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Abstract

We study extensions of the Election Isomorphism problem,
focused on the existence of isomorphic subelections. Specifi-
cally, we propose the SUBELECTION ISOMORPHISM and the
MAXIMUM COMMON SUBELECTION problems and study
their computational complexity and approximability. Using
our problems in experiments, we provide some insights into
the nature of several statistical models of elections.

1 Introduction
We study the computational complexity of several exten-
sions of the ELECTION ISOMORPHISM problem, recently
introduced by Faliszewski et al. (2019) as an analogue of
GRAPH ISOMORPHISM. While in the latter we are given
two graphs and we ask if they can be made identical by re-
naming the vertices, in the former we are given two ordinal
elections (i.e., elections where each voter ranks the candi-
dates from the most to the least appealing one) and ask if
they can be made identical by renaming the candidates and
reordering the voters. Interestingly, even though the exact
complexity of GRAPH ISOMORPHISM, as well as of many
related problems, remains elusive (Babai et al. 2015), ELEC-
TION ISOMORPHISM has a simple polynomial-time algo-
rithm (Faliszewski et al. 2019). Yet, in many practical set-
tings perfect isomorphism is too stringent and approximate
variants are necessary. For the case of GRAPH ISOMOR-
PHISM, researchers considered two types of relaxations: Ei-
ther they focused on making a small number of modifica-
tions to the input graphs that make them isomorphic (see,
e.g., the works of Arvind et al. (2012) and Grohe, Rattan,
and Woeginger (2018)), or they sought (maximum) isomor-
phic subgraphs of the input ones (see, e.g., the classic pa-
per of Cook (1971) and the textbook of Garey and Johnson
(1979); for an overview focused on applications in chem-
informatics we point to the work of Raymond and Willett
(2002)). For the case of elections, the former approach was
already taken by Faliszewski et al. (2019) and several other
researchers (Vayer et al. 2020; Szufa et al. 2020; Boehmer
et al. 2021). Our goal is to explore the latter route.

More specifically, we consider the SUBELECTION ISO-
MORPHISM and MAXIMUM COMMON SUBELECTION fam-
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ilies of problems. In the former, we are given two elections, a
smaller and a larger one, and we ask if it is possible to delete
some candidates and voters from the larger election so that it
becomes isomorphic to the smaller one. Put differently, we
ask if the smaller election occurs as a minor in the larger one.
One reason why this problem is interesting is its connection
to restricted preference domains. For example, both single-
peaked (Black 1958) and single-crossing (Mirrlees 1971;
Roberts 1977) elections are characterized as those that do
not have certain forbidden minors (Ballester and Haeringer
2011; Bredereck, Chen, and Woeginger 2013). We show that
SUBELECTION ISOMORPHISM is NP-complete and W[1]-
hard for the parameterization by the size of the smaller elec-
tion, which suggests that there are no fast algorithms for the
problem. Fortunately, the characterizations of single-peaked
and single-crossing elections use minors of constant size
and, such elections can be recognized efficiently; indeed,
there are very fast algorithms for these tasks (Bartholdi and
Trick 1986; Escoffier, Lang, and Öztürk 2008; Elkind, Fal-
iszewski, and Slinko 2012). Our results show that charac-
terizations with non-constant minors might lead to NP-hard
recognition problems.

In our second problem, MAXIMUM COMMON SUBELEC-
TION, we ask for the largest isomorphic subelections of the
two input ones. Since their size can be used as a (particu-
larly demanding) measure of similarity, our work is related
to those of Faliszewski et al. (2019) and Szufa et al. (2020).
In the former, the authors define the similarity between elec-
tions using variants of the swap distance and the Spear-
man footrule (and find these measures to be intractable),
whereas in the latter the authors propose a polynomial-time
computable measure, based on analyzing the frequency with
which candidates appear on particular positions in the votes.
While we find that many of our problems are NP-hard (and
hard to approximate), we also find polynomial algorithms,
also for practically useful cases.

For both our problems, we consider their “candidate” and
“voter” variants. For example, in CANDIDATE SUBELEC-
TION ISOMORPHISM we ask if it is possible to delete can-
didates from the larger election (but without deleting any
voters) so that it becomes isomorphic with the smaller one.
Similarly, in MAXIMUM COMMON VOTER-SUBELECTION
we ask if we can ensure isomorphism of the two input elec-
tions by only deleting voters (so that at least a given number
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of voters remains). In Section 5 we use this latter problem
to evaluate similarity between elections generated from var-
ious statistical cultures. These results confirm some findings
observed by Szufa et al. (2020) and Boehmer et al. (2021)
in their “maps of elections” and give a new perspective on
some of these statistical cultures.

In the most general variants of our problems, we assume
that both input elections are over different candidate sets and
include different voters. Yet, sometimes it is natural to as-
sume that the candidates or the voters are the same (for ex-
ample, in a presidential election votes collected in two dif-
ferent districts would have the same candidate sets, but dif-
ferent voters, whereas two consecutive presidential elections
would largely involve the same voters, but not necessarily
the same candidates). We model such scenarios by variants
of our problems where either the matchings between the
candidates or the voters of the input elections are given (in-
deed, this way we follow the approach of Faliszewski et al.
(2019)). While one would expect that having such match-
ings would make our problems easier, there are cases where
they remain NP-hard even with both matchings. This stands
in sharp contrast to the results of Faliszewski et al. (2019).
For a summary of our results, see Table 1.

2 Preliminaries
For a positive integer k, we write [k] to denote the set
{1, . . . , k}, and by Sk we refer to the set of all permuta-
tion over [k]. Given a graph G, we write V (G) to refer to its
set of vertices and E(G) to refer to its set of edges.

Elections. An election is a pair E = (C, V ) that consists
of a set C = {c1, . . . , cm} of candidates and a collection
V = (v1, . . . , vn) of voters. Each voter v ∈ V has a prefer-
ence order, i.e., a ranking of the candidates from the most to
the least appreciated one, denoted as �v . Given two can-
didates ci, cj ∈ C, we write ci �v cj (or, equivalently,
v : ci � cj) to denote that v prefers ci to cj . We extend
this notation to more than two candidates in a natural way.
For example, we write v : c1 � c2 � · · · � cm to indicate
that voter v likes c1 best, then c2, and so on, until cm. If
we put some set S of candidates in such a description of a
preference order, then we mean listing its members in some
arbitrary (but fixed, global) order. Including

←−
S means listing

the members of S in the reverse of this order. We often refer
to the preference orders as either the votes or the voters, but
the exact meaning will always be clear from the context. By
the size of an election, we mean the number of candidates
multiplied by the number of voters. Occasionally we discuss
single-peaked elections.

Definition 2.1 (Black (1958)). Let C be a set of candidates,
and let C be a linear order over C (referred to as the soci-
etal axis). We say that a vote v is single-peaked with respect
to C if for each k ∈ [m], the top k candidates in v form an
interval within C. An election is single-peaked if there is a
societal axis for which all its votes are single-peaked.

Given elections E = (C, V ) and E′ = (C ′, V ′), we say
thatE′ is a subelection ofE ifC ′ is a subset ofC and V ′ can
be obtained from V by deleting some voters and restricting

the remaining ones to the candidates fromC ′. We say thatE′
is a voter subelection of E if we can obtain it by only delet-
ing voters from E, and that E′ is a candidate subelection
of E if we can obtain it from E by only deleting candidates.

Election Isomorphism. Let E be an election with can-
didate set C = {c1, . . . , cm} and voter collection V =
(v1, . . . , vn). Further, let D be another set of m candidates
and let σ : C → D be a bijection between C and D. For
each voter v ∈ V , by σ(v) we mean a voter with the
same preference order as v, except that each candidate c
is replaced with σ(c). By σ(V ) we mean voter collection
(σ(v1), . . . , σ(vn)). Similarly, given a permutation π ∈ Sn,
by π(V ) we mean (vπ(1), . . . , vπ(n)).

Two elections are isomorphic if it is possible to rename
their candidates and reorder their voters so that they be-
come identical (Faliszewski et al. 2019). Formally, elections
(C1, V1) and (C2, V2), are isomorphic if |C1| = |C2|, |V1| =
|V2|, and there is a bijection σ : C1 → C2 and a permutation
π ∈ S|V1| such that (σ(C1), σ(π(V1))) = (C2, V2). We refer
to σ as the candidate matching and to π as the voter match-
ing. In the ELECTION ISOMORPHISM problem we are given
two elections and we ask if they are isomorphic.

Computational Complexity. We assume familiarity with
(parameterized) computational complexity theory; for back-
ground, we point the readers to the textbooks of Papadim-
itriou (1994) and Cygan et al. (2015). Most of our in-
tractability proofs follow by reductions from the CLIQUE
problem. An instance of CLIQUE consists of a graph G and
a nonnegative integer k, and we ask if G contains k vertices
that are all connected to each other. CLIQUE is well-known
to be both NP-complete and W[1]-complete, for the pa-
rameterization by k (Downey and Fellows 1995). Addition-
ally, we provide some lower-bounds based on the Exponen-
tial Time Hypothesis (ETH), which is a popular conjecture
on solving the CNF-SAT problem. For a formal statement
see, e.g., Conjecture 14.1 in (Cygan et al. 2015). Specifi-
cally, in our lower-bound proofs we use a consequence of
the ETH which says that there is no |V (G)|o(k)-time algo-
rithm for CLIQUE (Chen et al. 2006). As all the problems
that we study can easily be seen to belong to NP, in our
NP-completeness proofs we only give hardness arguments.

3 Variants of the Isomorphism Problem
We introduce two extensions of the ELECTION ISOMOR-
PHISM problem, inspired by SUBGRAPH ISOMORPHISM
and MAXIMUM COMMON SUBGRAPH. In the former, we
are given two elections and we ask if the smaller one is iso-
morphic to a subelection of the larger one. That is, we ask if
we can remove some candidates and voters from the larger
election to make the two elections isomorphic.

Definition 3.1. An instance of SUBELECTION ISOMOR-
PHISM consists of two elections, E1 = (C1, V1) and E2 =
(C2, V2), such that |C1| ≤ |C2| and |V1| ≤ |V2|. We ask if
there is a subelection E′ of E2 isomorphic to E1.

The VOTER-SUBELECTION ISOMORPHISM problem is
defined in the same way, except that we require E′ to
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Problem no matching voter-matching cand.-matching both matchings

Election Isomorphism P P P P

Subelection Isomorphism W[1]-h. [Thm. 3] NP-com. [Thm. 5] P [Thm. 2] P [Thm. 2]
Cand.-Subelection Isomorphism NP-com. [Prop. 6] NP-com. [Thm. 5] P [Thm. 2] P [Thm. 2]
Voter-Subelection Isomorphism P [Thm. 2] P [Thm. 2] P [Thm. 2] P [Thm. 2]

Max. Common Subelection W[1]-h. [Prop. 11] NP-com. [Prop. 11] NP-com. [Prop. 11] NP-com. [Prop. 11]
Max. Common Cand.-Subelection NP-com. [Prop. 10] NP-com. [Prop. 10] NP-com. [Prop. 10] W[1]-com. [Thm. 7]
Max. Common Voter-Subelection P [Thm. 2] P [Thm. 2] P [Thm. 2] P [Thm. 2]

Table 1: An overview of our results; those for ELECTION ISOMORPHISM are due to Faliszewski et al. (2019). W[1]-hardness
holds with respect to the size of the smaller election or a common subelection. Indicated W[1]-hard problems are also NP-hard.

be a voter subelection of E2. Similarly, in CANDIDATE-
SUBELECTION ISOMORPHISM we require E′ to be a candi-
date subelection. We often abbreviate the name of the latter
problem to CAND.-SUBELECTION ISOMORPHISM.
Example 3.1. Consider elections E = (C, V ) and F =
(D,U), where C = {a, b, c}, D = {x, y, z, w}, V =
(v1, v2, v3) and U = (u1, u2, u3), with preference orders:

v1 : a � b � c, u1 : w � x � y � z,
v2 : b � a � c, u2 : y � w � x � z,
v3 : c � b � a, and u3 : z � w � y � x.

If we remove candidate w from (D,U), then we find that
the resulting elections are isomorphic (to see this, it suf-
fices to match voters v1, v2, v3 with u1, u2, u3, respectively,
and candidates a, b, c with x, y, z). Thus E is isomorphic
to a (candidate) subelection of F and, so, (E,F ) is a yes-
instance of (CAND.-)SUBELECTION ISOMORPHISM.

In the MAXIMUM COMMON SUBELECTION problem we
seek the largest isomorphic subelections of two given ones.
We often abbreviate MAXIMUM as MAX.
Definition 3.2. An instance of MAX. COMMON SUBELEC-
TION consists of two elections, E1 = (C1, V1) and E2 =
(C2, V2), and a positive integer t. We ask if there is a sub-
election E′1 of E1 and a subelection E′2 of E2 such that E′1
and E′2 are isomorphic and the size of E′1 (or, equivalently,
the size of E′2) is at least t.

Analogously to the case of SUBELECTION ISOMOR-
PHISM, we also consider the MAX. COMMON CAND.-SUB-
ELECTION and MAX. COMMON VOTER-SUBELECTION
problems. In the former, E′1 and E′2 must be candidate sub-
elections and in the latter they need to be voter subelections
(thus in the former problem E1 and E2 must have the same
numbers of voters, and in the latterE1 andE2 must have the
same numbers of candidates).

For each of the above-defined problems we consider its
variant with or without the candidate or voter matching.
Specifically, the variants defined above are with no match-
ings. Variants with candidate matching include a bijection σ
that matches (some of) the candidates in one election to
(some of) those in the other (in case of SUBELECTION
ISOMORPHISM and its variants, all the candidates from the
smaller election must be matched to those in the larger one;
in case of MAX. COMMON SUBELECTION there are no such

requirements). Then we ask for an isomorphism between re-
spective subelections that agrees with σ. In particular, this
means that none of the unmatched candidates remain in the
considered subelections (another interpretation is to assume
that both input election have the same candidate sets).
Example 3.2. Consider elections (C, V ) and (D,U) from
Example 3.1, and a matching σ such that σ(a) = x, σ(b) =
w, where c, y, and z are unmatched. After applying it and
dropping the unmatched candidates, the votes in the first
election become v1 : x � w, v2 : w � x, and v3 : w � x,
whereas all the voters in the second election have preference
order w � x. Thus, this instance of MAX. COMMON SUB-
ELECTION WITH CANDIDATE MATCHING has isomorphic
subelections, respecting the matching σ, of size 2× 2 = 4.

Variants with voter matching are defined similarly: We
are given a matching between (some of) the voters from
one election and (some of) the voters from the other (and,
again, for SUBELECTION ISOMORPHISM and its variants,
each voter from the smaller election is matched to some
voter in the larger one). The sought-after isomorphism must
respect this matching (again, this means that we can disre-
gard the unmatched voters).

Variants with both matchings include both the matching
between the candidates and the matching between the voters
(note that these variants are not trivial because we still need
to decide who to delete). By writing all four matching cases
we mean the four just-described variants of a given problem.

Finally, we note that each variant of MAX. COMMON
SUBELECTION is at least as computationally difficult as its
corresponding variant of SUBELECTION ISOMORPHISM.
Proposition 1. Let M be a variant of MAX. COMMON
SUBELECTION and let S be a corresponding variant of
SUBELECTION ISOMORPHISM. We have that S many-one
reduces to M in polynomial time.

4 Computational Complexity Analysis
In this section, we present our complexity results. While in
most cases we obtain intractability (see Table 1 for a sum-
mary of our results), we find that all our problems focused
on voter subelections are solvable in polynomial time, and
having candidate matchings leads to polynomial-time algo-
rithm for all the variants of SUBELECTION ISOMORPHISM.
Missing proofs are available in the full version of the pa-
per (Faliszewski, Sornat, and Szufa 2021).
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All our polynomial-time results rely on the trick used
by Faliszewski et al. (2019) for the case of ELECTION ISO-
MORPHISM. The idea is to guess a pair of (matched) voters
and use them to derive the candidate matching.
Theorem 2. VOTER-SUBELECTION ISOMORPHISM and
MAX. COMMON VOTER-SUBELECTION are in P for
all four matching cases. SUBELECTION ISOMORPHISM,
CAND.-SUBELECTION ISOMORPHISM are in P for cases
with candidate matchings.

4.1 Intractability of Subelection Isomorphism
Next we show computational hardness for all the remaining
variants of our problems. In this section we consider SUB-
ELECTION ISOMORPHISM.
Theorem 3. SUBELECTION ISOMORPHISM is NP-com-
plete and W[1]-hard with respect to the size of the smaller
election.

Proof. Before we describe our reduction, we first provide
a method for transforming a graph into an election: For a
graph H , we let EH be an election whose candidate set con-
sists of the vertices of H and two special candidates, αH
and βH , and whose voters correspond to the edges of H .
Specifically, for each edge e = {x, y} ∈ E(H) we have
four voters, v1e , . . . v

4
e , with preference orders:

v1e : x � y � αH � βH � V (H) \ {x, y},
v2e : x � y � βH � αH � V (H) \ {x, y},
v3e : y � x � αH � βH � V (H) \ {x, y},
v4e : y � x � βH � αH � V (H) \ {x, y}.

We give a reduction from CLIQUE. Given an instance (G, k)
of CLIQUE, where G has at least k vertices and

(
k
2

)
edges,

we letK be a size-k complete graph and we form an instance
(EK , EG) of SUBELECTION ISOMORPHISM. The reduction
runs in polynomial time and it remains to show correctness.

First, let us assume that G has a size-k clique. Let X be
the set of its vertices and let Y be the set of its edges. We
form a subelection E′ of EG by removing all the candidates
that are not in X ∪ {αG, βG} and removing all the voters
that do not correspond to the edges from Y . One can verify
that E′ and EK are, indeed, isomorphic.

Second, let us assume thatEK is isomorphic to some sub-
election E′ of EG. We will show that this implies that G has
a size-k clique. First, we claim that E′ includes both αG and
βG. To see why this is so, consider the following two cases:

1. If E′ contained exactly one of αG, βG, then this candi-
date would appear in every vote in E′ among the top
three positions. Yet, inEK there is no candidate with this
property so E′ and EK would not be isomorphic.

2. If E′ contained neither αG nor βG then every vote in E′
would rank some vertex candidates z and w on positions
three and four (to be able to match αK and βK to them).
However, by the construction of EG, either in every vote
from E′ we would have z � w or in every vote from E′

we would have w � z. Since in EK half of the voters
rank the candidates from positions three and four in the
opposite way, E′ and EK would not be isomorphic.

Thus αG and βG are included in E′. Moreover αG and βG
are matched with αK and βK because they are the only can-
didates from EG that can appear on positions three and four
in every vote in E′ but possibly in different order. As a con-
sequence, for each vote v from EG that appears in E′, the
candidate set of E′ must include the two candidates from
V (G) that v ranks on top (if it were not the case, then E′
would contain a candidate—either αG or βG—that appeared
in all the votes within the top four positions and in some vote
within top two positions; yet, EK does not have such a can-
didate). This means that for each edge e ∈ E(G), if E′ con-
tains some voter vie for i ∈ [4], then it also contains the other
voters corresponding to e (otherwise E′ and EK would not
be isomorphic). Because the number of voters inEK is 4

(
k
2

)
,

hence the number of distinct chosen (in E′) corresponding
edges from G equals

(
k
2

)
. As said before, for each such cho-

sen edge, we also choose two corresponding vertices as can-
didates. It means that the number of chosen candidates (ex-
cept αG and βG) is between k and 2

(
k
2

)
. However, the num-

ber of candidates inEK exceptαK and βK is k, therefore we
conclude that chosen vertex-candidates form a size-k clique
in G. This completes the proof of NP-hardness.

To show W[1]-hardness, note that the number of candi-
dates and voters in the smaller election equals k+2 and 4

(
k
2

)
respectively, hence the size of the smaller election is a func-
tion of parameter k for which CLIQUE is W[1]-hard.

The above reduction shows something stronger than the
theorem claims. Indeed, assuming ETH one cannot compute
a solution faster than a straightforward brute-force approach.

Proposition 4. SUBELECTION ISOMORPHISM has an
O∗(mk)-time algorithm, where k is the number of candi-
dates in the smaller election and m is the number of can-
didates in the larger election (hence XP(k)). Moreover, as-
suming ETH, there is no O∗(mo(k))-time algorithm.

As a consequence of the above XP algorithm, even test-
ing if a fairly small, constant-sized, election is isomorphic to
a subelection of some bigger one may require a polynomial-
time algorithm with impractically large exponents. Luck-
ily, in practice this is not always the case. For example,
single-peaked elections are characterized as exactly those
that do not have subelections isomorphic to certain two
elections of sizes 8 and 9 (Ballester and Haeringer 2011),
but there is an algorithm for deciding if a given election
is single-peaked that runs in time O(nm), where m is the
number of candidates and n is the number of voters (Es-
coffier, Lang, and Öztürk 2008). For single-crossing elec-
tions, such a characterization uses subelections of sizes up
to 18, but there is a recognition algorithm that runs in time
O(n2 + nm logm) (Doignon and Falmagne 1994), which
can even be improved using appropriate data structures.

Next we consider CAND.-SUBELECTION ISOMOR-
PHISM. In this problem both elections have the same num-
ber of voters and we ask if we can delete candidates from
the one that has more, so that they become isomorphic.
We first show that this problem is NP-complete for the
case where the voter matching is given (which also proves
the same result for SUBELECTION ISOMORPHISM WITH
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VOTER MATCHING) and next we describe how this proof
can be adapted to the variant without any matchings (the
variant with candidate matching is in P and was considered
in the preceding section).
Theorem 5. SUBELECTION ISOMORPHISM WITH VOTER
MATCHING and CAND.-SUBELECTION ISOMORPHISM
WITH VOTER MATCHING are NP-complete.

CAND.-SUBELECTION ISOMORPHISM remains NP-
complete also without the voter matching. By doubling the
voters and using a few extra candidates we ensure that only
the intended voter matching is possible.
Proposition 6. CAND.-SUBELECTION ISOMORPHISM is
NP-complete.

4.2 Intractability of Max. Common Subelection
Perhaps the most surprising result regarding MAX. COM-
MON SUBELECTION is that it is NP-complete even when
both matchings are given. The surprise stems from the
fact that all generalizations of ELECTION ISOMORPHISM
considered by Faliszewski et al. (2019) are solvable in
polynomial-time in this setting. We first show this result for
candidate subelections.
Theorem 7. MAX. COMMON CAND.-SUBELECTION
WITH BOTH MATCHINGS is NP-complete and W[1]-
complete with respect to the candidate set size of isomorphic
candidate subelections.

Proof. We give a reduction from the CLIQUE problem
which idea is to decode the adjacency matrix of a given
graph by a pair of elections with both matchings defined.
Missing edges in a graph we decode as a conflict on candi-
dates ordering within matched voters.

Formally, given an instance (G, k) of CLIQUE, we form
two elections, E1 = (C, V1) and E2 = (C, V2), where
C = V (G). Since we need to provide an instance with a
candidate matching, we simply specify both elections over
the same candidate set. Without loss of generality, we as-
sume that V (G) = {1, . . . , n}. For each x ∈ V (G) we
define the neighborhood of x in G as N(x) = {y ∈
V (G) : {x, y} ∈ E(G)} and the set of non-neighbors as
M(x) = V (G) \ {N(x) ∪ {x}}.

For each vertex x ∈ V (G) we define two matched voters,
v1x in E1 and v2x in E2, defined as follows:

v1x : M(x) � x � N(x), and v2x : x �M(x) � N(x).

We ask if E1 and E2 have isomorphic candidate subelec-
tions that contain at least k candidates each. Intuitively, in a
solution to the problem one have to remove either x or all
vertices from M(x). It is a direct definition of a clique: Ei-
ther x is not in a clique or all its non-neighbors are not in
a clique. It is clear that the reduction can be computed in
polynomial time and it remains to show its correctness.

First let us assume thatG has a size-k clique. LetK be the
set of this clique’s vertices. We form elections E′1 and E′2 by
restricting E1 and E2 to the candidates from K. To verify
that E′1 and E′2 are isomorphic via the given matchings, let
us consider an arbitrary pair of matched voters v1x and v2x. If
x is not included in K then preference orders of v1x and v2x

restricted to K are identical. Indeed, removing even only x
from the set of candidates makes v1x and v2x identical. Oth-
erwise, if x is in K then K ∩M(x) = ∅ as K is a clique.
Therefore, removingM(x) from the set of candidates makes
v1x and v2x identical.

For the other direction, let us assume that there are sub-
elections E′1 and E′2 of E1 and E2, respectively, each with
candidate set K, such that |K| ≥ k and E′1 and E′2 are iso-
morphic via the given matchings. It must be the case that
the vertices from K form a clique because if K contained
two vertices x and y that were not connected by an edge,
then votes v1x and v2x would not be identical. Indeed, then we
would have y � x in v1x and x � y in v2x, respectively, when
restricted to candidates from K. This completes the proof of
NP-hardness.

To show W[1]-hardness, note that the required number of
candidates in isomorphic candidate subelections is equal to
the parameter k for which CLIQUE is W[1]-hard.

For membership in W[1] we show a reduction to CLIQUE
with equal value of the parameters. Its idea is to create a
complete graph in which vertices correspond to candidates
and then remove edges based on conflicted voters. More pre-
cisely, for every two matched voters v and u and every two
candidates x and y such that x �v y and y �u x, we re-
move an edge {x, y} from the graph. It means that both ver-
tices corresponding to x and y cannot stay in a solution of
CLIQUE. Indeed, as we cannot delete voters, the only way
to resolve this conflict is to remove a candidate x or y (or
both). A formal reduction is available in the full version of
the paper (Faliszewski, Sornat, and Szufa 2021).

The above reduction can be used to show strong hard-
ness results which transfer from CLIQUE. In particular, a
brute-force algorithm is essentially the best possible for ex-
act computation. What is more, a trivial approximation al-
gorithm which returns a constant size solution (hence the
approximation ratio is O(m)) is also essentially optimal.

Proposition 8. MAX. COMMON CAND.-SUBELECTION
WITH BOTH MATCHINGS has an O∗(mk)-time algorithm,
where k is the number of candidates in isomorphic candi-
date subelections and m is the number of candidates in the
input (hence XP(k)). Moreover, assuming ETH, there is no
O∗(mo(k))-time algorithm.

Proposition 9. MAX. COMMON CAND.-SUBELECTION
WITH BOTH MATCHINGS has an t/c-approximation algo-
rithm for any constant c ≥ 1, where t is the maximum
number of candidates in isomorphic candidate subelections.
Moreover, approximating the problem within t1−ε factor, for
every ε > 0, is NP-hard.

All the remaining variants of MAX. COMMON CAND.-
SUBELECTION also are NP-complete. The proofs either fol-
low by applying Proposition 1 or by introducing candidates
that implement a required voter matching. In the latter case,
W[1]-hardness does not follow from this reduction as we
introduce dummy candidates that have to be included in a
solution, but their number is not a function of the CLIQUE
parameter (clique size).
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Proposition 10. MAX. COMMON CAND.-SUBELECTION
is NP-complete and so are its variants with a given candi-
date matching and with a given voter matching.

Similarly to all four matching cases of the MAX. COM-
MON CAND.-SUBELECTION, all four matching cases of the
MAX. COMMON SUBELECTION also are NP-complete.
Proposition 11. All four matching cases of the MAX. COM-
MON SUBELECTION are NP-complete.

5 Experiments
In this section we use the MAX. COMMON VOTER-SUB-
ELECTION problem to analyze similarity between elections
generated from various statistical models. While MAX.
COMMON VOTER-SUBELECTION has a polynomial-time
algorithm, it is too slow for our purposes. Thus we have ex-
pressed it as an integer linear program (ILP) and we were
solving it using the CPLEX ILP solver. A formal ILP for-
mulation is available in the full version of the paper (Fal-
iszewski, Sornat, and Szufa 2021). The source code used for
the experiments is available in a GitHub repository1.

We stress that we could have used other problems from
the MAX. COMMON SUBELECTION family in this section.
We chose MAX. COMMON VOTER-SUBELECTION because
its outcomes are particularly easy to interpret.

Our findings are similar to those of Szufa et al. (2020),
but our claims of similarity between statistical cultures are
stronger, whereas our dissimilarity claims are weaker.

5.1 Statistical Models of Elections
We consider the following models for generating elections:

Identity. Under the Identity model (ID), we choose a single
preference order uniformly at random and then all the
generated votes are equal to it.

Impartial Culture. Under Impartial Culture (IC), we gen-
erate each preference order uniformly at random.

Pólya-Eggenberger Urn Model. The Pólya-Eggenberger
Urn Model (Berg 1985) is parameterized by a nonnega-
tive value α ∈ [0,∞), which specifies the degree of cor-
relation between the votes (McCabe-Dansted and Slinko
2006). We start with an urn containing exactly one copy
of each possible preference order; then we generate the
votes one by one, by drawing a preference order from the
urn (which we assume to be the generated vote) and re-
placing it with α ·m! duplicates, where m is the number
of candidates in the election.

Mallows Model. The Mallows Model (Mallows 1957) is
parameterized by a value φ ∈ [0, 1] and a central pref-
erence order vc, which we choose uniformly at random.
The probability of generating a preference order v is pro-
portional to φswap(vc,v), where swap(vc, v) is the mini-
mum number of swaps of adjacent candidates needed to
transform v into vc. In our experiments we do not set the
value of φ directly, but we use the parameterization by
norm-φ proposed by Boehmer et al. (2021) (specifically,

1https://github.com/Project-PRAGMA/Subelections-AAAI-
2022

they used rel-φ = 0.5 · norm-φ). It works as follows:
For a given norm-φ value and a given number m of can-
didates in the election to be generated, we choose value
φ so that for a generated vote v the expected value of
swap(vc, v) is equal to norm-φ times half the total num-
ber of swaps possible in preference orders over m candi-
dates. Thus using norm-φ = 1 means generating votes
according to the IC model, using norm-φ = 0 means us-
ing the identity model, and using norm-φ = 0.5 means
using a model that in a certain formal sense is exactly
between these two extremes. See the work of Lu and
Boutilier (2014) for an effective sampling algorithm.

1D Interval Model. The candidates and the voters are
points drawn uniformly at random from a unit interval.
Each voter v ranks the candidates with respect to increas-
ing Euclidean distances of their points from that of v.

We also use the models of Walsh (2015) and Conitzer
(2009) that generate single-peaked elections (it is also well-
known that all 1D Interval elections are single-peaked).
Given a societal axis, these models work as follows:
Walsh Model. Each single-peaked vote, for a given axis, is

drawn with equal probability (we use the sampling algo-
rithm of Walsh (2015)).

Conitzer Model. Under the Conitzer model, to generate a
vote we start by choosing the top candidate uniformly at
random. Then we keep on extending the vote with either
of the two candidates right next to the already selected
one(s) on the axis, depending on a coin toss.

5.2 Results and Analysis
We consider elections with 4, 7, or 10 candidates and with
50 voters. For each scenario and each two of the above-
described models, we have generated 1000 pairs of elections
(for urn elections, we used α ∈ {0.1, 0.5} and for the Mal-
lows model, we used norm-φ ∈ {1/3, 2/3}). For each pair
of models, we recorded the average number of voters in the
maximum common voter subelections (normalized by fifty,
i.e., the number of voters in the original elections), as well
as the standard deviation of this value. We show our numer-
ical results in Figure 1 (each cell corresponds to a pair of
models; the number in the top-left corner is the average, and
the one in the bottom-right corner is the standard deviation).
Note that the matrices in Figure 1 are symmetric (results for
models A and B are the same as for models B and A).

For the case with four candidates, we see that the level of
similarity between elections from various models is quite
high and drops sharply as the number of candidates in-
creases. This shows that for experiments with very few can-
didates it is not as relevant to consider very different election
models, but for more using diverse models is justified.

The above notwithstanding, some models remain similar
even for 7 or 10 candidates. This is particularly visible for
the case of single-peaked elections. The 1D-Interval model
remains very similar to the Conitzer model, and the Walsh
model is quite similar to these two for up to 7 candidates,
but for 10 candidates starts to stand out (the result for 10
candidates is also visible in the experiments of Szufa et al.
(2020); the similarity for fewer candidates is a new finding).
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Figure 1: The large numbers denote the rounded % of matched votes for MAX. COMMON VOTER-SUBELECTION. The small
numbers denote the rounded standard deviation. In the left/center/right matrix there are results for 4/7/10 candidates.

Figure 2: Average time needed to find the maximum com-
mon voter subelections. With the fixed number of candidates
(left), and fixed number of voters (right).

We also note that the urn models remain relatively simi-
lar to each other (and to the 1D-Interval and Conitzer mod-
els) for all numbers of candidates, but this is not the case
for the Mallows models. One explanation for this is that the
urn model proceeds by copying some of the votes already
present in the election, whereas the Mallows model gener-
ates votes by perturbing the central one. The former leads to
more identical votes in an election. Indeed, to verify this it
suffices to consider the “ID” column (or row) of the matrix:
The similarity to the identity elections simply shows how of-
ten the most frequent vote appears in elections from a given
model. For 10 candidates, urn elections with α ∈ {0.1, 0.5}
have, on average, 21± 8% and 49± 17% identical votes, re-
spectively. For Mallows elections, this value drops to around
2% (in our setting, this means 1 or 2 voters, on average).

Finally, we consider the diagonals of the matrices in Fig-
ure 1, which show self-similarity of our models. Intuitively,
the larger are these values, the fewer elections of a given
type one needs in an experiment. Single-peaked elections
stand out here for all numbers of candidates, whereas the urn
models become more prominent for larger candidate sets.

We have also analyzed the average running time that
CPLEX needed to find the maximum common voter sub-

elections2. We focus on IC, Identity, Walsh model, Conitzer
model, Mallows model with norm-φ = 0.5, and 1D-Interval.
First, we generated 500 pairs of elections from each model
with 10 candidates and 5, 10, . . . , 45, 50 voters, and calcu-
lated the average time needed to find the maximum common
voter subelections. Second, we fixed the number of voters to
50 and generated elections with 3, 4, . . . , 9, 10 candidates.
The results are presented in Figure 2. As we increase the
number of voters, the time seems to increase exponentially.
We observe large differences between the models, with IC
being by far the slowest. Conitzer model and Walsh model
are significantly different from one another, even though
both of them generate single-peaked elections. Moreover,
the fact that 1D-Interval and Conitzer models need on av-
erage the same amount of time confirms their similarity.

6 Conclusions
We have shown that variants of ELECTION ISOMORPHISM
that are based on considering subelections are largely in-
tractable but, nonetheless, some of them can be solved in
polynomial-time. Indeed, we have used the polynomial-
time solvable MAXIMUM COMMON CANDIDATE SUB-
ELECTION problem to analyze similarity between various
different models of generating random elections.

In Section 4 we have classified variants of the problem
as either belonging to P or being NP-complete (and some
being W[1]-hard). For some variants of our problems we
have shown strong inapproximability results and matching
approximation algorithms. However, it would also be desir-
able to consider the parameterized complexity of these prob-
lem for the remaining variants.

It would be interesting to consider variants of our prob-
lems where instead of requiring identical preference orders
among matched voters, we might ask for similar ones (e.g.,
within a given swap distance). Another interesting research
direction is to repeat our experiments on real-life elections.

2We ran CPLEX on a single thread (Intel(R) Xeon(R) Platinum
8280 CPU @ 2.70GH) of a 448 thread machine with 6TB of RAM.
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