1257 ·OPT > OPT
7.96 .

6 Conclusion
In this paper we do the first detailed analysis of online
matching problems with a no-rejection condition. We argue
that this is a natural constraint in several resource allocation
and resource sharing scenarios. We give constant factor ap-
proximation algorithms for capacitated bipartite matching,
general matching, and roommate matching problems in the
online no-rejection setting. The roommate matching prob-
lem captures scenarios where multiple persons may be as-
signed to use a single resource and there are positive exter-
nalities from the other persons using the same resource.

For future work, an important theoretical direction is to
find lower bounds of competitive ratios for these prob-
lems. Simple lower bounds follow from the correspond-
ing problems without the no-rejection condition. This is
e(≈ 2.73) for BIPARTITEMATCHING1 and 2.40 for GEN-
ERALMATCHING. Another interesting problem is to design
truthful mechanisms for these online matching and resource
allocation problems. In the proposed algorithms, an arriv-
ing vertex has the incentive to misreport its valuations (i.e.,
edge-weights) to potentially get a better match. For exam-
ple, it is a dominant strategy for an arriving vertex to report
zero valuations for the resources that are no longer available.

5057

Acknowledgements
I am very grateful to Ashish Goel, Zhihao Jiang, and Anmol
Kagrecha for their thoughtful comments on this work. This
research was supported by the Office of Naval Research and
the Future of Digital Currency Initiative (FDCI) at Stanford
University.

References
Babaioff, M.; Immorlica, N.; and Kleinberg, R. 2007. Ma-
troids, secretary problems, and online mechanisms. In Pro-
ceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms, 434–443.
Bateni, M.; Hajiaghayi, M.; and Zadimoghaddam, M. 2013.
Submodular secretary problem and extensions. ACM Trans-
actions on Algorithms (TALG), 9(4): 1–23.
Bei, X.; and Zhang, S. 2018. Algorithms for trip-vehicle
assignment in ride-sharing. In AAAI Conference on Artificial
Intelligence.
Chan, P.; Huang, X.; Liu, Z.; Zhang, C.; and Zhang, S. 2016.
Assignment and pricing in roommate market. In AAAI Con-
ference on Artificial Intelligence, volume 30.
Dickerson, J.; Sankararaman, K.; Srinivasan, A.; and Xu, P.
2018. Allocation problems in ride-sharing platforms: Online
matching with offline reusable resources. In AAAI Confer-
ence on Artificial Intelligence, volume 32.
Dynkin, E. B. 1963. The optimum choice of the instant for
stopping a Markov process. Soviet Mathematics, 4: 627–
629.
Ezra, T.; Feldman, M.; Gravin, N.; and Tang, Z. G. 2020.
Secretary Matching with General Arrivals. arXiv preprint
arXiv:2011.01559.
Feldman, M.; Svensson, O.; and Zenklusen, R. 2014. A sim-
ple O (log log (rank))-competitive algorithm for the matroid
secretary problem. In Proceedings of the twenty-sixth ACM-
SIAM Symposium on Discrete Algorithms (SODA), 1189–
1201.
Ferguson, T. S. 1989. Who solved the secretary problem?
Statistical science, 4(3): 282–289.
Freeman, P. 1983. The secretary problem and its extensions:
A review. International Statistical Review/Revue Interna-
tionale de Statistique, 189–206.
Gamlath, B.; Kapralov, M.; Maggiori, A.; Svensson, O.; and
Wajc, D. 2019. Online matching with general arrivals. In
IEEE 60th Annual Symposium on Foundations of Computer
Science (FOCS), 26–37.
Gharan, S. O.; and Vondrák, J. 2013. On variants of the
matroid secretary problem. Algorithmica, 67(4): 472–497.
Gilbert, J. P.; and Mosteller, F. 2006. Recognizing the
maximum of a sequence. In Selected Papers of Frederick
Mosteller, 355–398. Springer.
Gnedin, A. V. 1994. A solution to the game of googol. The
Annals of Probability, 1588–1595.
Goyal, M. 2021. Secretary Matching With Vertex Arrivals
and No Rejections. arXiv preprint arXiv:2112.07140.

Huzhang, G.; Huang, X.; Zhang, S.; and Bei, X. 2017. On-
line Roommate Allocation Problem. In IJCAI, 235–241.
Im, S.; and Wang, Y. 2011. Secretary problems: Lami-
nar matroid and interval scheduling. In Proceedings of the
twenty-second annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 1265–1274.
Karp, R. M.; Vazirani, U. V.; and Vazirani, V. V. 1990. An
optimal algorithm for on-line bipartite matching. In Pro-
ceedings of the twenty-second annual ACM Symposium on
Theory of Computing (STOC), 352–358.
Kesselheim, T.; Radke, K.; Tönnis, A.; and Vöcking, B.
2013. An optimal online algorithm for weighted bipartite
matching and extensions to combinatorial auctions. In Eu-
ropean symposium on algorithms, 589–600. Springer.
Kleinberg, R. 2005. A multiple-choice secretary algorithm
with applications to online auctions. In Proceedings of the
sixteenth annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 630–631. Citeseer.
Korula, N.; and Pál, M. 2009. Algorithms for secretary
problems on graphs and hypergraphs. In International
Colloquium on Automata, Languages, and Programming
(ICALP), 508–520. Springer.
Krengel, U.; and Sucheston, L. 1977. Semiamarts and fi-
nite values. Bulletin of the American Mathematical Society,
83(4): 745–747.
Lachish, O. 2014. O (log log rank) competitive ratio for the
matroid secretary problem. In IEEE 55th Annual Symposium
on Foundations of Computer Science (FOCS), 326–335.
Li, B.; and Li, Y. 2020. Fair resource sharing and dorm
assignment. In International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), 708–716.
Ma, T.; Tang, B.; and Wang, Y. 2016. The simulated greedy
algorithm for several submodular matroid secretary prob-
lems. Theory of Computing Systems, 58(4): 681–706.
Mehta, A. 2012. Online Matching and Ad Allocation. The-
oretical Computer Science, 8(4): 265–368.
Motwani, R.; and Raghavan, P. 1995. Randomized algo-
rithms. Cambridge university press.
Panconesi, A.; and Srinivasan, A. 1997. Randomized dis-
tributed edge coloring via an extension of the Chernoff–
Hoeffding bounds. SIAM Journal on Computing, 26(2):
350–368.
Preater, J. 1993. The senior and junior secretaries problem.
Operations research letters, 14(4): 231–235.
Preater, J. 1994. On multiple choice secretary problems.
Mathematics of Operations Research, 19(3): 597–602.
Reiffenhauser, R. 2019. An optimal truthful mechanism for
the online weighted bipartite matching problem. In Proceed-
ings of the Thirtieth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 1982–1993.
Soto, J. A. 2013. Matroid secretary problem in the random-
assignment model. SIAM Journal on Computing, 42(1):
178–211.
Soto, J. A.; Turkieltaub, A.; and Verdugo, V. 2021. Strong
algorithms for the ordinal matroid secretary problem. Math-
ematics of Operations Research.

5058

