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Abstract
We study a dynamic model of Bayesian persuasion in sequen-
tial decision-making settings. An informed principal observes
an external parameter of the world and advises an uninformed
agent about actions to take over time. The agent takes actions
in each time step based on the current state, the principal’s
advice/signal, and beliefs about the external parameter. The
action of the agent updates the state according to a stochas-
tic process. The model arises naturally in many applications,
e.g., an app (the principal) can advice the user (the agent)
on possible choices between actions based on additional real-
time information the app has. We study the problem of de-
signing a signaling strategy from the principal’s point of view.
We show that the principal has an optimal strategy against a
myopic agent, who only optimizes their rewards locally, and
the optimal strategy can be computed in polynomial time.
In contrast, it is NP-hard to approximate an optimal policy
against a far-sighted agent. Further, if the principal has the
power to threaten the agent by not providing future signals,
then we can efficiently compute a threat-based strategy. This
strategy guarantees the principal’s payoff as if playing against
an agent who is far-sighted but myopic to future signals.

1 Introduction
Uncertainty is prevalent in models of sequential decision
making. Usually, an agent relies on prior knowledge and
Bayesian updates as a basic approach to dealing with un-
certainties. In many scenarios, a knowledgeable principal
has direct access to external information and can reveal it
to influence the agent’s behavior. For example, a naviga-
tion app (the principal) normally knows about the global
traffic conditions and can inform a user (the agent), who
then decides a particular route based on the app’s advice.
The additional information can help improve the quality of
the agent’s decision-making. Meanwhile, by strategically re-
vealing the external information, the principal can also per-
suade the agent to act in a way beneficial to the principal.

We study the related persuasion problem in a dynamic
environment. In a static setting, the interaction between the
principal and the agent is modeled by Bayesian persuasion
(Kamenica and Gentzkow 2011), where the principal uses
their information advantage to influence the agent’s strat-
egy in a one-shot game, by way of signaling. In this paper,
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we extend this setting to include interaction in an infinite-
horizon Markov decision process (MDP), where rewards in-
curred depend on the state of the environment, the action
performed, as well as an external parameter sampled from
a known prior distribution at each step. The principal, who
cannot directly influence the state, observes the realization
of this external parameter and signals the agent about their
observation. The agent chooses to perform an action based
on the state and the signal, and the action updates the state
according to a stochastic transition function. Both the princi-
pal and the agent aim to optimize their own rewards received
in the course of the play.

If the objectives of the principal and the agent are com-
pletely aligned, the principal should reveal true information
about the external parameter, so the more interesting case is
when they are misaligned. For example, a user of an navi-
gation app only wants to optimize their commute times but
the app may want to incentivize the user to upgrade to a bet-
ter service, or to increase traffic throughput when the app is
provided by a social planner. We consider two major types of
agents—myopic and far-sighted—and investigate the prob-
lem of optimal signaling strategy design against them. A
myopic agent optimizes their payoff locally: in each step,
they take an action that will give them the highest imme-
diate reward. It can model a large number of “short-lived”
agents each appearing instantly in a system (e.g., users of a
ride-sharing app or an E-commerce website). A far-sighted
agent, on the other hand, optimizes their long-run cumula-
tive reward and considers future information disclosure.

We show that, in the myopic setting, an optimal signal-
ing strategy for the principal can be computed in polyno-
mial time through a reduction to linear programming. On
the other hand, in the case of a far-sighted agent, opti-
mal signaling strategy design becomes computationally in-
tractable: if P6=NP, there exists no polynomial time approxi-
mation scheme. Our proof of computational intractability is
quite general, and extends to showing the hardness of similar
principal-agent problems in dynamic settings.

To work around the computational barrier, we focus on
a special type of far-sighted agents who are advice-myopic.
An advice-myopic agent optimizes their cumulative reward
over time based on the history of information disclosures,
but does not assume that the principal will continue to pro-
vide information in the future. We expect such behavior to
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a (0, 0)

b
(0.1, 10)

c (0.1, 0)

External parameter
θa θb

a (1, 1) (−1, 0)
b (−1, 0) (1, 1)

Figure 1: A simple example: a principal wishes to reach s2

while maximizing rewards. All transitions are determinis-
tic, and every edge is labeled with the corresponding action
and (in the brackets) rewards for the agent and the principal,
respectively. The rewards for state-action pairs (s0, a) and
(s0, b) (dashed edges) also depend on the 2-valued external
parameter, as specified in the table; the value of the param-
eter is sampled uniformly at random at each step. Assume
uniform discounting with discount 1

2 . Without signaling, the
agent will always take action c in s0, whereby the principal
obtains payoff 0. The principal can reveal information about
the external parameter to attract the agent to move to s1. If
the agent is myopic, the principal can reveal full informa-
tion, which leads to the agent moving to s1, taking action b,
and ending in s2; the principal obtains payoff 6 as a result.
However, if the agent is far-sighted, this will not work: the
agent will end up in a loop in s0 and s1, resulting in overall
payoff 4/3 for the principal. To improve, the principal can
use a less informative strategy in s0: e.g., advising the agent
to take the more profitable action 10% of the time and a uni-
formly sampled action in {a, b} the remaining 90% of the
time. The agent will be incentivized to move to s1 then. Al-
ternatively, the principal can also use a threat-based strategy,
which yields an even higher payoff in this instance: always
reveal the true information in s0, advise the agent to take b
in s1, and stop providing any information if the agent does
not follow the advice. The outcome of this strategy coincides
with how an advice-myopic agent behaves: they will choose
b at s1 as future disclosures are not considered.

be a natural heuristic in the real world when agents resort
to prior knowledge, but not future information disclosure, to
estimate future rewards. We then show that optimal signal-
ing strategies can again be computed in polynomial-time.
More interestingly, the solution can be used to design a
threat-based signaling strategy against a far-sighted agent.
We show that this threat-based strategy induces the same re-
action from a far-sighted agent as from an advice-myopic
one. Hence, it guarantees the principal the same payoff ob-
tained against an advice-myopic agent, when the agent is
actually far-sighted. Figure 1 shows the subtleties of opti-
mal signaling strategies in the dynamic setting.

Related Work Our starting point is the work on Bayesian
persuasion (Kamenica and Gentzkow 2011), which looks
at optimal signaling under incomplete information in the
static case. Many variants of this model have been pro-
posed and studied ever since, with applications in secu-
rity, voting, advertising, finance, etc. (e.g., Rabinovich et al.
2015; Xu et al. 2015; Goldstein and Leitner 2018; Badani-

diyuru, Bhawalkar, and Xu 2018; Castiglioni, Celli, and
Gatti 2020); also see the comprehensive surveys (Kamenica
2019; Dughmi 2017). Dynamic models of Bayesian per-
suasion were studied recently (Ely 2017; Renault, Solan,
and Vieille 2017), and some more recent works focused on
algorithmic problems from several dynamic models, such
as a model built on extensive-form games (EFGs) (Celli,
Coniglio, and Gatti 2020) and an online persuasion model
(Castiglioni et al. 2020, 2021). These models are sufficiently
different from ours. In the EFG model, in particular, an EFG
parameterized by the state of nature (akin to our external
parameter) is instantiated before the play, and a group of re-
ceivers then engage in the EFG and they infer the EFG being
played according to signals from a sender. Hence, informa-
tion exchange happens only once in this model, whereas it
happens in every step in ours. Such one-off persuasions also
appeared in several other works on Bayesian persuasion and,
more broadly, on non-cooperative IRL (inverse reinforce-
ment learning) and incentive exploration (Zhang et al. 2019;
Mansour et al. 2021; Simchowitz and Slivkins 2021).

Reversing the roles of the players in terms of who has
the power to commit leads to a dual problem of Bayesian
persuasion, which is often known as automated mechanism
design (Conitzer and Sandholm 2002, 2004). In such prob-
lems, the signal receiver commits to a mechanism that spec-
ifies the action they will take upon receiving each signal,
and the signal sender sends signals optimally in response. A
very recent work by Zhang and Conitzer (2021) considered
automated mechanism design in a dynamic setting similar to
ours, and offered a complementary view to our work. In their
work, the primary consideration is a finite-horizon setting
and history-based strategies. In contrast, we focus primarily
on unbounded horizons and memory-less strategies.

The interaction between the principal and the agent can
be viewed as a stochastic game (Shapley 1953) where one
player (i.e., the principal) has the power to make a strat-
egy commitment (Letchford and Conitzer 2010; Letchford
et al. 2012). Games where multiple agents jointly take ac-
tions in a dynamic environment have been widely studied in
the literature on multi-agent reinforcement learning, but usu-
ally in settings without strategy commitment (Littman 1994;
Buşoniu, Babuška, and De Schutter 2010).

More broadly, our work also relates to the advice-based
interaction framework (e.g., Torrey and Taylor 2013; Amir
et al. 2016), where the principal’s goal is to communicate
advice to an agent on how to act in the world. This advice-
based framework is also in close relationship to the machine
teaching literature (Goldman and Kearns 1995; Singla et al.
2014; Doliwa et al. 2014; Zhu et al. 2018; Ng and Russell
2000; Hadfield-Menell et al. 2016) where the principal (i.e.,
the teacher) seeks to find an optimal training sequence to
steer the agent (i.e., the learner) towards the desired goal.
Similarly, in environment design, the principal modifies the
rewards or transitions to steer the behavior of the agent. The
objective may be obtaining fast convergence (Ng, Harada,
and Russell 1999; Mataric 1994), or inducing a target policy
of the agent (Zhang and Parkes 2008; Zhang, Parkes, and
Chen 2009; Ma et al. 2019; Rakhsha et al. 2020b; Huang
and Zhu 2019; Rakhsha et al. 2020a). These problem set-
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tings are similar to ours in that the principal cannot directly
act in the environment but can influence the agent’s actions
via learning signals. We see our setting and techniques as
complementary to these studies; in particular, our hardness
results can be extended there as well.

2 The Model
Our formal model is an MDP with reward uncertainties,
given by a tupleM =

〈
S,A, P,Θ, (µs)s∈S , R, R̃

〉
and in-

volving two players: a principal and an agent. Similar to a
standard MDP, S is a finite state space of the environment;A
is a finite action space for the agent;P : S×A×S → [0, 1] is
the transition dynamics of the state. When the environment
is in state s and the agent takes action a, the state transitions
to s′ with probability P (s, a, s′); both the principal and the
agent are aware of the state throughout. Meanwhile, rewards
are generated for both the principal and the agent, and are
specified by the reward functions R : S × Θ × A → R
and R̃ : S × Θ × A → R, respectively. Hence, unlike in
a standard MDP, here the rewards also depend on an ex-
ternal parameter θ ∈ Θ. This parameter captures an addi-
tional layer of uncertainty of the environment; it follows a
distribution µs ∈ ∆(Θ) and is drawn anew every time the
state changes. For all s ∈ S, µs is common prior knowledge
shared between the principal and the agent; however, only
the principal has access to the realization of θ.

Crucially, since the actions are taken only by the agent,
the principal cannot directly influence the state. Instead, the
principal can use their information advantage about the ex-
ternal parameter to persuade the agent to take certain ac-
tions, by way of signaling.

Signaling and Belief Update Let G be a space of signals.
A signaling strategy of the principal generates a distribution
over G. Our primary consideration in this paper is Marko-
vian signaling strategies, whereby signals to send only de-
pend on the current state (independent of the history). For-
mally, a signaling strategy π = (πs)s∈S of the principal con-
sists of a function πs : Θ → ∆(G) for each state s ∈ S.
Upon observing an external parameter θ, the principal will
send a signal sampled from πs(θ) when the current state is
s; we denote by πs(θ, g) the probability of g ∈ G in this
distribution.

The signal space is broadly construed. For example, one
simple signaling strategy is to always reveal the true infor-
mation, which always sends a deterministic signal gθ asso-
ciated with the observed external parameter θ ∈ Θ (i.e., a
message saying “The current external state is θ”); formally,
we write πs(θ) = êgθ .1 In contrast, if the same signal is sent
irrespective of the external parameter, i.e., πs(θ) = πs(θ

′)
for all θ, θ′ ∈ Θ, then the signaling strategy is completely
uninformative. Without loss of generality, we assume that
signals in G are distinct from each other from the agent’s
point of view.

Upon receiving a signal g, the agent updates their poste-
rior belief about the (distribution of) the external parameter:

1We let êi denote a unit vector, of which the i-th element is 1.

the conditional probability of the parameter being θ is

Pr(θ|g, πs) = µs(θ)·πs(θ,g)∑
θ′∈Θ µs(θ

′)·πs(θ′,g) . (1)

To derive the above posterior also relies on knowledge
about the principal’s signaling strategy π. Indeed, we follow
the Bayesian persuasion framework, whereby the principal
commits to a signaling strategy π at the beginning of the
game and announces it to the agent.

Signaling Strategy Optimization We take the principal’s
point of view and investigate the problem of optimal sig-
naling strategy design: givenM, find a signaling strategy π
that maximizes the principal’s (discounted) cumulative re-
ward E [

∑∞
t=0 γ

tR(st, θt, at)|z, π], where z = (zs)s∈S is
the distribution of the starting state, γ ∈ [0, 1) is a dis-
count factor, and the expectation is taken over the trajec-
tory (st, θt, at)

∞
t=0 induced by the signaling strategy π. To

completely specify this task requires a behavioral model for
the agent. We will consider two major types of agents—
myopic and far-sighted—and will define them separately in
the next two sections; a myopic agent only cares about their
instant reward in each step, whereas a far-sighted agent con-
siders the cumulative reward with respect to a discount fac-
tor γ̃ > 0 (which need not be equal to γ).

In summary, the game proceeds as follows. At the begin-
ning, the principal commits to a signaling strategy π and an-
nounces it to the agent. Then in each step, if the environment
is in state s, an external parameter θ ∼ µs is drawn (by na-
ture); the principal observes θ, samples a signal g ∼ πs(θ),
and sends g to the agent. The agent receives g, updates
their belief about θ (according to (1)), and decides an ac-
tion a ∈ A to take accordingly. The state then transitions to
s′ ∼ P (s, a, ·).

3 When Agent is Myopic
We first consider a myopic agent. A myopic agent aims to
maximize their reward in each individual step. Upon re-
ceiving a signal g in state s, the agent will take a best ac-
tion a ∈ A, which maximizes Eθ∼Pr(·|g,πs)R̃(s, θ, a). We
study the problem of computing an optimal signaling strat-
egy against a myopic agent, termed OPTSIG-MYOP.

Action Advice According to a standard argument via the
revelation principle, it is often without loss of generality
to consider signaling strategies in the form of action ad-
vice. This also holds in our model. Specifically, for any sig-
naling strategy, there exists an equivalent strategy π which
uses only a finite set GA := {ga : a ∈ A} of signals,
and each signal ga corresponds to an action a ∈ A; more-
over, π is incentive compatible (IC), which means that the
agent is also incentivized to take the corresponding action a
upon receiving ga, i.e., we have Eθ∼Pr(·|ga,πs)R̃(s, θ, a) ≥
Eθ∼Pr(·|ga,πs)R̃(s, θ, a′) for all a′ ∈ A,2 or equivalently:∑
θ∈Θ Pr(θ|ga, πs)·

(
R̃(s, θ, a)− R̃(s, θ, a′)

)
≥ 0 ∀a′. (2)

2By convention, we assume that the agent breaks ties by taking
the advised action when there are multiple optimal actions.
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In other words, π signals which action the agent should take
and it is designed in a way such that the agent cannot be
better off deviating from the advised action with respect to
the posterior belief. We call a signaling strategy that only
uses signals in GA an action advice, and call it an IC action
advice if it also satisfies (2). We refer the reader to the full
version of this paper for more details about the generality of
IC action advices in our model.3

We can easily characterize the outcome of an IC action ad-
vice π: at each state s, since the agent is incentivized to fol-
low the advice, with probability φπs (θ, a) := µs(θ)·πs(θ, ga)
they will take action a while the realized external parameter
is θ; hence, φπs is a distribution over Θ × A. We can then
define the following setAs ⊆ ∆(Θ×A), which contains all
such distributions that can be induced by some π:

As = {φπs : π is an IC action advice} .

It would now be convenient to view the problem fac-
ing the principal as an (single-agent) MDP M∗ =
〈S, (As)s∈S , P ∗, R∗〉, where S is the same state space in
M;As defines an (possibly infinite) action space for each s;
the transition dynamics P ∗ : S × ∆(Θ × A) × S → [0, 1]
and reward function R∗ : S ×∆(Θ×A)→ R are such that

P ∗(s,x, s′) = E(θ,a)∼xP (s, a, s′),

and R∗(s,x) = E(θ,a)∼xR(s, θ, a).

Namely,M∗ is defined as if the principal can choose actions
(which are (θ, a) pairs) freely from As, whereas the choice
is actually realized through persuasion. A policy σ forM∗
maps each state s to an action x ∈ As, and it corresponds to
an IC action advice π inM, with φπs = σ(s) for all s. The
problem of designing an optimal action advice then trans-
lates to computing an optimal policy forM∗. We show next
that we can exploit a standard approach to compute an op-
timal policy but we need to address a key challenge as the
action space ofM∗ may contain infinitely many actions.

LP Formulation The standard approach to computing an
optimal policy for an MDP is to compute a value function
V : S → R that satisfies the Bellman equation:

V (s) = max
x∈As

[
R∗(s,x) + γ·

∑
s′∈S

P ∗(s,x, s′) · V (s′)

]
∀s.

(3)

It is well-known that there exists a unique solution to the
above system of equations, from which an optimal policy
can be extracted. In particular, one approach to computing
this unique solution is by using the following LP (linear pro-
gram) formulation, where V (s) are the variables; The opti-
mal value of this LP directly gives the cumulative reward of
optimal policies under a given initial state distribution z.

minV
∑
s∈S zs · V (s) (4)

s.t. V (s) ≥ R∗(s,x) + γ·
∑
s′∈S P

∗(s,x, s′)·V (s′)

∀s ∈ S,x ∈ As (4a)

3All omitted results and proofs can be found in the full version
of this paper.

The issue with this LP formulation is that there may be in-
finitely many constraints as (4a) must hold for all x ∈ As.
This differs from MDPs with a finite action space, in which
case the LP formulation can be reduced to one with a finite
set of constraints, where each constraint corresponds to an
action. We address this issue by using the ellipsoid method
as sketched below. More practically, we can also derive a
concise LP formulation by exploiting the duality principle
(see the full version of the paper).
Theorem 1. OPTSIG-MYOP is solvable in polynomial time.

Proof sketch. We show that LP (4) can be solved in poly-
nomial time by using the ellipsoid method. The key to this
approach is to implement the separation oracle in polyno-
mial time. For any given value assignment of the variables
(in our problem values of V (s)), the oracle should decide
correctly whether all the constraints of the LP are satisfied
and, if not, output a violated one.

To implement the separation oracle for our problem
amounts to solving the following optimization for all s ∈ S:
maxx∈As R∗(s,x)+γ ·

∑
s′∈S P

∗(s,x, s′)·V (s′)−V (s).

By checking if the above maximum value is positive, we can
identify if (4a) is violated for some x ∈ As. Indeed, the set
of IC action advices can be characterized by the constraints
in (2), which are linear constraints if we expand Pr(θ|ga, πs)
according to (1) and eliminate the denominator (where we
also treat πs(θ, ga) as the additional variables and add the
constraint x(θ, a) = µs(θ)·πs(θ, ga) for every θ and a).

4 When Agent is Far-sighted
A far-sighted (FS) agent looks beyond the immediate reward
and considers the cumulative reward discounted by γ̃. We
now study signaling strategy design against an FS agent.

4.1 Optimal Signaling against FS Agent
When facing an FS agent, we cannot define an inducible set
As independently for each state. The principal needs to take
a global view and aim to induce the agent to use a policy
that benefits the principal. We term the problem of optimal
signaling strategy design against an FS agent OPTSIG-FS.

Best Response of FS Agent We first investigate an FS
agent’s best response problem. When the principal com-
mits to a signaling strategy π, the best response problem
facing the agent can be formulated as an MDP Mπ =〈
S ×G,A, P π, R̃π

〉
. In each step the agent observes the

state s ∈ S ofM along with a signal g ∈ G from the prin-
cipal; the tuple (s, g) constitutes a state inMπ , and we call
it a meta-state to distinguish it from states inM. From the
agent’s perspective, after they take action a, the meta-state
transitions to (s′, g′) with probability
Pπ((s, g), a, (s′, g′)) = P (s, a, s′) · Eθ∼µs′πs′(θ, g

′). (5)
Namely, a next state s′ ofM is sampled from P (s, a, ·), then
a new external parameter θ is sampled from µs′ and the prin-
cipal sends a signal g ∼ πs′(θ). Meanwhile, the following
reward is yielded for the agent:

R̃π((s, g), a) = Eθ∼Pr(·|g,πs)R̃(s, θ, a), (6)
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where the posterior belief Pr(θ|g, πs) is defined in (1).
Hence, an optimal policy σ : S×G→ A forMπ defines

a best response of the agent against π. An optimal signaling
strategy of the principal maximizes the cumulative reward
against the agent’s best response.

Inapproximability We show that OPTSIG-FS is highly
intractable: even to find an approximate solution to OPTSIG-
FS requires solving an NP-hard problem. Hence, it is un-
likely that there exists any efficient approximation algorithm
for this task, assuming that P=NP is unlikely.
Theorem 2. Assuming that P 6= NP, then OPTSIG-FS does
not admit any polynomial-time 1

λ1−ε -approximation algo-
rithm for any constant ε > 0, where λ is the number of
states s ∈ S in which the prior distribution µs is non-
deterministic (i.e., supported on at least two external pa-
rameters). This holds even when |Θ| = 2 and the discount
factors γ, γ̃ ∈ (0, 1) are fixed.

The proof of Theorem 2 is via a reduction from the MAX-
IMUM INDEPENDENT SET problem, which is known to be
NP-hard to approximate (Zuckerman 2006). The result may
also be of independent interest: It can be easily adapted to
show the inapproximability of similar principal-agent prob-
lems in dynamic settings. This hardness result also indicates
a “phase transition” between the cases where γ̃ = 0 and
γ̃ > 0 given the tractability of OPTSIG-MYOP showed in
Section 3.

4.2 Advice-myopic Agent
The intractability of OPTSIG-FS motivates us to consider
advice-myopic (AM) agents, who account for their future
rewards like an FS agent does, but behave myopically and
ignore the principal’s future signals. In other words, they al-
ways assume that the principal will disappear in the next step
and rely only on their prior knowledge to estimate the future
payoff. We refer to the optimal signaling strategy problem
against an AM agent as OPTSIG-AM.

Equivalence to the Myopic Setting Since an AM agent
does not consider future signals, their future reward is inde-
pendent of the principal’s signaling strategy. This allows us
to define a set of inducible distributions of (θ, a) indepen-
dently for each state, similarly to our approach to dealing
with a myopic agent. In other words, an AM agent is equiv-
alent to a myopic agent who adds a fixed value to their re-
ward function, and this fixed value is the best future reward
they can achieve without the help of any signals. This value
is independent of the signaling strategy and can be calcu-
lated beforehand. Let R̃+ : S × Θ × A → R be the reward
function of this equivalent myopic agent. We have

R̃+(s, θ, a) = R̃(s, θ, a) + γ̃ · Es′∼P (s,a,·)V (s′, g0), (7)

where V is the optimal value function of the agent when
completely uninformative signals are given. In more detail,
let ⊥: Θ → ∆(G) be a completely uninformative signaling
strategy, with ⊥ (θ) = êg0

for all θ (i.e., it always sends
the same signal g0). Then V is the optimal value function
for the MDPM⊥ =

〈
S × {g0}, A, P⊥, R̃⊥

〉
, defined the

same way as Mπ in Section 4.1, with π =⊥. Hence, the
Bellman equation gives

V (s, g0)

= max
a∈A

(
R̃⊥(s, θ, a) + γ̃ · E(s′,g0)∼P⊥((s,g0),a,·)V (s′, g0)

)
= max

a∈A

(
Eθ∼µsR̃(s, θ, a) + γ̃ · Es′∼P (s,a,·)V (s′, g0)

)
(8)

for all s ∈ S, where the second transition follows by (5) and
(6) and we also use the facts that the posterior Pr(·|g,⊥)
degenerates to the prior µs(·) as⊥ is uninformative, and that
P⊥((s, g0), a, (s′, g0)) = P (s, a, s′) as the meta-state only
transitions among the ones in the form (s, g0).

We can compute V efficiently by solving the above Bell-
man equation. (A standard LP approach suffices given that
M⊥ has a finite action space.) Then we obtain R̃+ ac-
cording to (7), with which we can construct an equivalent
OPTSIG-MYOP instance and solve it using our algorithm
in Section 3. The solution is also optimal to the original
OPTSIG-AM instance as we argued above; we state this re-
sult in the theorem below and omit the proof.

Theorem 3. OPTSIG-AM is solvable in polynomial time.

4.3 Threat-based Action Advice against FS Agent
Now that we can efficiently solve OPTSIG-AM, we will
show that we can use a solution to OPTSIG-AM to effi-
ciently design a signaling strategy against an FS agent. Inter-
estingly, we can prove that this strategy guarantees the prin-
cipal the payoff as if they are playing against an AM agent,
when the agent is actually FS. The idea is to add a threat
in the action advice: if the agent does not take the advised
action, then the principal will stop providing any informa-
tion in future steps (equivalently, switching to strategy ⊥).
Essentially, this amounts to a one-memory strategy, denoted
$ = ($s)s∈S , where each $s : S × Θ ×G × A → ∆(A)
also depends on the signal and the action taken in the previ-
ous step (i.e., whether the action follows the signal).

More formally, suppose that π = (πs)s∈S is a solution to
OPTSIG-AM and without loss of generality it is an IC action
advice. We construct a one-memory strategy:

$s((s, θ), g, a) =

{
πs(θ), if g ∈ {ga, null}
⊥ (θ) = êg0 , otherwise

(9)

where g and a are the signal and action taken in the previous
step (assume that g is initialized to null in the first step); each
signal ga advises the agent to take the corresponding action
a, and g0 is a signal that does not correspond to any action.

Our key finding is that, via this simple threat-based mech-
anism, the strategy $ we design is persuasive for an FS
agent: the threat it makes effectively incentivizes the FS
agent to take advised actions. To show this, we first analyze
the problem facing the agent when the principal commits to
$.

Best Response to $ From an FS agent’s perspective,
the principal committing to $ results in an MDP M$ =〈
S ×G,A, P$, R̃$

〉
. We have G = {g0} ∪ GA, so each
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meta-state (s, g) inM$ consists of a state ofM and a sig-
nal from the principal. The transition dynamics depend on
whether the signal sent in the current state is g0 or not (i.e.,
whether the principal has switched to the threat-mode):
• For all (s, ga) ∈ S×GA, the agent following the advised

action a results in transition probabilities:
P$((s, ga), a, ·) = Pπ((s, ga), a, ·); (10a)

Otherwise, i.e., if any action b 6= a is taken, the principal
will fulfill the threat and send g0 in the next step. Hence,
P$((s, ga), b, (s′, g))

=

{∑
g′∈G P

π((s, ga), a, (s′, g′)), if g = g0

0, otherwise
(10b)

• For all (s, g0) ∈ S×{g0}, the threat is activated in these
meta-states, we have:

P$((s, g0), a, (s′, g′)) = P⊥((s, g0), a, (s′, g′))

=

{
P (s, a, s′), if g′ = g0

0, otherwise
(10c)

Similarly, the reward function differs in meta-states
(s, ga) and (s, g0). We have

R̃$((s, g), ·) =

{
R̃π((s, g), ·), if g ∈ GA
R̃⊥((s, g0), ·), otherwise

(11)

Persuasiveness of $ To show the persuasiveness of $,
we argue that the following policy σ : S × G → A of the
agent, in which the agent always takes the advised action, is
optimal in response to $. For all s ∈ S, we define

σ(s, g) =

{
a, if g = ga ∈ GA
σ̄(s, g0), if g = g0

(12)

where σ̄ is an optimal policy against ⊥, the value function
V : S × G → R of which (as from the agent’s perspective)
is already defined in Section 4.2 and satisfies (8).

Theorem 4 shows the optimality of σ. Intuitively, we show
that the value function of σ is at least as large as V , so the
agent has no incentive to provoke the threat.
Theorem 4. The policy σ defined in (12) is an optimal re-
sponse of an FS agent to $. (Hence, $ incentivizes an FS
agent to take the advised action.)

The direct consequence of Theorem 4 is that $ guaran-
tees the principal the best payoff they can obtain when fac-
ing an AM agent, even though the agent is FS (Corollary 5).
Hence, $ serves as an alternative approach to deal with an
FS agent. Note that this threat-based strategy may not be an
optimal one-memory strategy. Indeed, with minor changes
to our proof of Theorem 2, we can show that for any positive
integer k the problem of computing an optimal k-memory
strategy is inapproximable (see the full version of the pa-
per). In contrast, in the myopic and advice-myopic settings,
since the agent’s behavior is Markovian, the optimal signal-
ing strategies we designed remain optimal even when we are
allowed to use memory-based strategies.
Corollary 5. By using $ against an FS agent, the princi-
pal’s cumulative reward is the same as the highest cumula-
tive reward they can obtain against an AM agent.

5 Experiments
We empirically evaluate signaling strategies obtained with
our algorithms. The goal is to compare the payoffs yielded
for the principal. We use Python (v3.9) to implement our al-
gorithms and Gurobi (v9.1.2) to solve all the LPs. All results
were obtained on a platform with a 2 GHz Quad-Core CPU
and 16 GB memory, and each is averaged over at least 20
instances. We conduct experiments on (i) general instances
without any specific underlying structure, and (ii) instances
generated based on a road navigation application.

General Instances The first set of instances are gener-
ated as follows. The transition probabilities and the initial
state distribution are generated uniformly at random (and
normalized to ensure that they sum up to 1). We also set
an integer parameter n∗, and change n∗ states to terminal
states. The reward values are first generated uniformly at
random from the range [0, 1]. Then, we tune the agent’s
rewards according to a parameter β ∈ [−1, 1], resetting
R̃(s, θ, a) ← (1 − |β|) · R̃(s, θ, a) + β · R(s, θ, a). Hence,
when β = 0, the agent’s rewards are independent of the prin-
cipal’s; when β = 1, they are completely aligned; and when
β = −1, they are zero-sum.

We evaluate optimal signaling strategies against a my-
opic and an AM agent; the latter is equivalent to our threat-
based strategy against an FS agent (THREAT-FS). We use
two benchmarks, which are by nature also the lower and up-
per bounds of payoffs of other strategies: i) when the princi-
pal cannot send any signal and the agent operates with only
the prior knowledge (NOSIG-MYOP and NOSIG-AM/FS;
AM and FS agents have the same behavior in this case); and
ii) when the principal has full control over the agent (FULL-
CONTROL). For ease of comparison, all results are shown as
their ratios to results of FULLCONTROL.

Figure 2 summarizes the results. It is clearly seen that
OPTSIG improves significantly upon NOSIG in all figures.
The gap appears to increase with β, and when β ≥ 0 (when
the agent’s rewards are positively correlated to that of the
principal), OPTSIG is very closed to FULLCONTROL. It is
also noted that differences between results obtained in the
myopic setting and in the FS/AM setting are very small (e.g.,
compare (a) and (b)). This is mainly due to the random na-
ture of the instances: in expectation, future rewards of all ac-
tions are the same. Hence, in the remaining figures we only
present results obtained in the myopic setting. As shown in
these figures, payoff improvement offered by the optimal
strategies increases slowly with the number of actions and
the number of external parameters. Intuitively, as these two
numbers increase, the agent’s decision making in each state
becomes more reliant on advice from the principal. Never-
theless, the results do not appear to vary insignificantly with
other parameters, such as the number of states or the num-
ber of terminal states as shown in (e) and (f) (also see the
full version of the paper for additional experiment results).

Road Navigation Instances In the navigation application,
the agent wants to travel from a starting node to a destination
node on a road network, and is free to choose any path. In
each step, the agent picks a road at the current node and trav-
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NOSIG-MYOP NOSIG-AM/FS OPTSIG-MYOP OPTSIG-AM (THREAT-FS)
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Figure 2: Comparison of signaling strategies: all results are shown as ratios to FULLCONTROL on the y-axes. Meanings of
x-axes are noted in the captions. Shaded areas represent standard deviations (mean ± standard deviation). In all figures, we fix
|S| = |Θ| = |A| = 10, γ = γ̃ = 0.8, n∗ = 5, and β = 0 unless they are variables.
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Figure 3: Comparison of signaling strategies in a navigation application: all results are shown as the ratios of FULLCONTROL
to them on the y-axes (now that rewards are costs). All curves and axes have the same meanings as in Figure 2. All results are
obtained on instances with n = 20 and m = 100 (i.e., numbers of nodes and edges in the network), where we also fix |Θ| = 3,
γ = γ̃ = 0.8, and β = 0.5 unless they are variables.

els through it. The reward the agent receives at each step is
a cost representing the travel time through the chosen road,
which depends on the congestion level represented by the
external parameter. The principal, as a social planner, has a
preference over the path the agent picks (e.g., in considera-
tion of the overall congestion or noise levels across the city),
and this is encoded in a reward function for the principal:
whenever the agent picks a road, the principal also receives a
cost according to this reward function. Naturally, the agent’s
position (the node the agent is on) defines the state of the
MDP. For simplicity, we assume that the road network is a
directed acyclic graph (DAG), so the agent always reaches
the destination in a finite number of steps.

To generate an instance, we first generate a random DAG
with specified numbers of nodes and edges (roads). Let these
numbers be n and m, respectively (n ≤ m ≤ n(n−1)

2 ).
We sample a Prüfer sequence of length n − 2 uniformly at
random and then convert it into the corresponding tree. We
index the nodes according to their order in a breadth-first
search. The node with the smallest/largest index is chosen as
the start/destination. Then we add an edge between a pair of
nodes chosen uniformly at random, from the node with the
smaller index to the node with the larger index, until there
are m edges on the graph. In the case that some node has no
outgoing edge and it is not the destination, we also add an
edge linking this node to the destination, so the graph gener-
ated may actually have more than m edges. In this way the
graph generated is always a DAG.

The results are presented in Figure 3. The results exhibit

similar patterns to their counterparts in Figure 2. Neverthe-
less, the gaps between different strategies appear to be nar-
rower in the FS/AM setting than those in the myopic setting,
which is not obvious in Figure 2.

6 Conclusion
We described and studied a dynamic model of persuasion in
infinite horizon Markov processes. Our main results charac-
terize the nature and computational complexity of optimal
signaling against different types of agents. A limitation of
the current model is that it requires common knowledge of
transitions and rewards; hence, studying online versions of
our problem (Castiglioni et al. 2020) is an immediate fu-
ture step. While we focus on the algorithmic aspects of per-
suasion, our results indicate how a social planner might in-
fluence agents optimally. In particular implementations, the
planner’s incentives may not be aligned with societal bene-
fits. In these cases, a careful analysis of the persuasion mech-
anisms and their moral legitimacy must be considered.
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Krause, A. 2014. Near-Optimally Teaching the Crowd to
Classify. In Proceedings of the 31st International Confer-
ence on Machine Learning (ICML’14), volume 32, 154–162.
Torrey, L.; and Taylor, M. 2013. Teaching on a Bud-
get: Agents Advising Agents in Reinforcement Learning.
In Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems (AAMAS’13),
1053–1060.
Xu, H.; Rabinovich, Z.; Dughmi, S.; and Tambe, M. 2015.
Exploring information asymmetry in two-stage security
games. In Proceedings of the 29th AAAI Conference on Ar-
tificial Intelligence (AAAI’15), volume 29.
Zhang, H.; and Conitzer, V. 2021. Automated Dynamic
Mechanism Design. Advances in Neural Information Pro-
cessing Systems (NeurIPS’21), 34.
Zhang, H.; and Parkes, D. C. 2008. Value-Based Pol-
icy Teaching with Active Indirect Elicitation. In Proceed-
ings of the 23rd AAAI Conference on Artificial Intelligence
(AAAI’08), 208–214.
Zhang, H.; Parkes, D. C.; and Chen, Y. 2009. Policy Teach-
ing through Reward Function Learning. In Proceedings of
the 10th ACM conference on Electronic Commerce (EC’09),
295–304.
Zhang, X.; Zhang, K.; Miehling, E.; and Basar, T.
2019. Non-Cooperative Inverse Reinforcement Learning.
In Advances in Neural Information Processing Systems
(NeurIPS’19), volume 32.
Zhu, X.; Singla, A.; Zilles, S.; and Rafferty, A. N. 2018. An
Overview of Machine Teaching. CoRR, abs/1801.05927.
Zuckerman, D. 2006. Linear Degree Extractors and the In-
approximability of Max Clique and Chromatic Number. In
Proceedings of the 38th Annual ACM Symposium on Theory
of Computing (STOC’06), 681–690. Association for Com-
puting Machinery.

5033


